Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.072
Filter
1.
Mol Biol Rep ; 51(1): 957, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230768

ABSTRACT

BACKGROUND: Recent studies have revealed atypical features in the plastomes of the family Cactaceae, the largest lineage of succulent species adapted to arid and semi-arid regions. Most plastomes sequenced to date are from short-globose and cylindrical cacti, while little is known about plastomes of epiphytic cacti. Published cactus plastomes reveal reduction and complete loss of IRs, loss of genes, pseudogenization, and even degeneration of tRNA structures. Aiming to contribute with new insights into the plastid evolution of Cactaceae, particularly within the tribe Rhipsalideae, we de novo assembled and analyzed the plastomes of Lepismium cruciforme and Schlumbergera truncata, two South American epiphytic cacti. METHODS AND RESULTS: Our data reveal many gene losses in both plastomes and the first loss of functionality of the trnT-GGU gene in Cactaceae. The trnT-GGU is a pseudogene in L. cruciforme plastome and appears to be degenerating in the tribe Rhipsalideae. Although the plastome structure is conserved among the species of the tribe Rhipsalideae, with tribe-specific rearrangements, we mapped around 200 simple sequence repeats and identified nine nucleotide polymorphism hotspots, useful to improve the phylogenetic resolutions of the Rhipsalideae. Furthermore, our analysis indicated high gene divergence and rapid evolution of RNA editing sites in plastid protein-coding genes in Cactaceae. CONCLUSIONS: Our findings show that some characteristics of the Rhipsalideae tribe are conserved, such as plastome structure with IRs containing only the ycf2 and two tRNA genes, structural degeneration of the trnT-GGU gene and ndh complex, and lastly, pseudogenization of rpl33 and rpl23 genes, both plastid translation-related genes.


Subject(s)
Cactaceae , Phylogeny , Plastids , Cactaceae/genetics , Plastids/genetics , Evolution, Molecular , Genes, Plant/genetics , Pseudogenes/genetics , Genome, Plastid/genetics , RNA, Transfer/genetics , Gene Rearrangement/genetics
2.
Mol Phylogenet Evol ; 200: 108182, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39222738

ABSTRACT

The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.


Subject(s)
Liliaceae , Phylogeny , Liliaceae/genetics , Liliaceae/classification , Transcriptome , Evolution, Molecular , Plastids/genetics , DNA, Mitochondrial/genetics
3.
Genome Biol Evol ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39231033

ABSTRACT

The mitochondrial plastid DNAs (MTPTs) in seed plants were reported more than 40 years ago and exhibited a high diversity regarding gene content, quantity, and size. However, the mechanism that resulted in the current diversity of MTPTs in angiosperms has not been fully discovered. In this study, we sequenced and characterized the complete organelle genomes of Limonia acidissima L., a monotypic species of Rutaceae. The newly generated and previously published organelle genomes of 42 species were used to explore the diversity of MTPTs regarding quantity, gene content, size, and coverage of chloroplast genome (cpDNA) regions. The results showed that the number of MTPTs ranged from three to 74, of which the lengths were from 100 to 53,731 bp. The highest coverage of MTPTs was found in the inverted repeat region, whereas the small single repeat region had the lowest coverage. Based on the previous data and current results, we propose a scenario for the diversity of MTPTs in angiosperms. In the first stage, the whole cpDNA might migrate to the mitogenome. Then, different genomic events, such as duplication, deletion, substitution, and inversion, have occurred continuously and independently and resulted in extremely variable profiles of mitogenomes among angiosperms. Our hypothesis provides a new and possibly reliable scenario for explaining the present circumstances of MTPTs in angiosperms. However, more genomic data should be mined, and more studies should be conducted to clarify this natural phenomenon in plants.


Subject(s)
DNA, Mitochondrial , Genome, Mitochondrial , DNA, Mitochondrial/genetics , Genetic Variation , Phylogeny , Plastids/genetics , Evolution, Molecular , Genome, Chloroplast
4.
Sci Rep ; 14(1): 18930, 2024 08 15.
Article in English | MEDLINE | ID: mdl-39147804

ABSTRACT

VQ1 and VQ10 are largely unstructured homologous proteins with a significant potential for protein-protein interactions. Yeast two-hybrid (Y2H) analysis confirmed that both proteins interact not only with themselves and each other but also with other VQ and WRKY proteins. Screening an Arabidopsis Y2H library with VQ1 as bait identified 287 interacting proteins. Validation of the screening confirmed that interactions with VQ1 also occurred with VQ10, supporting their functional homology. Although VQ1 or VQ10 proteins do not localize in plastids, 47 VQ1-targets were found to be plastidial proteins. In planta interaction with the isoprenoid biosynthetic enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) was confirmed by co-immunoprecipitation. DXS oligomerizes through redox-regulated intermolecular disulfide bond formation, and the interaction with VQ1 or VQ10 do not involve their unique C residues. The VQ-DXS protein interaction did not alter plastid DXS localization or its oligomerization state. Although plants with enhanced or reduced VQ1 and VQ10 expression did not exhibit significantly altered levels of isoprenoids compared to wild-type plants, they did display significantly improved or diminished photosynthesis efficiency, respectively.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plastids , Transferases , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plastids/metabolism , Transferases/metabolism , Transferases/genetics , Two-Hybrid System Techniques , Protein Binding , Amino Acid Motifs , Gene Expression Regulation, Plant
5.
Mol Biol Rep ; 51(1): 810, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001942

ABSTRACT

Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.


Subject(s)
Carotenoids , Gene Expression Regulation, Plant , Plastids , Plastids/metabolism , Carotenoids/metabolism , Plants/metabolism , Plants/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Development/genetics , Cell Differentiation
6.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063070

ABSTRACT

Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Mitochondrial Proton-Translocating ATPases , Plastids , Signal Transduction , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Plastids/metabolism , Plastids/genetics , Mitochondria/metabolism , Seedlings/genetics , Seedlings/metabolism , Mutation , Transcription Factors/metabolism , Transcription Factors/genetics , Lincomycin/pharmacology , Gene Expression Profiling
7.
Plant J ; 119(5): 2288-2302, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969341

ABSTRACT

HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.


Subject(s)
HSP90 Heat-Shock Proteins , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Chloroplasts/metabolism , Plastids/metabolism , Plastids/genetics , Phylogeny , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
8.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119797, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39033932

ABSTRACT

About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron­sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.


Subject(s)
Iron-Sulfur Proteins , Plastids , Sulfur , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/chemistry , Plastids/metabolism , Plastids/genetics , Sulfur/metabolism , Photosynthesis , Iron/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
9.
Curr Biol ; 34(14): 3064-3076.e5, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38936366

ABSTRACT

Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated ß subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.


Subject(s)
Dinoflagellida , Photosynthesis , Plastids , Symbiosis , Dinoflagellida/physiology , Dinoflagellida/genetics , Plastids/genetics , Plastids/metabolism , Phycoerythrin/metabolism , Phycoerythrin/genetics , Cryptophyta/genetics , Cryptophyta/physiology , Light
10.
Nat Commun ; 15(1): 5456, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937455

ABSTRACT

Stramenopile algae contribute significantly to global primary productivity, and one class, Eustigmatophyceae, is increasingly studied for applications in high-value lipid production. Yet much about their basic biology remains unknown, including the nature of an enigmatic, pigmented globule found in vegetative cells. Here, we present an in-depth examination of this "red body," focusing on Nannochloropsis oceanica. During the cell cycle, the red body forms adjacent to the plastid, but unexpectedly it is secreted and released with the autosporangial wall following cell division. Shed red bodies contain antioxidant ketocarotenoids, and overexpression of a beta-carotene ketolase results in enlarged red bodies. Infrared spectroscopy indicates long-chain, aliphatic lipids in shed red bodies and cell walls, and UHPLC-HRMS detects a C32 alkyl diol, a potential precursor of algaenan, a recalcitrant cell wall polymer. We propose that the red body transports algaenan precursors from plastid to apoplast to be incorporated into daughter cell walls.


Subject(s)
Cell Wall , Plastids , Stramenopiles , Cell Wall/metabolism , Stramenopiles/metabolism , Plastids/metabolism
11.
Cells ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891061

ABSTRACT

Through the shikimate pathway, a massive metabolic flux connects the central carbon metabolism with the synthesis of chorismate, the common precursor of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, as well as other compounds, including salicylate or folate. The alternative metabolic channeling of chorismate involves a key branch-point, finely regulated by aromatic amino acid levels. Chorismate mutase catalyzes the conversion of chorismate to prephenate, a precursor of phenylalanine and tyrosine and thus a vast repertoire of fundamental derived compounds, such as flavonoids or lignin. The regulation of this enzyme has been addressed in several plant species, but no study has included conifers or other gymnosperms, despite the importance of the phenolic metabolism for these plants in processes such as lignification and wood formation. Here, we show that maritime pine (Pinus pinaster Aiton) has two genes that encode for chorismate mutase, PpCM1 and PpCM2. Our investigations reveal that these genes encode plastidial isoenzymes displaying activities enhanced by tryptophan and repressed by phenylalanine and tyrosine. Using phylogenetic studies, we have provided new insights into the possible evolutionary origin of the cytosolic chorismate mutases in angiosperms involved in the synthesis of phenylalanine outside the plastid. Studies based on different platforms of gene expression and co-expression analysis have allowed us to propose that PpCM2 plays a central role in the phenylalanine synthesis pathway associated with lignification.


Subject(s)
Chorismate Mutase , Phylogeny , Pinus , Chorismate Mutase/metabolism , Chorismate Mutase/genetics , Pinus/enzymology , Pinus/genetics , Pinus/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Phenylalanine/metabolism , Plastids/metabolism , Plastids/enzymology , Tryptophan/metabolism
12.
Plant Physiol Biochem ; 213: 108813, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861821

ABSTRACT

In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin). The review is focused on the modulation of plastid capabilities at both transcriptional and post-translational levels at the crossroad between development and stress, with a particular attention to the chloroplast, because the most studied plastid type. The role of plastid-encoded and nuclear-encoded proteins for plastid development and stress responses, and the changes of plastid fate through the activity of stromules and plastoglobules, are discussed. Examples of plastid dynamism in response to soil stress agents (salinity, lead, cadmium, arsenic, and chromium) are described. Albinism and root greening are described based on the modulation activities of auxin and cytokinin. The physiological and functional responses of the sensory epidermal and vascular plastids to abiotic and biotic stresses along with their specific roles in stress sensing are described together with their potential modulation of retrograde signaling pathways. Future research perspectives include an in-depth study of sensory plastids to explore their potential for establishing a transgenerational memory to stress. Suggestions about anterograde and retrograde pathways acting at interspecific level and on the lipids of plastoglobules as a novel class of plastid morphogenic agents are provided.


Subject(s)
Plastids , Plastids/metabolism , Plant Growth Regulators/metabolism , Signal Transduction , Stress, Physiological , Plant Development/physiology
15.
Curr Biol ; 34(13): 2957-2971.e8, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917798

ABSTRACT

The root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S. indica-mediated plant protection. Here, we report S. indica effector (SIE) 141 and its host target CDSP32, a conserved thioredoxin-like protein, and underlying mechanisms for enhancing pathogen resistance and abiotic salt tolerance in Arabidopsis thaliana. SIE141 binding interfered with canonical targeting of CDSP32 to chloroplasts, leading to its re-location into the plant nucleus. This nuclear translocation is essential for both their interaction and resistance function. Furthermore, SIE141 enhanced oxidoreductase activity of CDSP32, leading to CDSP32-mediated monomerization and activation of NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), a key regulator of systemic resistance. Our findings provide functional insights on how S. indica transfers well-known beneficial effects to host plants and indicate CDSP32 as a genetic resource to improve plant resilience to abiotic and biotic stresses.


Subject(s)
Arabidopsis , Salt Stress , Symbiosis , Arabidopsis/microbiology , Arabidopsis/physiology , Arabidopsis/genetics , Basidiomycota/physiology , Oxidoreductases/metabolism , Oxidoreductases/genetics , Cell Nucleus/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Plastids/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology
16.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38934796

ABSTRACT

Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.


Subject(s)
Heteroplasmy , Mitochondria , Mutation Rate , Plastids , Plastids/genetics , Mitochondria/genetics , Mitochondria/metabolism , Alleles
17.
Plant Physiol ; 196(1): 137-152, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38829834

ABSTRACT

Plastids in vascular plants have various differentiated forms, among which amyloplasts are crucial for starch storage and plant productivity. Despite the vast knowledge of the binary-fission mode of chloroplast division, our understanding of the replication of non-photosynthetic plastids, including amyloplasts, remains limited. Recent studies have suggested the involvement of stromules (stroma-filled tubules) in plastid replication when the division apparatus is faulty. However, details of the underlying mechanism(s) and their relevance to normal processes have yet to be elucidated. Here, we developed a live analysis system for studying amyloplast replication using Arabidopsis (Arabidopsis thaliana) ovule integuments. We showed the full sequence of amyloplast development and demonstrated that wild-type amyloplasts adopt three modes of replication, binary fission, multiple fission, and stromule-mediated fission, via multi-way placement of the FtsZ ring. The minE mutant, with severely inhibited chloroplast division, showed marked heterogeneity in amyloplast size, caused by size-dependent but wild-type modes of plastid fission. The dynamic properties of stromules distinguish the wild-type and minE phenotypes. In minE cells, extended stromules from giant amyloplasts acquired stability, allowing FtsZ ring assembly and constriction, as well as the growth of starch grains therein. Despite hyper-stromule formation, amyloplasts did not proliferate in the ftsZ null mutant. These data clarify the differences between amyloplast and chloroplast replication and demonstrate that the structural plasticity of amyloplasts underlies the multiplicity of their replication processes. Furthermore, this study shows that stromules can generate daughter plastids via the assembly of the FtsZ ring.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ovule , Plastids , Arabidopsis/genetics , Plastids/genetics , Plastids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ovule/genetics , Mutation/genetics , Chloroplasts/metabolism , Chloroplasts/genetics , Phenotype
18.
Plant Cell ; 36(9): 3584-3610, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38842420

ABSTRACT

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.


Subject(s)
Diatoms , Gluconeogenesis , Glycolysis , Plastids , Diatoms/metabolism , Diatoms/genetics , Plastids/metabolism , Plastids/genetics , Glycolysis/genetics , Gluconeogenesis/genetics , Phylogeny
19.
Physiol Plant ; 176(3): e14374, 2024.
Article in English | MEDLINE | ID: mdl-38837422

ABSTRACT

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Subject(s)
Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
20.
Physiol Plant ; 176(3): e14340, 2024.
Article in English | MEDLINE | ID: mdl-38741259

ABSTRACT

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Subject(s)
Arabidopsis , Cysteine , Malate Dehydrogenase , Oxidation-Reduction , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cysteine/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , NAD/metabolism , Plastids/metabolism , Plastids/enzymology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL