Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Nat Commun ; 15(1): 7206, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174515

ABSTRACT

Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.


Subject(s)
Antigens, Protozoan , Erythrocytes , Liver , Membrane Proteins , Mice, Inbred BALB C , Protozoan Proteins , Animals , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Female , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Humans , Erythrocytes/parasitology , Erythrocytes/immunology , Liver/parasitology , Liver/immunology , Liver/metabolism , Malaria Vaccines/immunology , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Cross Reactions/immunology , Plasmodium falciparum/immunology , Plasmodium berghei/immunology , Epitopes/immunology , Hepatocytes/parasitology , Hepatocytes/immunology , Hepatocytes/metabolism , Plasmodium/immunology , Merozoites/immunology , Merozoites/metabolism
2.
Front Immunol ; 15: 1416669, 2024.
Article in English | MEDLINE | ID: mdl-39131160

ABSTRACT

Background: Production of anti-phosphatidylserine (anti-PS) antibodies has been associated with malaria and can aggravate pathology. How these autoantibodies develop during early childhood in a malaria context is not known. We examined levels of anti-PS IgG and IgM antibodies in a longitudinal cohort of mother-baby pairs during birth, in the infants at 2.5, 6 months, and in mothers and their babies at 9 months postpartum. Results: There was no difference between levels of anti-PS IgG in cord blood and the mothers' peripheral blood at birth. However, anti-PS IgM levels were significantly higher in the mothers compared to the infants' cord blood, and IgM levels were steadily increasing during the first 9 months of the infants' life. In infants that had the highest anti-PS IgM levels at birth, there was a decline until 6 months with a rise at 9 months. Infants that possessed high anti-PS IgG at birth also exhibited a progressive decline in levels. When anti-PS were correlated to different fractions of B-cells, there were several correlations with P. falciparum specific atypical B cells both at birth and at 2.5 months for the infants, especially for anti-PS IgM. Anti-PS also correlated strongly to C1q-fixing antibodies at birth. Conclusion: These results show that anti-PS IgG acquired by mothers could be transferred transplacentally and that IgM antibodies targeting PS are acquired during the first year of life. These results have increased the knowledge about autoimmune responses associated with infections in early life and is critical for a comprehensive understanding of malaria vaccine functionality in endemic areas.


Subject(s)
Immunoglobulin G , Immunoglobulin M , Phosphatidylserines , Humans , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Phosphatidylserines/immunology , Infant , Uganda , Infant, Newborn , Adult , Plasmodium falciparum/immunology , Male , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Immunity, Maternally-Acquired , Autoantibodies/immunology , Autoantibodies/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Mothers , Fetal Blood/immunology , B-Lymphocytes/immunology , Longitudinal Studies
3.
Adv Parasitol ; 125: 53-103, 2024.
Article in English | MEDLINE | ID: mdl-39095112

ABSTRACT

The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Plasmodium falciparum/genetics , Humans , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Animals
4.
Vaccine ; 42(21): 126140, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39033079

ABSTRACT

Transmission-blocking vaccines interrupting malaria transmission within mosquitoes represent an ideal public health tool to eliminate malaria at the population level. Plasmodium falciparum and P. vivax account for more than 90% of the global malaria burden, co-endemic in many regions of the world. P25 and P48/45 are two leading candidates for both species and have shown promising transmission-blocking activity in preclinical and clinical studies. However, neither of these target antigens as individual vaccines has induced complete transmission inhibition in mosquitoes. In this study, we assessed immunogenicity of combination vaccines based on P25 and P48/45 using a DNA vaccine platform to broaden vaccine specificity against P. falciparum and P. vivax. Individual DNA vaccines encoding Pvs25, Pfs25, Pvs48/45 and Pfs48/45, as well as various combinations including (Pvs25 + Pvs48/45), (Pfs25 + Pfs48/45), (Pvs25 + Pfs25), and (Pvs48/45 + Pfs48/45), were evaluated in mice using in vivo electroporation. Potent antibody responses were induced in mice immunized with individual and combination DNA vaccines, and specific antibody responses were not compromised when combinations of DNA vaccines were evaluated against individual DNA vaccines. The anti-Pvs25 IgG from individual and combination groups revealed concentration-dependent transmission-reducing activity (TRA) in direct membrane feeding assays (DMFA) using blood from P. vivax-infected donors in Brazil and independently in ex vivo MFA using Pvs25-transgenic P. berghei. Similarly, anti-Pfs25 and anti-Pfs48/45 IgGs from mice immunized with Pfs25 and Pfs48/45 DNA vaccines individually and in various combinations revealed antibody dose-dependent TRA in standard membrane feeding assays (SMFA) using culture-derived P. falciparum gametocytes. However, antibodies induced by immunization with Pvs48/45 DNA vaccines were ineffective in DMFA and require further vaccine construct optimization, considering the possibility of induction of both transmission-blocking and transmission-enhancing antibodies revealed by competition ELISA. These studies provide a rationale for combining multiple antigens to simultaneously target transmission of malaria caused by P. falciparum and P. vivax.


Subject(s)
Antibodies, Protozoan , Malaria Vaccines , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Vaccines, DNA , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Animals , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/genetics , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Female , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice, Inbred BALB C , Humans
5.
PLoS One ; 19(7): e0306664, 2024.
Article in English | MEDLINE | ID: mdl-38968270

ABSTRACT

BACKGROUNDS: Malaria, a preventive and treatable disease, is still responsible for annual deaths reported in most tropical regions, principally in sub-Saharan Africa. Subunit recombinant transmission-blocking vaccines (TBVs) have been proposed as promising vaccines to succeed in malaria elimination and eradication. Here, a provisional study was designed to assess the immunogenicity and functional activity of alanyl aminopeptidase N (APN1) of Anopheles stephensi, as a TBV candidate, administered with MPL, CpG, and QS21 adjuvants in the murine model. METHODOLOGY/PRINCIPAL FINDINGS: The mouse groups were immunized with recombinant APN1 (rAPN1) alone or formulated with CpG, MPL, QS-21, or a combination of adjuvants (CMQ), and the elicited immune responses were evaluated after the third immunization. The standard membrane feeding assay (SMFA) measured the functional activity of antibodies against bacterial-expressed APN1 protein in adjuvanted vaccine groups on transmission of P. falciparum (NF54) to An. stephensi mosquitoes. Evaluation of mice vaccinated with rAPN1 formulated with distinct adjuvants manifested a significant increase in the high-avidity level of anti-APN1 IgG and IgG subclasses; however, rAPN1 induced the highest level of high-avidity anti-APN1 IgG1, IgG2a, and IgG2b antibodies in the immunized vaccine group 5 (APN1/CMQ). In addition, vaccine group 5 (receiving APN1/CMQ), had still the highest level of anti-APN1 IgG antibodies relative to other immunized groups after six months, on day 180. The SMFA data indicates a trend towards higher transmission-reducing activity in groups 2 and 5, which received the antigen formulated with CpG or a combination of three adjuvants. CONCLUSIONS/SIGNIFICANCE: The results have shown the capability of admixture to stimulate high-affinity and long-lasting antibodies against the target antigen to hinder Plasmodium parasite development in the mid-gut of An. stephensi. The attained results authenticated APN1/CMQ and APN1/CpG as a potent APN1-based TBV formulation which will be helpful in designing a vaccine in the future.


Subject(s)
Adjuvants, Immunologic , Anopheles , CD13 Antigens , Malaria Vaccines , Saponins , Animals , Anopheles/parasitology , Anopheles/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Mice , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Saponins/pharmacology , Saponins/administration & dosage , CD13 Antigens/immunology , CD13 Antigens/metabolism , Female , Plasmodium falciparum/immunology , Malaria/prevention & control , Malaria/transmission , Malaria/immunology , Malaria/parasitology , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Mice, Inbred BALB C , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology
6.
PLoS One ; 19(7): e0302243, 2024.
Article in English | MEDLINE | ID: mdl-39046960

ABSTRACT

The sequestration of Plasmodium falciparum-infected erythrocytes to the host endothelium is central to the pathogenesis of malaria. The sequestration is mediated by the parasite´s diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants, which bind select human receptors on the endothelium. Severe malaria is associated with PfEMP1 binding human endothelial protein C receptor (EPCR) via their CIDRα1 domains. Antibodies binding and inhibiting across the sequence diverse CIDRα1 domains are likely important in acquired immunity against severe malaria. In this study, we explored if immunization with AP205 bacteriophage capsid-virus-like particles (cVLPs) presenting a mosaic of diverse CIDRα1 protein variants would stimulate broadly reactive and inhibitory antibody responses in mice. Three different mosaic cVLP vaccines each composed of five CIDRα1 protein variants with varying degrees of sequence conservation of residues at and near the EPCR binding site, were tested. All mosaic cVLP vaccines induced functional antibodies comparable to those induced by matched cocktails of cVLPs decorated with the single CIDRα1 variant. No broadly reactive responses were observed. However, the vaccines did induce some cross-reactivity and inhibition within the CIDRα1 subclasses included in the vaccines, demonstrating potential use of the cVLP vaccine platform for the design of multivalent vaccines.


Subject(s)
Endothelial Protein C Receptor , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Humans , Endothelial Protein C Receptor/immunology , Endothelial Protein C Receptor/metabolism , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Female , Protein Domains , Protein Binding , Mice, Inbred BALB C , Receptors, Cell Surface/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology
7.
Pan Afr Med J ; 47: 175, 2024.
Article in English | MEDLINE | ID: mdl-39036016

ABSTRACT

Introduction: in areas with intense perennial malaria transmission, limited data is available on the impact of environmental conditions especially rainfall on naturally acquired immunity against promising malaria vaccine candidates. For this reason, we have compared IgG antibody responses specific to Plasmodium spp. derived MSP3 and UB05 vaccine candidates, in plasma of children living in two areas of Cameroon differing in rainfall conditions. Methods: data about children less than 5 years old was collected during the years 2017 and 2018. Next malaria asymptomatic P. falciparum (Pf) infected children were selected following malaria test confirmation. MSP3 and UB05 specific IgG antibody responses were measured in participant´s plasma using enzyme-linked immunosorbent assay (ELISA). Results: interestingly, IgG antibody responses specific to UB05 were significantly higher (p<0.0001) in Pf-negative children when compared to their asymptomatic Pf-infected counterparts living in monomodal rainfall areas. In contrast, a significantly higher (p<0.0001) IgG response to MSP3 was observed instead in asymptomatic Pf-infected children in the same population. In addition, IgG responses specific to UB05 remained significantly higher in bimodal when compared to monomodal rainfall areas irrespective of children´s Pf infection status (p<0.0055 for Pf-positive and p<0.0001 for negative children). On the contrary, IgG antibody responses specific to MSP3 were significantly higher in bimodal relative to monomodal rainfall areas (P<0.0001) just for Pf-negative children. Conclusion: thus IgG antibody responses specific to UBO5 are a better correlate of naturally acquired immunity against malaria in Pf-negative Cameroonian children especially in monomodal rainfall areas.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Humans , Cameroon , Malaria, Falciparum/immunology , Malaria, Falciparum/epidemiology , Immunoglobulin G/blood , Child, Preschool , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Infant , Female , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Male , Rain , Recombinant Proteins/immunology
8.
EBioMedicine ; 106: 105227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018754

ABSTRACT

BACKGROUND: A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle. METHODS: We analysed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Database. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. FINDINGS: Among the ten antigens analysed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP119 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. INTERPRETATION: These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritising conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. FUNDING: Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).


Subject(s)
Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/immunology , Plasmodium falciparum/genetics , Malaria Vaccines/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Malaria, Falciparum/parasitology , Malaria, Falciparum/immunology , Humans , Genetic Variation , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Haplotypes , Epitopes/immunology , Epitopes/genetics
9.
BMC Immunol ; 25(1): 44, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987710

ABSTRACT

BACKGROUND: Malaria is a life-threatening parasitic disease typically transmitted through the bite of an infected Anopheles mosquito. There is ample evidence showing the potential of malaria infection to affect the counts of lymphocyte subpopulations in the peripheral blood, but the extent of alteration might not be consistent in all geographical locations, due to several local factors. Although Ghana is among the malaria-endemic countries, there is currently no available data on the level of alterations that occur in the counts of lymphocyte subpopulations during P. falciparum malaria infection among adults. AIM: The study was to determine the immunophenotypic alterations in the level of peripheral blood lymphocytes and their subsets in adults with uncomplicated P. falciparum malaria infection and apparently healthy participants. METHODS: The study was a cross-sectional comparative study conducted in two municipalities of the Volta region of Ghana. Blood samples were collected from study participants and taken through serology (P. falciparum/Pan Rapid Diagnostic Kits), microscopy (Thick and thin blood films) and Haematological (Flow cytometric and Full blood count) analysis. RESULTS: A total of 414 participants, comprising 214 patients with malaria and 200 apparently healthy individuals (controls) were recruited into this study. Parasite density of the malaria patients ranged from 75/µL to 84,364/µL, with a mean of 3,520/µL. It was also observed that the total lymphocytes slightly decreased in the P. falciparum-infected individuals (Mean ± SD: 2.08 ± 4.93 × 109/L) compared to the control group (Mean ± SD: 2.47 ± 0.80 × 109/L). Again, there was a significant moderate positive correlation between parasite density and haematocrit levels (r = 0.321, p < 0.001). Apart from CD45 + T-cells, more people in the control group had normal values for the lymphocyte subsets measured compared to the malaria patients. CONCLUSIONS: From the results obtained, there was high parasite density among the malaria patients suggestive of high intensity of infection in the case group. The malaria patients again showed considerable haematological alterations in lymphocyte sub-sets and the parasite density appeared to be strongly associated with CD4 + T-cell reduction. Also, the parasite density significantly associated with decreasing haematocrit levels. This indicates that lymphocyte subset enumeration can be used to effectively support malaria diagnosis.


Subject(s)
Immunophenotyping , Malaria, Falciparum , Plasmodium falciparum , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/blood , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Male , Female , Adult , Plasmodium falciparum/immunology , Cross-Sectional Studies , Ghana , Middle Aged , Young Adult , Lymphocyte Subsets/immunology , Adolescent , Lymphocytes/immunology , Lymphocyte Count
10.
Gene ; 927: 148744, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964492

ABSTRACT

Current understanding of genetic polymorphisms and natural selection in Plasmodium falciparum circumsporozoite (PfCSP), the leading malaria vaccine, is crucial for the development of next-generation vaccines, and such data is lacking in Africa. Blood samples were collected among Plasmodium-infected individuals living in four Cameroonian areas (Douala, Maroua, Mayo-Oulo, Pette). DNA samples were amplified using nested PCR protocols, sequenced, and BLASTed. Single nucleotide polymorphisms (SNPs) were analysed in each PfCSP region, and their impact on PfCSP function/structure was predicted in silico. The N-terminal region showed a limited polymorphism with four haplotypes, and three novel SNPs (N68Y, R87W, K93E) were found. Thirty-five haplotypes were identified in the central region, with several variants (e.g., NVNP and KANP). The C-terminal region was also highly diverse, with 25 haplotypes and eight novel SNPs (N290D, N308I, S312G, K317A, V344I, D356E, E357L, D359Y). Most polymorphic codon sites were mainly observed in the Th2R subregion in isolates from Douala and Pette. The codon site 321 was under episodic positive selection. One novel (E357L) and three known (K322I, G349D, D359Y) SNPs show an impact on function/structure. This study showed extensive genetic diversity with geographical patterns and evidence of the selection of Cameroonian PfCSP central and C-terminal regions.


Subject(s)
Haplotypes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Polymorphism, Single Nucleotide , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Cameroon , Protozoan Proteins/genetics , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria Vaccines/genetics , Malaria Vaccines/immunology
11.
Cell Rep Med ; 5(7): 101654, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019011

ABSTRACT

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.


Subject(s)
Antibodies, Protozoan , Malaria Vaccines , Plasmodium falciparum , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Malaria Vaccines/immunology , Antibodies, Protozoan/immunology , Plasmodium falciparum/immunology , Vaccines, Virus-Like Particle/immunology , Humans , Mice , Protozoan Proteins/immunology , Rats , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Antigens, Protozoan/immunology , Female , Carrier Proteins/immunology , Mice, Inbred BALB C
12.
PLoS Comput Biol ; 20(6): e1012131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848436

ABSTRACT

Immunization through repeated direct venous inoculation of Plasmodium falciparum (Pf) sporozoites (PfSPZ) under chloroquine chemoprophylaxis, using the PfSPZ Chemoprophylaxis Vaccine (PfSPZ-CVac), induces high-level protection against controlled human malaria infection (CHMI). Humoral and cellular immunity contribute to vaccine efficacy but only limited information about the implicated Pf-specific antigens is available. Here, we examined Pf-specific antibody profiles, measured by protein arrays representing the full Pf proteome, of 40 placebo- and PfSPZ-immunized malaria-naïve volunteers from an earlier published PfSPZ-CVac dose-escalation trial. For this purpose, we both utilized and adapted supervised machine learning methods to identify predictive antibody profiles at two different time points: after immunization and before CHMI. We developed an adapted multitask support vector machine (SVM) approach and compared it to standard methods, i.e. single-task SVM, regularized logistic regression and random forests. Our results show, that the multitask SVM approach improved the classification performance to discriminate the protection status based on the underlying antibody-profiles while combining time- and dose-dependent data in the prediction model. Additionally, we developed the new fEature diStance exPlainabilitY (ESPY) method to quantify the impact of single antigens on the non-linear multitask SVM model and make it more interpretable. In conclusion, our multitask SVM model outperforms the studied standard approaches in regard of classification performance. Moreover, with our new explanation method ESPY, we were able to interpret the impact of Pf-specific antigen antibody responses that predict sterile protective immunity against CHMI after immunization. The identified Pf-specific antigens may contribute to a better understanding of immunity against human malaria and may foster vaccine development.


Subject(s)
Antibodies, Protozoan , Machine Learning , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Malaria Vaccines/immunology , Humans , Plasmodium falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Vaccine Efficacy , Support Vector Machine , Computational Biology/methods
13.
Nat Commun ; 15(1): 5194, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890271

ABSTRACT

Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Plasmodium falciparum/immunology , Male , Protozoan Proteins/immunology , Animals , Adult , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Interferon-gamma/metabolism , Interferon-gamma/immunology , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Young Adult , CD8-Positive T-Lymphocytes/immunology , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Anopheles/parasitology
15.
Front Immunol ; 15: 1385380, 2024.
Article in English | MEDLINE | ID: mdl-38827744

ABSTRACT

Introduction: Depending on the microenvironment, γδ T cells may assume characteristics similar to those of Th1, Th2, Th17, regulatory T cells or antigen presenting cells. Despite the wide documentation of the effect of Th1/Th2 balance on pregnancy associated malaria and outcomes, there are no reports on the relationship between γδ T cell phenotype change and Placental Malaria (PM) with pregnancy outcomes. This study sought to investigate the involvement of γδ T cells and its subsets in placental Plasmodium falciparum malaria. Methods: In a case-control study conducted in Yaoundé, Cameroon from March 2022 to May 2023, peripheral, placental and cord blood samples were collected from 50 women at delivery (29 PM negative: PM- and 21 PM positive: PM+; as diagnosed by light microscopy). Hemoglobin levels were measured using hemoglobinometer. PBMCs, IVBMCs and CBMCs were isolated using histopaque-1077 and used to characterize total γδ T cell populations and subsets (Vδ1+, Vδ2+, Vδ1-Vδ2-) by flow cytometry. Results: Placental Plasmodium falciparum infection was associated with significant increase in the frequency of total γδ T cells in IVBMC and of the Vδ1+ subset in PBMC and IVBMC, but decreased frequency of the Vδ2+ subset in PBMC and IVBMC. The expression of the activation marker: HLA-DR, and the exhaustion markers (PD1 and TIM3) within total γδ T cells and subsets were significantly up-regulated in PM+ compared to PM- group. The frequency of total γδ T cells in IVBMC, TIM-3 expression within total γδ T cells and subsets in IVBMC, as well as HLA-DR expression within total γδ T cells and Vδ2+ subset in IVBMC were negatively associated with maternal hemoglobin levels. Furthermore, the frequency of total γδ T cells in PBMC and PD1 expression within the Vδ2+ subset in CBMC were negatively associated with birth weight contrary to the frequency of Vδ1-Vδ2- subset in PBMC and HLA-DR expression within the Vδ2+ subset in IVBMC which positively associated with maternal hemoglobin level and birth weight, respectively. Conclusion: The data indicate up-regulation of activated and exhausted γδ T cells in Plasmodium falciparum placental malaria, with effects on pregnancy outcomes including maternal hemoglobin level and birth weight.


Subject(s)
Malaria, Falciparum , Placenta , Plasmodium falciparum , Pregnancy Complications, Parasitic , Pregnancy Outcome , Receptors, Antigen, T-Cell, gamma-delta , Humans , Female , Pregnancy , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Cameroon , Adult , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Plasmodium falciparum/immunology , Pregnancy Complications, Parasitic/immunology , Case-Control Studies , Young Adult , Placenta/immunology , Placenta/parasitology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Phenotype
16.
Nat Commun ; 15(1): 4913, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851821

ABSTRACT

Host immune responses are tightly controlled by various immune factors during infection, and protozoan parasites also manipulate the immune system to evade surveillance, leading to an evolutionary arms race in host‒pathogen interactions; however, the underlying mechanisms are not fully understood. We observed that the level of superoxide dismutase 3 (SOD3) was significantly elevated in both Plasmodium falciparum malaria patients and mice infected with four parasite species. SOD3-deficient mice had a substantially longer survival time and lower parasitemia than control mice after infection, whereas SOD3-overexpressing mice were much more vulnerable to parasite infection. We revealed that SOD3, secreted from activated neutrophils, bound to T cells, suppressed the interleukin-2 expression and concomitant interferon-gamma responses crucial for parasite clearance. Overall, our findings expose active fronts in the arms race between the parasites and host immune system and provide insights into the roles of SOD3 in shaping host innate immune responses to parasite infection.


Subject(s)
Malaria, Falciparum , Mice, Inbred C57BL , Mice, Knockout , Neutrophils , Superoxide Dismutase , Animals , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Humans , Mice , Neutrophils/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Immunity, Cellular , T-Lymphocytes/immunology , Plasmodium falciparum/immunology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Male , Immunity, Innate , Interleukin-2/metabolism , Interleukin-2/immunology , Interleukin-2/genetics , Parasitemia/immunology
17.
Front Immunol ; 15: 1350560, 2024.
Article in English | MEDLINE | ID: mdl-38863702

ABSTRACT

Background: Despite decades of effort, Plasmodium falciparum malaria remains a leading killer of children. The absence of a highly effective vaccine and the emergence of parasites resistant to both diagnosis as well as treatment hamper effective public health interventions. Methods and results: To discover new vaccine candidates, we used our whole proteome differential screening method and identified PfGBP130 as a parasite protein uniquely recognized by antibodies from children who had developed resistance to P. falciparum infection but not from those who remained susceptible. We formulated PfGBP130 as lipid encapsulated mRNA, DNA plasmid, and recombinant protein-based immunogens and evaluated the efficacy of murine polyclonal anti-PfGBP130 antisera to inhibit parasite growth in vitro. Immunization of mice with PfGBP130-A (aa 111-374), the region identified in our differential screen, formulated as a DNA plasmid or lipid encapsulated mRNA, but not as a recombinant protein, induced antibodies that inhibited RBC invasion in vitro. mRNA encoding the full ectodomain of PfGBP130 (aa 89-824) also generated parasite growth-inhibitory antibodies. Conclusion: We are currently advancing PfGBP130-A formulated as a lipid-encapsulated mRNA for efficacy evaluation in non-human primates.


Subject(s)
Antibodies, Protozoan , Erythrocytes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Mice , Erythrocytes/parasitology , Erythrocytes/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Humans , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antigens, Protozoan/immunology , Immunization , Female
18.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849365

ABSTRACT

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Subject(s)
Antibodies, Monoclonal , Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Animals , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Female , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Antigens, Protozoan/immunology , Rats , Antibodies, Protozoan/immunology , Antibodies, Monoclonal/immunology , Humans , Epitopes/immunology , Carrier Proteins/immunology , Carrier Proteins/metabolism
19.
Infect Immun ; 92(7): e0001524, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38842304

ABSTRACT

Strain-transcending antibodies against virulence-associated subsets of P. falciparum-infected erythrocyte surface antigens could protect children from severe malaria. However, the evidence supporting the existence of such antibodies is incomplete and inconsistent. One subset of surface antigens associated with severe malaria, rosette-mediating Plasmodium falciparum Erythrocyte Membrane Protein one (PfEMP1) variants, cause infected erythrocytes to bind to uninfected erythrocytes to form clusters of cells (rosettes) that contribute to microvascular obstruction and pathology. Here, we tested plasma from 80 individuals living in malaria-endemic regions for IgG recognition of the surface of four P. falciparum rosetting strains using flow cytometry. Broadly reactive plasma samples were then used in antibody elution experiments in which intact IgG was eluted from the surface of infected erythrocytes and transferred to heterologous rosetting strains to look for strain-transcending antibodies. We found that seroprevalence (percentage of positive plasma samples) against allopatric rosetting strains was high in adults (63%-93%) but lower in children (13%-48%). Strain-transcending antibodies were present in nine out of eleven eluted antibody experiments, with six of these recognizing multiple heterologous rosetting parasite strains. One eluate had rosette-disrupting activity against heterologous strains, suggesting PfEMP1 as the likely target of the strain-transcending antibodies. Naturally acquired strain-transcending antibodies to rosetting P. falciparum strains in humans have not been directly demonstrated previously. Their existence suggests that such antibodies could play a role in clinical protection and raises the possibility that conserved epitopes recognized by strain-transcending antibodies could be targeted therapeutically by monoclonal antibodies or vaccines.


Subject(s)
Antibodies, Protozoan , Immunoglobulin G , Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Child , Adult , Immunoglobulin G/immunology , Immunoglobulin G/blood , Child, Preschool , Adolescent , Protozoan Proteins/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Antigens, Protozoan/immunology , Female , Male , Young Adult , Middle Aged , Seroepidemiologic Studies , Rosette Formation , Flow Cytometry
20.
Front Immunol ; 15: 1358853, 2024.
Article in English | MEDLINE | ID: mdl-38835780

ABSTRACT

Introduction: Innate immunity is crucial to reducing parasite burden and contributing to survival in severe malaria. Monocytes are key actors in the innate response and, like macrophages, are plastic cells whose function and phenotype are regulated by the signals from the microenvironment. In the context of cerebral malaria (CM), monocyte response constitutes an important issue to understand. We previously demonstrated that decreased percentages of nonclassical monocytes were associated with death outcomes in CM children. In the current study, we postulated that monocyte phagocytosis function is impacted by the severity of malaria infection. Methods: To study this hypothesis, we compared the opsonic and nonopsonic phagocytosis capacity of circulant monocytes from Beninese children with uncomplicated malaria (UM) and CM. For the CM group, samples were obtained at inclusion (D0) and 3 and 30 days after treatment (D3, D30). The phagocytosis capacity of monocytes and their subsets was characterized by flow cytometry and transcriptional profiling by studying genes known for their functional implication in infected-red blood cell (iRBC) elimination or immune escape. Results: Our results confirm our hypothesis and highlight the higher capacity of nonclassical monocytes to phagocyte iRBC. We also confirm that a low number of nonclassical monocytes is associated with CM outcome when compared to UM, suggesting a mobilization of this subpopulation to the cerebral inflammatory site. Finally, our results suggest the implication of the inhibitory receptors LILRB1, LILRB2, and Tim3 in phagocytosis control. Discussion: Taken together, these data provide a better understanding of the interplay between monocytes and malaria infection in the pathogenicity of CM.


Subject(s)
Malaria, Cerebral , Monocytes , Phagocytosis , Humans , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Monocytes/immunology , Male , Child, Preschool , Female , Child , Infant , Plasmodium falciparum/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL