Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 971
Filter
1.
Clin Chim Acta ; 564: 119906, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39127296

ABSTRACT

Mycoplasma pneumoniae can cause respiratory infections and pneumonia, posing a serious threat to the health of children and adolescents. Early diagnosis of Mycoplasma pneumoniae infection is crucial for clinical treatment. Currently, diagnostic methods for Mycoplasma pneumoniae infection include pathogen detection, molecular biology techniques, and bacterial culture, all of which have certain limitations. Here, we developed a rapid, simple, and accurate detection method for Mycoplasma pneumoniae that does not rely on large equipment or complex operations. This technology combines the CRISPR-Cas12a system with recombinase polymerase amplification (RPA), allowing the detection results to be observed through fluorescence curves and immunochromatographic lateral flow strips.It has been validated that RPA-CRISPR/Cas12a fluorescence analysis and RPA-CRISPR/Cas12-immunochromatographic exhibit no cross-reactivity with other common pathogens, and The established detection limit was ascertained to be as low as 102 copies/µL.Additionally, 49 clinical samples were tested and compared with fluorescence quantitative polymerase chain reaction, demonstrating a sensitivity and specificity of 100%. This platform exhibits promising clinical performance and holds significant potential for clinical application, particularly in settings with limited resources, such as clinical care points or resource-constrained areas.


Subject(s)
CRISPR-Cas Systems , Mycoplasma pneumoniae , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Humans , CRISPR-Cas Systems/genetics , Nucleic Acid Amplification Techniques/methods , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology
2.
J Med Microbiol ; 73(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39229885

ABSTRACT

Introduction. Recently, the incidence of Mycoplasma pneumoniae (M. pneumoniae) infection in children has been increasing annually. Early differential diagnosis of M. pneumoniae infection can not only avoid the abuse of antibiotics, but also is essential for early treatment and reduction of transmission.Gap statement. The change of routine blood parameters may have important clinical significance for the diagnosis of M. pneumoniae infection, but it has not been reported so far.Aim. This study aims to establish a predictive model for M. pneumoniae infection and explore the changes and clinical value of routine blood parameters in children with M. pneumoniae infection, serving as auxiliary indicators for the diagnosis and differentiation of clinical M. pneumoniae infection.Methodology. A total of 770 paediatric patients with respiratory tract infections were enrolled in this study, including 360 in the M. pneumoniae group, 40 in the SARS-CoV-2 group, 200 in the influenza A virus group, and 170 in the control group. The differences of routine blood parameters among all groups were compared, and risk factors were analysed using multivariate logistics analysis, and the diagnostic efficacy of differential indicators using ROC curves.Results. This study revealed that Mono% (OR: 3.411; 95% CI: 1.638-7.102; P=0.001) was independent risk factor associated with M. pneumoniae infection, and Mono% (AUC=0.786, the optimal cutoff at 7.8%) had a good discriminative ability between patients with M. pneumoniae infection and healthy individuals. Additionally, Mono% (OR: 0.424; 95% CI: 0.231-0.781; P=0.006) and Lymp% (OR: 0.430; 95% CI: 0.246-0.753; P=0.003) were independent risk factors for distinguishing M. pneumoniae infection from influenza A virus infection, and the Lymp% (AUC=0.786, the optimal cutoff at 22.1%) and Net% (AUC=0.761, the optimal cutoff at 65.2%) had good discriminative abilities between M. pneumoniae infection and influenza A infection. Furthermore, platelet distribution width (OR: 0.680; 95% CI: 0.538-0.858; P=0.001) was independent risk factor for distinguishing M. pneumoniae infection from SARS-CoV-2 infection. Meanwhile, the ROC curve demonstrated that PDW (AUC=0.786, the optimal cutoff at 15%) has a good ability to differentiate between M. pneumoniae infection and SARS-CoV-2 infection.Conclusion. This study demonstrates that routine blood parameters can be used as auxiliary diagnostic indicators for M. pneumoniae infection and provide reference for the diagnosis and differentiation of clinical M. pneumoniae infection.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/blood , Pneumonia, Mycoplasma/microbiology , Female , Male , Child, Preschool , Child , Mycoplasma pneumoniae/isolation & purification , COVID-19/diagnosis , COVID-19/blood , Infant , ROC Curve , Risk Factors , Diagnosis, Differential , Adolescent , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/blood , SARS-CoV-2/isolation & purification
3.
Clin Lab ; 70(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39257109

ABSTRACT

BACKGROUND: Blood routine testing was the most commonly used laboratory method in clinical practice. The results are often influenced by factors such as instruments, reagents, and samples, among which, the interference of cold agglutinin is a very rare element. In our article, we reported a case of red blood cell agglutination caused by Mycoplasma pneumoniae infection. METHODS: The number of blood cells were detected by blood routine analyzer with or without treatment at 37℃ water bath. The red blood cell agglutination was observed through blood smear staining. The cold agglutination test were performed using O-type red blood cells added into patient's plasma and refrigerated overnight at 4℃. We also used luminescent immunoassay technology to detect the content of MP antibodies in patient's serum. RESULTS: The patient's results were RBC (2.69 x 1012/L), MCH (48.5 pg), MCHC (522 g/L). Through a microscope, we observed red blood cell agglutination. The concentration of MP-igM was 60.37 AU/mL. The cold agglutination test was positive. Following a 37℃ water bath, the patient's results changed: RBC (3.85 x 1012/L), MCH (31.2 pg), MCHC (352 g/L). The phenomenon of massive agglutination of red blood cells has also disappeared. CONCLUSIONS: The cold agglutinin produced by MP infection can alter the results of red blood cell. During the epidemic period of MP infection, it is important to pay attention to the phenomenon of abnormal elevation of MCHC in clinical practice.


Subject(s)
Erythrocytes , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , Pneumonia, Mycoplasma/blood , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Mycoplasma pneumoniae/immunology , Cryoglobulins/analysis , Cryoglobulins/metabolism , Male , Agglutination Tests , Agglutination , Female , Immunoglobulin M/blood
4.
BMC Infect Dis ; 24(1): 972, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271984

ABSTRACT

BACKGROUND: X-linked agammaglobulinemia (XLA), also referred to as Bruton's tyrosine kinase deficiency, is a rare genetic disorder that affects the immune system. We conducted genetic analysis on patients suffering from immunodeficiency by utilizing Next-Generation Sequencing techniques, as well as their closest relatives, to facilitate accurate diagnosis, offer genetic counseling services, and enhance our comprehension of XLA.


Subject(s)
Agammaglobulinemia , Genetic Diseases, X-Linked , Pneumonia, Mycoplasma , Humans , Agammaglobulinemia/complications , Agammaglobulinemia/genetics , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/complications , Male , Pneumonia, Mycoplasma/complications , Pneumonia, Mycoplasma/microbiology , Agammaglobulinaemia Tyrosine Kinase/genetics , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Adult , High-Throughput Nucleotide Sequencing
5.
BMC Infect Dis ; 24(1): 919, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232651

ABSTRACT

BACKGROUND: The clinical significance of the presence or absence of Mycoplasma pneumoniae (MP) in pleural effusion in Mycoplasma pneumoniae pneumonia (MPP) children has not yet been elucidated. Herein, we investigated the clinical implication of pleural fluid MP positive in children with MPP. METHODS: A total of 165 MPP children with pleural effusion requiring thoracocentesis were enrolled in this study. They were subsequently divided into two groups according to the presence or absence of MP in pleural effusion, namely positive group (n = 38) and negative group (n = 127). Information on their clinical manifestations, laboratory findings, radiological characteristics and treatment modalities was retrospectively collected from medical chart reviews. RESULTS: The length of hospitalization (15.00 (10.75-19.25) vs. 11.00 (9.00-14.00) days, p=0.001) and total course of illness (23.00 (18.00-28.00) vs. 20.00 (17.00-24.00) days, p=0.010) were significantly longer in the positive group than in the negative group. The occurrence of pericardial effusion (23.7% vs. 7.9%, p=0.017), atelectasis (73.7% vs. 53.5%, p=0.027) and necrotizing pneumonia (23.7% vs. 7.9%, p=0.017) were more frequent in the positive group compared to the negative group. The levels of neutrophil percentages (82.35% (75.40%-85.78%) vs. 72.70% (64.30%-79.90%), p<0.001), C-reactive protein (CRP) (71.12 (37.75-139.41) vs. 31.15 (13.54-65.00) mg/L, p<0.001), procalcitonin (PCT) (0.65 (0.30-3.05) vs. 0.33 (0.17-1.13) ng/ml, p=0.005), serum lactate dehydrogenase (LDH) (799.00 (589.00-1081.50) vs. 673.00 (503.00-869.00) U/L, p=0.009), D-dimer (6.21 (3.37-16.11) vs. 3.32 (2.12-6.62) mg/L, p=0.001) on admission were significantly higher in the positive group than in the negative group. These pronounced differences significantly contributed to the identification of MPP with MP positive pleural effusion, as evidenced by the ROC curve analysis. Marked elevations in adenosine deaminase (49.25 (36.20-60.18) vs. 36.20 (28.10-46.50) U/L, p<0.001) and LDH levels (2298.50 (1259.75-3287.00) vs. 1199.00 (707.00-1761.00) U/L, p<0.001) were observed in pleural fluid of the positive group when compared to the negative group. Meanwhile, the number of patients on low molecular weight heparin (LMWH) therapy (9 (23.7%) vs. 12 (9.4%), p=0.028) was higher in the positive group. Multivariate logistic regression analysis revealed that D-dimer > 7.33 mg/L was significantly associated with the incidence of MP positive pleural effusion in MPP (OR=3.517). CONCLUSIONS: The presence of MP in pleural fluid in MPP children with pleural effusion indicated a more serious clinical course. D-dimer > 7.33 mg/L was a related factor for MP positive pleural effusion in MPP. The results of the present study would help in the creation of a therapeutic plan and prediction of the clinical course of MPP in children.


Subject(s)
Mycoplasma pneumoniae , Pleural Effusion , Pneumonia, Mycoplasma , Humans , Pneumonia, Mycoplasma/microbiology , Pneumonia, Mycoplasma/epidemiology , Female , Retrospective Studies , Pleural Effusion/microbiology , Male , Child, Preschool , Child , Infant , C-Reactive Protein/analysis , Length of Stay
6.
Front Cell Infect Microbiol ; 14: 1409078, 2024.
Article in English | MEDLINE | ID: mdl-39176261

ABSTRACT

Introduction: Mycoplasma pneumoniae (MP) is the major cause of respiratory infections that threaten the health of children and adolescents worldwide. Therefore, an early, simple, and accurate detection approach for MP is critical to prevent outbreaks of MP-induced community-acquired pneumonia. Methods: Here, we explored a simple and accurate method for MP identification that combines loop-mediated isothermal amplification (LAMP) with the CRISPR/Cas12b assay in a one-pot reaction. Results: In the current study, the whole reaction was completed within 1 h at a constant temperature of 57°C. The limit of detection of this assay was 33.7 copies per reaction. The specificity of the LAMP-CRISPR/Cas12b method was 100%, without any cross-reactivity with other pathogens. Overall, 272 clinical samples were used to evaluate the clinical performance of LAMP-CRISPR/Cas12b. Compared with the gold standard results from real-time PCR, the present method provided a sensitivity of 88.11% (126/143), specificity of 100% (129/129), and consistency of 93.75% (255/272). Discussion: Taken together, our preliminary results illustrate that the LAMP-CRISPR/Cas12b method is a simple and reliable tool for MP diagnosis that can be performed in resource-limited regions.


Subject(s)
CRISPR-Cas Systems , Molecular Diagnostic Techniques , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Pneumonia, Mycoplasma , Sensitivity and Specificity , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Humans , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Molecular Diagnostic Techniques/methods , Child , Limit of Detection
7.
Front Cell Infect Microbiol ; 14: 1423155, 2024.
Article in English | MEDLINE | ID: mdl-39176262

ABSTRACT

Mycoplasma pneumoniae is a significant pathogen responsible for community-acquired pneumonia, predominantly affecting children and adolescents. Here, we devised a rapid method for M. pneumoniae that combined multiple cross displacement amplification (MCDA) with real-time fluorescence technology. A set of ten primers, which were specifically designed for M. pneumoniae detection, were employed in a real-time fluorescence MCDA reaction. Of these, one primer incorporated a restriction endonuclease recognition sequence, a fluorophore, and a quencher, facilitating real-time fluorescence detection. The real-time (RT)-MCDA reactions were monitored in a simple real-time fluorescence instrument and conducted under optimised conditions (64°C for 40 min). The detection limit of the M. pneumoniae RT-MCDA assay for genomic DNA extracted from M. pneumoniae culture was down to 43 fg/µl. This assay accurately identified M. pneumoniae strains without cross-reacting with other bacteria. To validate its practical application, we tested the M. pneumoniae RT-MCDA assay using genomic DNA extracted from clinical samples. The assay's detection capability proved comparable with real-time PCR, MCDA-based biosensor detection, and visual inspection under blue light. The entire process, including rapid DNA extraction and real-time MCDA detection, was completed within 1 h. Overall, the M. pneumoniae RT-MCDA assay reported here is a simple and effective diagnostic tool for rapid M. pneumoniae detection, which holds significant potential for point-of-care testing and in resource-limited regions.


Subject(s)
DNA, Bacterial , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Pneumonia, Mycoplasma , Sensitivity and Specificity , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Humans , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Nucleic Acid Amplification Techniques/methods , DNA, Bacterial/genetics , Fluorescence , Molecular Diagnostic Techniques/methods , DNA Primers/genetics , Real-Time Polymerase Chain Reaction/methods , Limit of Detection
8.
Vet Microbiol ; 297: 110203, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089141

ABSTRACT

Many cattle infected with Mycoplasma bovis remain healthy while others develop severe chronic respiratory disease. We hypothesized that inflammatory stimuli such as co-pathogens worsen disease outcomes in M. bovis-infected calves. Calves (n=24) were intrabronchially inoculated with M. bovis and either killed bacterial lysate, transient M. haemolytica infection, or saline. Caseonecrotic lesions developed in 7/7 animals given M. haemolytica and M. bovis compared to 2/8 given M. bovis with no inflammatory stimulus, and 6/9 animals given bacterial lysate and M. bovis (P=0.01). Animals receiving M. haemolytica and M. bovis had more caseonecrotic foci in lungs than those receiving M. bovis with no inflammatory stimulus (median = 21 vs 0; P = 0.01), with an intermediate response (median = 5) in animals given bacterial lysate. In addition to caseonecrotic foci, infected animals developed neutrophilic bronchiolitis that appeared to develop into caseonecrotic foci, peribronchiolar lymphocytic cuffs that were not associated with the other lesions, and 4 animals with bronchiolitis obliterans. The data showed that transient lung inflammation at the time of M. bovis infection provoked the development of caseonecrotic bronchopneumonia, and the severity of inflammation influenced the number of caseonecrotic foci that developed. In contrast, caseonecrotic lesions were few or absent in M. bovis-infected calves without a concurrent inflammatory stimulus. These studies provide insight into how caseonecrotic lesions develop within the lung of M. bovis-infected calves. This and other studies suggest that controlling co-pathogens and harmful inflammatory responses in animals infected with M. bovis could potentially minimize development of M. bovis caseonecrotic bronchopneumonia.


Subject(s)
Cattle Diseases , Lung , Mycoplasma bovis , Pneumonia, Mycoplasma , Animals , Cattle , Pneumonia, Mycoplasma/veterinary , Pneumonia, Mycoplasma/microbiology , Cattle Diseases/microbiology , Cattle Diseases/immunology , Lung/microbiology , Lung/pathology , Inflammation/veterinary , Inflammation/microbiology , Mannheimia haemolytica/pathogenicity , Coinfection/veterinary , Coinfection/microbiology
9.
BMC Infect Dis ; 24(1): 879, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210260

ABSTRACT

OBJECTIVE: To analyze the epidemic characteristics of common respiratory tract infection pathogens in children with respiratory tract infection, and provide scientific basis for the prevention and control of respiratory tract infection. METHODS: A retrospective collection of clinical data was conducted on 11,538 children with respiratory tract infections at Luoyang Maternal and Child Health Hospital from December 2022 to November 2023. The types of respiratory tract infections, including upper and lower respiratory tract infections, as well as five respiratory pathogens: influenza A virus (influenza A), influenza B virus (influenza B virus, adenovirus (ADV), respiratory syncytial virus (RSV), and Mycoplasma pneumoniae (MP) infections, were analyzed and compared for different genders, ages, temperatures, and air quality in different months; And the changes of five pathogens in children with respiratory tract infections of different disease severity. RESULTS: From December 2022 to November 2023, a total of 11,538 children with respiratory infections were included in the analysis, including 6436 males and 5102 females, with an age of 4.92 ± 2.03 years. The proportion of upper respiratory tract infections is as high as 72.17%, and lower respiratory tract infections account for 27.83%. Among them, 2387 were positive for Flu A antigen, with a positive rate of 20.69%, 51 cases were positive for Flu B antigen, and the positive rate was 0.4%, 1296 cases were positive for adv antigen, with a positive rate of 11.23%, 868 cases were positive for RSV antigen, with a positive rate of 7.52%, 2481 cases were positive for MP IgM antibody or MP antigen, and the positive rate was 21.50%. Flu B in male children The infection rate of ADV and MP was higher than that of female children (p < 0.05); Among children in different age groups, the older the age, the older the Flu A The higher the infection rate of MP (p < 0.05), the higher the positive rate of RSV in children with younger age (p < 0.05). The positive rate of ADV in children aged 3-6 years and > 6 years was higher than that in children aged 0-3 years (p < 0.05); Flu A and MP are popular throughout the year, and the positive rate peaks during the period of temperature rise and air quality decline from February to March, and during the period of temperature drop and air quality index rise from August to November, The positive rate of RSV peaked after the turning point of temperature rise from March to April. The infection rate was higher during the period of sharp decline in air quality from March to May and sharp decline in temperature in November, The positive rate of ADV was higher at the turning point of temperature rise from February to March, and then the infection rate decreased. During the period of sharp temperature drop from August to November, the positive rate increased sharply, and the peak of infection occurred; As the disease worsens, The positive rates of Flu A, Flu B, RSV, MP and combined infection with more than two pathogens were all increased (p < 0.05). CONCLUSION: After the new coronavirus epidemic in 2022, Flu A and MP have the highest infection rate of respiratory pathogens in children, showing a peak growth in general, with epidemic characteristics changing with environmental temperature, air quality and seasons. The main disease type is upper respiratory tract infection, MP and adv infections were mainly in male children, Flu A, MP and ADV infections are more common in older children, RSV infection was more common in younger children; Flu A, Flu B, RSV and MP infection and the co infection of more than two pathogens may more easily lead to the occurrence of severe pneumonia.


Subject(s)
Influenza B virus , Respiratory Tract Infections , Humans , Female , Male , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Child , Infant , Influenza B virus/isolation & purification , China/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Mycoplasma pneumoniae , Influenza A virus/isolation & purification , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Viruses/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , Seasons
10.
Microb Genom ; 10(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39213169

ABSTRACT

Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.


Subject(s)
Genome, Bacterial , Goats , Mycoplasma ovipneumoniae , Phylogeny , Animals , Mycoplasma ovipneumoniae/genetics , Goats/microbiology , Sheep/microbiology , Genomics , Reindeer/microbiology , China , Sheep Diseases/microbiology , Adaptation, Physiological/genetics , Australia , Pneumonia, Mycoplasma/microbiology , Pneumonia, Mycoplasma/veterinary
11.
Exp Cell Res ; 441(2): 114182, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39094903

ABSTRACT

Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.


Subject(s)
Mitophagy , Mucocutaneous Lymph Node Syndrome , Mycoplasma pneumoniae , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Mucocutaneous Lymph Node Syndrome/metabolism , Mucocutaneous Lymph Node Syndrome/pathology , Protein Kinases/metabolism , Humans , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mycoplasma pneumoniae/pathogenicity , Mice, Inbred DBA , Endothelial Cells/metabolism , Endothelial Cells/pathology , Pneumonia, Mycoplasma/metabolism , Pneumonia, Mycoplasma/pathology , Pneumonia, Mycoplasma/microbiology , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial
12.
Virol J ; 21(1): 183, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129001

ABSTRACT

BACKGROUNDS: Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen causing respiratory diseases in children. This study aimed to characterize epidemiological and disease severity shifts of M. pneumoniae: infections in Guangzhou, China during and after the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Throat swab samples were obtained from 5405 hospitalized patients with symptoms of acute respiratory infections to detect M. pneumoniae. Differences in epidemiological and clinical characteristics of M. pneumoniae: infections were investigated during 2020-2022 and after COVID-19 pandemic (2023). RESULTS: M. pneumoniae were detected in 849 (15.6%, 849/5405) patients. The highest annual positive rate was 29.4% (754/2570) in 2023, followed by 5.3% (72/1367) in 2022, 1.2% (12/1015) in 2021, and 2.0% (11/553) in 2020, with significantly increasing annual prevalence from 2020 to 2023. M. pneumoniae incidence peaked between July and December post-COVID-19 pandemic in 2023, with the highest monthly positive rate (56.4%, 165/293). Clinical characteristics and outcomes of patients with M. pneumoniae did not vary between periods during and after COVID-19 pandemic except that patients with M. pneumoniae post-COVID-19 pandemic were more likely to develop fever. Patients with severe M. pneumoniae pneumonia (SMPP) were more likely to develop respiratory complications, myocardial damage, and gastrointestinal dysfunction than those with non-SMPP. Patients with SMPP had lower lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, and higher IL-4, IL-6, IL-10 levels than those with non-SMPP. Bronchoalveolar lavage fluid specimens from infected patients were obtained to identify macrolide resistance mutations. Macrolide-resistant M. pneumoniae (MRMP) proportion in 2023 was 91.1% (215/236). CONCLUSION: Outbreaks of M. pneumoniae: occurred in Guangzhou, China in 2023 upon Non-pharmaceutical interventions easing. Despite the increasing incidence of M. pneumoniae, the disease severity remained similar during and after the COVID-19 pandemic.


Subject(s)
COVID-19 , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , China/epidemiology , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , COVID-19/epidemiology , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Male , Female , Child , Adult , Adolescent , Middle Aged , Child, Preschool , Young Adult , Disease Outbreaks , SARS-CoV-2/genetics , Infant , Aged , Incidence , Prevalence , Pandemics
14.
Microb Pathog ; 195: 106865, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153578

ABSTRACT

Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX) is a unique exotoxin produced by Mycoplasma pneumoniae (MP) and has been confirmed to possess ADP-ribosyltransferase (ART) and vacuolating activities. CARDS TX binds to receptors on the surfaces of mammalian cells followed by entry into the cells through clathrin-mediated endocytosis, and exerts cytotoxic effects by undergoing retrograde transport and finally cleavage on endosomes and cellular organelles. In addition, CARDS TX can trigger severe inflammatory reactions resulting in airway dysfunction, producing allergic inflammation and asthma-like conditions. As a newly discovered virulence factor of MP, CARDS TX has been extensively studied in recent years. As resistance to macrolide drugs has increased significantly in recent years and there is no vaccine against MP, the development of a vaccine targeting CARDS TX is considered a potential preventive measure. This review focuses on recent studies and insights into this toxin, providing directions for a better understanding of MP pathogenesis and treatment. IMPORTANCE: A serious hazard to worldwide public health in recent years, Mycoplasma pneumoniae (MP) is a prominent bacterium that causes community-acquired pneumonia (CAP) in hospitalized children. Due to their high prevalence and fatality rates, MP infections often cause both respiratory illnesses and extensive extrapulmonary symptoms. It has recently been shown that MP produces a distinct exotoxin known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). Mycoplasma pneumoniae pneumonia (MPP)-like tissue injury is caused by this toxin because it has both ADP-ribosyltransferase and vacuolating properties. A better knowledge of MP etiology and therapy is provided by this review, which focuses on latest research and insights into this toxin.


Subject(s)
ADP Ribose Transferases , Bacterial Proteins , Bacterial Toxins , Community-Acquired Infections , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Virulence Factors , Mycoplasma pneumoniae/pathogenicity , Humans , Community-Acquired Infections/microbiology , Bacterial Toxins/metabolism , Pneumonia, Mycoplasma/microbiology , Virulence Factors/metabolism , ADP Ribose Transferases/metabolism , Bacterial Proteins/metabolism , Animals , Virulence , Exotoxins/metabolism , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/etiology
15.
Eur J Clin Microbiol Infect Dis ; 43(9): 1825-1835, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39017999

ABSTRACT

PURPOSE: To investigate macrolide-resistant Mycobacterium pneumoniae (MRMP) pneumonia in children and construct a logistic regression model for mutations in the Mycoplasma pneumoniae drug-resistant gene. METHODS: Clinical data of 281 children were analyzed. Sequencing confirmed a mutation at the A2063G locus of the 23 S rRNA gene in 227 children (A2063G group); 54 children showed no mutations (non-MRMP [NMRMP] group). We compared clinical features, laboratory tests, imaging, and bronchoscopy results and constructed a multifactorial logistic regression model to analyze risk and protective factors. RESULTS: The A2063G group had longer durations of fever and hospitalization before admission, a higher proportion of treatment with sodium methylprednisolone succinate (MPS)/dexamethasone, longer time to discontinue hormones, and higher probability of combined infections. Monocyte percentage was significantly higher in the A2063G group. Imaging suggested a higher incidence of infections in the right lung compared to both lungs. Univariate analysis revealed fever duration before admission, hormone dose and duration, monocyte percentage, and mixed infections as risk factors for Mycoplasma pneumoniae infection with the A2063G mutation. The logistic regression model showed that mixed infections were an independent risk factor for the A2063G locus mutation, whereas hormone dose was a protective factor. CONCLUSION: A prevalence of macrolide resistance of 80.8% among children was observed in the region. Logistic regression analysis revealed that co-infection with other respiratory pathogens is an independent risk factor for the development of resistance genes, while the use of hormone dosage acts as a protective factor.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Macrolides , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , RNA, Ribosomal, 23S , Humans , Pneumonia, Mycoplasma/microbiology , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/epidemiology , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/drug effects , Macrolides/pharmacology , Macrolides/therapeutic use , Female , Male , Drug Resistance, Bacterial/genetics , Child, Preschool , Child , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , RNA, Ribosomal, 23S/genetics , Logistic Models , Infant , Mutation , Risk Factors , Retrospective Studies
17.
BMC Infect Dis ; 24(1): 758, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085799

ABSTRACT

BACKGROUND: The global prospective surveillance data showed the re-emergence of mycoplasma pneumoniae pneumonia (MPP) in Europe and Asia after the coronavirus disease 2019 pandemic. We sought to observe the effect of macrolide antibiotics in the treatment of MPP carrying a macrolide-resistant mutation gene and the potential of targeted next-generation sequencing (tNGS) as a front-line diagnostic in MPP patients. METHODS: The baseline characteristics of 91 children with MPP hospitalized from January to October 2023 were retrospectively analyzed. They were divided into two groups according to whether carrying the macrolide-resistant mutation or not. The logistic and linear regression analyses were used to determine whether the mutation was a standalone predictive predictor of the duration of fever and hospital length of stay. RESULTS: First, no patients had a fever for ≥ 7 days after macrolide treatment. But length of stay and hormone concentration were significantly different between the two groups (P < 0.05). There were also no statistical association between the mutation and the duration of fever and hospital length of stay. CONCLUSION: Macrolides can be administered to MPP children carrying a macrolide-resistant mutation. tNGS can be seen as a front-line diagnostic in MPP.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Macrolides , Mutation , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , RNA, Ribosomal, 23S , Humans , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , Macrolides/therapeutic use , Macrolides/pharmacology , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/drug effects , Female , Male , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Child, Preschool , Child , Drug Resistance, Bacterial/genetics , Retrospective Studies , RNA, Ribosomal, 23S/genetics , Infant , Length of Stay , Treatment Outcome , High-Throughput Nucleotide Sequencing
18.
Emerg Infect Dis ; 30(8): 1692-1696, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043456

ABSTRACT

Before the COVID-19 pandemic, Mycoplasma pneumoniae infections emerged during spring to summer yearly in Taiwan, but infections were few during the pandemic. M. pneumoniae macrolide resistance soared to 85.7% in 2020 but declined to 0% during 2022-2023. Continued molecular surveillance is necessary to monitor trends in macrolide-resistant M. pneumoniae.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Drug Resistance, Bacterial , Macrolides , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , SARS-CoV-2 , Humans , Taiwan/epidemiology , Macrolides/pharmacology , Macrolides/therapeutic use , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , COVID-19/epidemiology , Child , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Child, Preschool , Pandemics , Male , Female , Infant , Adolescent , Microbial Sensitivity Tests
19.
BMC Infect Dis ; 24(1): 707, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026207

ABSTRACT

BACKGROUND: The prevalence and severity of pediatric Mycoplasma pneumoniae pneumonia (MPP) poses a significant threat to the health and lives of children. In this study, we aim to systematically evaluate the value of routine blood parameters in predicting MPP and develop a robust and generalizable ensemble artificial intelligence (AI) model to assist in identifying patients with MPP. METHODS: We collected 27 features, including routine blood parameters and hs-CRP levels, from patients admitted to The Affiliated Dazu's Hospital of Chongqing Medical University with or without MPP between January, 2023 and January, 2024. A classification model was built using seven machine learning (ML) algorithms to develop an integrated prediction tool for diagnosing MPP. It was evaluated on both an internal validation set (982 individuals) and an external validation set (195 individuals). The primary outcome measured the accuracy of the model in predicting MPP. RESULTS: The GBDT is state-of-the-art based on 27 features. Following inter-laboratory cohort testing, the GBDT demonstrated an AUC, accuracy, specificity, sensitivity, PPV, NPV, and F1-score of 0.980 (0.938-0.995), 0.928 (0.796-0.970), 0.929 (0.717-1.000), 0.926 (0.889-0.956), 0.922 (0.727-1.000), 0.937 (0.884-0.963), and 0.923 (0.800-0.966) in stratified 10-fold cross-validation. A GBDT-based AI Lab was developed to facilitate the healthcare providers in remote and impoverished areas. CONCLUSIONS: The GBDT-based AI Lab tool, with high sensitivity and specificity, could help discriminate between pediatric MPP infection and non-MPP infection based on routine blood parameters. Moreover, a user-friendly webpage tool for AI Lab could facilitate healthcare providers in remote and impoverished areas where advanced technologies are not accessible.


Subject(s)
Machine Learning , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/blood , Pneumonia, Mycoplasma/microbiology , Child , Female , Male , Mycoplasma pneumoniae/isolation & purification , Child, Preschool , Sensitivity and Specificity , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL