Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.865
Filter
1.
Sci Rep ; 14(1): 17940, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095414

ABSTRACT

Spatio-temporal assessment of phylogenetic diversity gradients during the Holocene (past 12,000 years) provides an opportunity for a deeper understanding of the dynamics of species co-occurrence patterns under environmental fluctuations. Using two robust metrics of phylogenetic dispersion (PD) and 99 fossil pollen sequences containing 6557 samples/assemblages, we analyse spatio-temporal variation in PD of angiosperms and its relationship with Holocene climate in central Asia. Overall, PD throughout the Holocene decreases linearly with increasing latitude, except for a rise in mean nearest taxon distance from ca. 25 to 35° N. This indicates that phylogenetically divergent taxa decrease progressively with increasing latitude, leaving more phylogenetically closely related taxa in the assemblages, thereby increasing phylogenetic relatedness among the co-occurring taxa. The latitudinal gradient of PD has not been consistent during the Holocene, and this temporal variation is concordant with the Holocene climate dynamics. In general, profound temporal changes in the latitudinal PD toward higher latitudes implies that the major environmental changes during the Holocene have driven considerable spatio-temporal changes in the phylogenetic assembly of high-latitude angiosperm assemblages. Our results suggest that environmental filtering and the tendency of taxa and lineages to retain ancestral ecological features and geographic distributions (phylogenetic niche conservatism) are the main mechanisms underlying the phylogenetic assembly of angiosperms along the climate-latitudinal gradient. Ongoing environmental changes may pose future profound phylogenetic changes in high-latitude plant assemblages, which are adapted to harsh environmental conditions, and therefore are phylogenetically less dispersed (more conservative or clustered).


Subject(s)
Fossils , Magnoliopsida , Phylogeny , Magnoliopsida/genetics , Magnoliopsida/classification , Asia , Climate , Pollen/genetics , Biodiversity
2.
BMC Plant Biol ; 24(1): 746, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098914

ABSTRACT

BACKGROUND: The male sterile lines are an important foundation for heterosis utilization in wheat (Triticum aestivum L.). Thereinto, pollen development is one of the indispensable processes of wheat reproductive development, and its fertility plays an important role in wheat heterosis utilization, and are usually influencing by genes. However, these key genes and their regulatory networks during pollen abortion are poorly understood in wheat. RESULTS: DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1) is a member of the R2R3-MYB family and has been shown to be essential for early tapetal layer development and pollen grain fertility in rice (Oryza sativa L.) and Arabidopsis thaliana. In order to clarify the function of TDF1 in wheat anthers development, we used OsTDF1 gene as a reference sequence and homologous cloned wheat TaTDF1 gene. TaTDF1 is localized in the nucleus. The average bolting time of Arabidopsis thaliana overexpressed strain (TaTDF1-OE) was 33 d, and its anther could be colored normally by Alexander staining solution, showing red. The dominant Mosaic suppression silence-line (TaTDF1-EAR) was blue-green in color, and the anthers were shrimpy and thin. The TaTDF1 interacting protein (TaMAP65) was confirmed using Yeast Two-Hybrid Assay (Y2H) and Bimolecular-Fluorescence Complementation (BiFC) experiments. The results showed that downregulated expression of TaTDF1 and TaMAP65 could cause anthers to be smaller and shrunken, leading to pollen abortion in TaTDF1 wheat plants induced by virus-induced gene-silencing technology. The expression pattern of TaTDF1 was influenced by TaMAP65. CONCLUSIONS: Thus, systematically revealing the regulatory mechanism of wheat TaTDF1 during anther and pollen grain development may provide new information on the molecular mechanism of pollen abortion in wheat.


Subject(s)
Plant Infertility , Plant Proteins , Pollen , Triticum , Triticum/genetics , Triticum/physiology , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/growth & development , Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Genes, Plant
3.
Nat Commun ; 15(1): 7078, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152128

ABSTRACT

Heterochromatin de-condensation in companion gametic cells is conserved in both plants and animals. In plants, microspore undergoes asymmetric pollen mitosis (PMI) to produce a vegetative cell (VC) and a generative cell (GC). Subsequently, the GC undergoes pollen mitosis (PMII) to produce two sperm cells (SC). Consistent with heterochromatin de-condensation in the VC, H3K9me2, a heterochromatin mark, is barely detected in VC. However, how H3K9me2 is differentially regulated during pollen mitosis remains unclear. Here, we show that H3K9me2 is gradually evicted from the VC since PMI but remain unchanged in the GC and SC. ARID1, a pollen-specific transcription factor that facilitates PMII, promotes H3K9me2 maintenance in the GC/SC but slows down its eviction in the VC. The genomic targets of ARID1 mostly overlaps with H3K9me2 loci, and ARID1 recruits H3K9 methyltransferase SUVH6. Our results uncover that differential pattern of H3K9me2 between two cell types is regulated by ARID1 during pollen mitosis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Histones , Mitosis , Pollen , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Histones/genetics , Methylation , Pollen/metabolism , Pollen/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
4.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201600

ABSTRACT

The pollen wall protects pollen during dispersal and is critical for pollination recognition. In the Poaceae family, the pollen exine stereostructure exhibits a high degree of conservation with similar patterns across species. However, there remains controversy regarding the conservation of key factors involved in its formation among various Poaceae species. EPAD1, as a gene specific to the Poaceae family, and its orthologous genes play a conserved role in pollen wall formation in wheat and rice. However, they do not appear to have significant functions in maize. To further confirm the conserved function of EPAD1 in Poaceae, we performed an analysis on four EPAD1 orthologs from two distinct sub-clades within the Poaceae family. The two functional redundant barley EPAD1 genes (HvEPAD1 and HvEPAD2) from the BOP clade, along with the single copy of sorghum (SbEPAD1) and millet (SiEPAD1) from the PACMAD clade were examined. The CRISPR-Cas9-generated mutants all exhibited defects in pollen wall formation, consistent with previous findings on EPAD1 in rice and wheat. Interestingly, in barley, hvepad2 single mutant also showed apical spikelets abortion, aligning with a decreased expression level of HvEPAD1 and HvEPAD2 from the apical to the bottom of the spike. Our finding provides evidence that EPAD1 orthologs contribute to Poaceae specific pollen exine pattern formation via maintaining primexine integrity despite potential variations in copy numbers across different species.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Pollen , Pollen/genetics , Pollen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Hordeum/genetics , Hordeum/metabolism , Oryza/genetics , Oryza/metabolism , Phylogeny , Sorghum/genetics , Sorghum/metabolism , Zea mays/genetics , Mutation
5.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125948

ABSTRACT

Polyploids are essential in plant evolution and species formation, providing a rich genetic reservoir and increasing species diversity. Complex polyploids with higher ploidy levels often have a dosage effect on the phenotype, which can be highly detrimental to gametes, making them rare. In this study, offspring plants resulting from an autoallotetraploid (RRRC) derived from the interspecific hybridization between allotetraploid Raphanobrassica (RRCC, 2n = 36) and diploid radish (RR, 2n = 18) were obtained. Fluorescence in situ hybridization (FISH) using C-genome-specific repeats as probes revealed two main genome configurations in these offspring plants: RRRCC (2n = 43, 44, 45) and RRRRCC (2n = 54, 55), showing more complex genome configurations and higher ploidy levels compared to the parental plants. These offspring plants exhibited extensive variation in phenotypic characteristics, including leaf type and flower type and color, as well as seed and pollen fertility. Analysis of chromosome behavior showed that homoeologous chromosome pairing events are widely observed at the diakinesis stage in the pollen mother cells (PMCs) of these allopolyploids, with a range of 58.73% to 78.33%. Moreover, the unreduced C subgenome at meiosis anaphase II in PMCs was observed, which provides compelling evidence for the formation of complex allopolyploid offspring. These complex allopolyploids serve as valuable genetic resources for further analysis and contribute to our understanding of the mechanisms underlying the formation of complex allopolyploids.


Subject(s)
Aneuploidy , Chromosomes, Plant , Polyploidy , Raphanus , Raphanus/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Brassica/genetics , Hybridization, Genetic , Meiosis/genetics , Genome, Plant , Pollen/genetics , Phenotype
6.
Am J Bot ; 111(7): e16377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010307

ABSTRACT

PREMISE: Evolution of cross-pollination efficiency depends on the genetic variation of flower traits, the pollen vector, and flower trait matching between pollen donors and recipients. Trait matching has been almost unexplored among nonheterostylous species, and we examined whether the match of anther length in pollen donors and stigma length in pollen recipients influences the efficiency of cross-pollination. To explore potential constraints for evolutionary response, we also quantified genetic variation and covariation among sepal length, petal length and width, stamen length, style length, and herkogamy. METHODS: We created 58 experimental arrays of Turnera velutina that varied in the extent of mismatch in the position of anthers and stigmas between single-flowered plants. Genetic variation and correlations among flower traits were estimated under greenhouse conditions. RESULTS: Style length, but not herkogamy, influenced the efficiency of cross-pollination. Plants with stamen length that matched the style length of other plants were more efficient pollen donors, whereas those with the style protruding above the stamens of other plants were more efficient pollen recipients. Significant broad-sense heritability (0.22 > hB 2 < 0.42) and moderate genetic correlations (0.33 > r < 0.85) among floral traits were detected. CONCLUSIONS: Our results demonstrated that anther-stigma mismatch between flowers contributed to variation in the efficiency of cross-pollination. The genetic correlations between stamen length and other floral traits suggests that any change in cross-pollination efficiency would be driven by changes in style rather than in stamen length.


Subject(s)
Flowers , Pollen , Pollination , Flowers/physiology , Flowers/anatomy & histology , Flowers/genetics , Pollen/physiology , Pollen/genetics , Genetic Variation , Phenotype
7.
Mol Plant ; 17(8): 1272-1288, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38956872

ABSTRACT

The discovery of a wild abortive-type (WA) cytoplasmic male sterile (CMS) line and breeding its restorer line have led to the commercialization of three-line hybrid rice, contributing considerably to global food security. However, the molecular mechanisms underlying fertility abortion and the restoration of CMS-WA lines remain largely elusive. In this study, we cloned a restorer gene, Rf20, following a genome-wide association study analysis of the core parent lines of three-line hybrid rice. We found that Rf20 was present in all core parental lines, but different haplotypes and structural variants of its gene resulted in differences in Rf20 expression levels between sterile and restored lines. Rf20 could restore pollen fertility in the CMS-WA line and was found to be responsible for fertility restoration in some CMS lines under high temperatures. In addition, we found that Rf20 encodes a pentatricopeptide repeat protein that competes with WA352 for binding with COX11. This interaction enhances COX11's function as a scavenger of reactive oxygen species, which in turn restores pollen fertility. Collectively, our study suggests a new action mode for pentatricopeptide repeat proteins in the fertility restoration of CMS lines, providing an essential theoretical basis for breeding robust restorer lines and for overcoming high temperature-induced fertility recovery of some CMS lines.


Subject(s)
Oryza , Plant Infertility , Plant Proteins , Pollen , Oryza/genetics , Oryza/physiology , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Fertility/genetics , Cytoplasm/metabolism , Cytoplasm/genetics , Genes, Plant , Genome-Wide Association Study , Gene Expression Regulation, Plant
8.
New Phytol ; 243(5): 1840-1854, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39010685

ABSTRACT

The B chromosomes exhibit diverse behaviour compared with conventional genetic models. The capacity of the B chromosome either to accumulate or to be eliminated in a tissue-specific manner is dependent on biological processes related to aberrant cell division(s), but here yet remains compatible with normal development. We studied B chromosome elimination in Sorghum purpureosericeum embryos through cryo-sections and demonstrated the B chromosome instability during plant growth using flow cytometry, molecular markers and fluorescent in situ hybridization techniques. Consequently, using B chromosome-specific probes we revealed the non-Mendelian inheritance of B chromosomes in developing pollen. We disclosed that the occurrence of the B chromosome is specific to certain tissues or organs. The distribution pattern is mainly caused by an extensive elimination that functions primarily during embryo development and persists throughout plant development. Furthermore, we described that B chromosome accumulation can occur either by nondisjunction at first pollen mitosis (PMI) or the initiation of extra nuclear division(s) during pollen development. Our study demonstrates the existence of a not-yet-fully described B chromosome drive process, which is likely under the control of the B chromosome.


Subject(s)
Chromosomes, Plant , Mitosis , Nondisjunction, Genetic , Pollen , Sorghum , Sorghum/genetics , Pollen/genetics , Pollen/cytology , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/growth & development
9.
Genes (Basel) ; 15(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39062634

ABSTRACT

The cytoplasm of Aegilops kotschyi is known for the induction of male sterility and haploidy in wheat. Both systems originally appeared rather simple, but manipulation of the standard chromosome constitution of the nuclear genome revealed additional interactions. This study shows that while there is little or no allelic variation at the main fertility restorer locus Rfmulti on chromosome arm 1BS, additional genes may also be involved in the nuclear-mitochondrial genome interactions, affecting not only male fertility but also the growth rate, from pollen competition for fertilization and early endosperm divisions all the way to seed size and plant maturity. Some of these effects appear to be of a sporophytic nature; others are gametophytic. Induction of parthenogenesis by a rye inducer in conjunction with the Ae. kotschyi cytoplasm is well known. However, here we show that the cytoplasmic-nuclear interactions affect all aspects of double fertilization: producing maternal haploids from unfertilized eggs, diploids from fertilized eggs or synergids, embryo-less kernels, and fertilized eggs without fertilization of the double nucleus in the embryo sack. It is unclear how frequent the inducers of parthenogenesis are, as variation, if any, is obscured by suppressors present in the wheat genome. Genetic dissection of a single wheat accession revealed five distinct loci affecting the rate of maternal haploid production: four acting as suppressors and one as an enhancer. Only when the suppressing haplotypes are confirmed may it be possible to the identify genetic variation of haploidy inducers, map their position(s), and determine their nature and the mode of action.


Subject(s)
Aegilops , Cytoplasm , Triticum , Triticum/genetics , Triticum/growth & development , Cytoplasm/genetics , Aegilops/genetics , Chromosomes, Plant/genetics , Haploidy , Pollen/genetics , Pollen/growth & development , Parthenogenesis/genetics , Seeds/genetics , Seeds/growth & development , Plant Infertility/genetics , Cell Nucleus/genetics
10.
Nat Commun ; 15(1): 5875, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997266

ABSTRACT

Correct regulation of intercellular communication is a fundamental requirement for cell differentiation. In Arabidopsis thaliana, the female germline differentiates from a single somatic ovule cell that becomes encased in ß-1,3-glucan, a water insoluble polysaccharide implicated in limiting pathogen invasion, regulating intercellular trafficking in roots, and promoting pollen development. Whether ß-1,3-glucan facilitates germline isolation and development has remained contentious, since limited evidence is available to support a functional role. Here, transcriptional profiling of adjoining germline and somatic cells revealed differences in gene expression related to ß-1,3-glucan metabolism and signalling through intercellular channels (plasmodesmata). Dominant expression of a ß-1,3-glucanase in the female germline transiently perturbed ß-1,3-glucan deposits, allowed intercellular movement of tracer molecules, and led to changes in germline gene expression and histone marks, eventually leading to termination of germline development. Our findings indicate that germline ß-1,3-glucan fulfils a functional role in the ovule by insulating the primary germline cell, and thereby determines the success of downstream female gametogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gametogenesis, Plant , Gene Expression Regulation, Plant , Ovule , beta-Glucans , Arabidopsis/metabolism , Arabidopsis/genetics , Ovule/metabolism , Ovule/genetics , beta-Glucans/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gametogenesis, Plant/genetics , Plasmodesmata/metabolism , Pollen/metabolism , Pollen/genetics , Pollen/growth & development , Gene Expression Profiling
11.
Mol Genet Genomics ; 299(1): 68, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980531

ABSTRACT

The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.


Subject(s)
Cajanus , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Pollen , Pollen/genetics , Pollen/growth & development , Cajanus/genetics , Cajanus/growth & development , Cajanus/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , P-type ATPases/genetics , P-type ATPases/metabolism , Fertility/genetics , Flowers/genetics , Flowers/growth & development , Plant Infertility/genetics , Gene Expression Profiling , Genome, Plant
12.
Physiol Plant ; 176(4): e14429, 2024.
Article in English | MEDLINE | ID: mdl-39039026

ABSTRACT

Cytoplasmic male sterility (CMS) is a very important factor to produce hybrid seeds, and the restoration of fertility involves the expression of many fertility-related genes. Our previous study showed that the expression of CaPIPLC5 was significantly up-regulated in pepper restorer accessions and minimally expressed in sterile accessions, speculating that CaPIPLC5 is related to the restoration of fertility. In this study, we further validated the function of CaPIPLC5 in the restoration of fertility. The results showed that CaPIPLC5 was specifically expressed in the anthers of the restorer accessions with the subcellular localization in the cytoplasm. Furthermore, the expression of CaPIPLC5 was significantly higher in restorer lines and restorer combinations than that in CMS lines and their maintainer lines. Silencing CaPIPLC5 led to the number of pollen decreased, pollen grains wrinkled, and the ratio of pollen germination reduced. In addition, the joint analysis of Yeast One-Hybrid (Y1H) and Dual-Luciferase (dual-LUC) assays suggested that transcription factors such as CaARF5, CabZIP24 and CaMYB-like1, interacted with the promoter regions of CaPIPLC5, which regulated the expression of CaPIPLC5. The present results provide new insights into the study of CaPIPLC5 involved in the restoration of fertility in pepper.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Plant Infertility , Plant Proteins , Pollen , Capsicum/genetics , Capsicum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Infertility/genetics , Pollen/genetics , Pollen/physiology , Fertility/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Physiol Plant ; 176(3): e14394, 2024.
Article in English | MEDLINE | ID: mdl-38894535

ABSTRACT

AIMS: The genic male sterility (GMS) system is an important strategy for generating heterosis in plants. To better understand the essential role of lipid and sugar metabolism and to identify additional candidates for pollen development and male sterility, transcriptome and metabolome analysis of a GMS line of 1205AB in B. napus was used as a case study. DATA RESOURCES GENERATED: To characterize the GMS system, the transcriptome and metabolome profiles were generated for 24 samples and 48 samples of 1205AB in B. napus, respectively. Transcriptome analysis yielded a total of 156.52 Gb of clean data and revealed the expression levels of 109,541 genes and 8,501 novel genes. In addition, a total of 1,353 metabolites were detected in the metabolomic analysis, including 784 in positive ion mode and 569 in negative ion mode. KEY RESULTS: A total of 15,635 differentially expressed genes (DEGs) and 83 differential metabolites (DMs) were identified from different comparison groups, most of which were involved in lipid and sugar metabolism. The combination of transcriptome and metabolome analysis revealed 49 orthologous GMS genes related to lipid metabolism and 46 orthologous GMS genes related to sugar metabolism, as well as 45 novel genes. UTILITY OF THE RESOURCE: The transcriptome and metabolome profiles and their analysis provide useful reference data for the future discovery of additional GMS genes and the development of more robust male sterility breeding systems for use in the production of plant hybrids.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Lipid Metabolism , Plant Infertility , Pollen , Transcriptome , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Pollen/metabolism , Plant Infertility/genetics , Plant Infertility/physiology , Brassica napus/genetics , Brassica napus/physiology , Brassica napus/growth & development , Brassica napus/metabolism , Lipid Metabolism/genetics , Transcriptome/genetics , Metabolome/genetics , Carbohydrate Metabolism/genetics , Gene Expression Profiling , Sugars/metabolism
14.
BMC Plant Biol ; 24(1): 535, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862889

ABSTRACT

BACKGROUND: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding. RESULTS: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage. CONCLUSIONS: These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.


Subject(s)
Oryza , Plant Infertility , Pollen , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Plant Infertility/genetics , Transcriptome , Gene Expression Profiling , Metabolomics , Metabolome , Gene Expression Regulation, Plant , Meiosis
15.
J Plant Physiol ; 300: 154302, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38945072

ABSTRACT

High temperature stress during flowering adversely affects plant fertility, decreasing plant productivity. Daily cycles of heat stress (HS), imposed on Brassica napus L. plants by slowly ramping the temperature from 23 °C to 35 °C before lowering back to pre-stress conditions, inhibited flower and silique formation, with fewer seeds per silique during the stress period, as well as decreased pollen viability. Heat stress also elevated the transcripts and protein levels of class 1 phytoglobin BnPgb1, with the protein accumulating preferentially within the anther walls. Over-expression of BnPgb1 was sufficient to attenuate the reduction in plant fertility at high temperatures while its down-regulation exacerbated the effects of HS. Relative to WT anthers, the rise in ROS and ROS-induced damage caused by HS was limited when BnPgb1 was over-expressed, and this was linked to changes in antioxidant responses. High temperatures reduced the level of ascorbic acid (AsA) in anthers by favoring its oxidation via ascorbate oxidase (AOA) and limiting its regeneration through suppression of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). Anthers of heat-stressed plants over-expressing BnPgb1 retained a higher AsA content with concomitant increased activities of DHAR, MDHAR, ascorbate peroxidase (APX) and superoxide dismutase (SOD). These changes suggest that BnPgb1 potentiates antioxidant responses during HS which mitigate the depression of fertility.


Subject(s)
Brassica napus , Plant Proteins , Brassica napus/genetics , Brassica napus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Hot Temperature , Heat-Shock Response/physiology , Flowers/physiology , Flowers/genetics , Reactive Oxygen Species/metabolism , Fertility , Gene Expression Regulation, Plant , Antioxidants/metabolism , Pollen/genetics , Pollen/physiology , Ascorbic Acid/metabolism
16.
Gene ; 927: 148649, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38852697

ABSTRACT

During the birch pollen season an enhanced incidence of virus infections is noticed, raising the question whether pollen can affect anti-viral responses independent of allergic reactions. We previously showed that birch pollen-treatment of monocyte-derived dendritic cells (moDC) enhances human cytomegalovirus (HCMV) infection. Here we addressed how in moDC the relatively weak pollen response can affect the comparably strong response to HCMV. To this end, moDC were stimulated with aqueous birch pollen extract (APE), HCMV, and APE with HCMV, and transcriptomic signatures were determined after 6 and 24 h of incubation. Infection was monitored upon exposure of moDC to GFP expressing HCMV by flow cytometric analysis of GFP expressing cells. Principle component analysis of RNA sequencing data revealed close clustering of mock and APE treated moDC, whereas HCMV as well as APE with HCMV treated moDC clustered separately after 6 and 24 h of incubation, respectively. Communally induced genes were detected in APE, HCMV and APE with HCMV treated moDC. In APE with HCMV treated moDC, the comparably weak APE induced signatures were maintained after HCMV exposure. In particular, NF-κB/RELA and PI3K/AKT/MAPK signaling were altered upon APE with HCMV exposure. Earlier, we discovered that NF-κB inhibition alleviated APE induced enhancement of HCMV infection. Here we additionally found that impairment of PI3K signaling reduced HCMV infection in HCMV and APE with HCMV treated moDC. APE treated moDC that were exposed to HCMV show a unique host gene signature, which to a large extent is regulated by NF-κB activation and PI3K/AKT/MAPK signaling.


Subject(s)
Betula , Cytomegalovirus , Dendritic Cells , Pollen , Dendritic Cells/virology , Dendritic Cells/metabolism , Dendritic Cells/immunology , Pollen/genetics , Pollen/immunology , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Humans , Phosphatidylinositol 3-Kinases/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Transcriptome , Signal Transduction , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Cells, Cultured
17.
Nat Plants ; 10(6): 910-922, 2024 06.
Article in English | MEDLINE | ID: mdl-38886523

ABSTRACT

Synthetic gene drives, inspired by natural selfish genetic elements and transmitted to progeny at super-Mendelian (>50%) frequencies, present transformative potential for disseminating traits that benefit humans throughout wild populations, even facing potential fitness costs. Here we constructed a gene drive system in plants called CRISPR-Assisted Inheritance utilizing NPG1 (CAIN), which uses a toxin-antidote mechanism in the male germline to override Mendelian inheritance. Specifically, a guide RNA-Cas9 cassette targets the essential No Pollen Germination 1 (NPG1) gene, serving as the toxin to block pollen germination. A recoded, CRISPR-resistant copy of NPG1 serves as the antidote, providing rescue only in pollen cells that carry the drive. To limit potential consequences of inadvertent release, we used self-pollinating Arabidopsis thaliana as a model. The drive demonstrated a robust 88-99% transmission rate over two successive generations, producing minimal resistance alleles that are unlikely to inhibit drive spread. Our study provides a strong basis for rapid genetic modification or suppression of outcrossing plant populations.


Subject(s)
Arabidopsis , CRISPR-Cas Systems , Pollen , Arabidopsis/genetics , Pollen/genetics , Germination/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/genetics , Gene Editing/methods
18.
Gene ; 927: 148722, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38914244

ABSTRACT

Products from stingless bees are rich reservoirs of microbial diversity, including yeasts with fermentative potential. Previously, two Saccharomyces cerevisiae strains, JP14 and IP9, were isolated from Jataí (Tetragonisca angustula) and Iraí (Nannotrigona testaceicornis) bees, respectively, aiming at mead production. Both strains presented great osmotic and sulfite tolerance, and ethanol production, although they have a high free amino nitrogen demand. Herein, their genomes were sequenced, assembled, and annotated, and the variants were compared to the S. cerevisiae S288c reference strain. The final assembly of IP9 and JP14 presented high N50 and BUSCO scores, and more than 6430 protein-coding genes. Additionally, nQuire predicted the ploidy of IP9 as diploid, but the results were not enough to determine the ploidy of JP14. The mitochondrial genomes of IP9 and JP14 presented the same gene content as S288c but the genes were rearranged and fragmented in different patterns. Meanwhile, the genes with mutations of high impact (e.g., indels, gain of stop codon) for both yeasts were enriched for transmembrane transport, electron transfer, oxidoreductase, heme binding, fructose, mannose, and glucose transport, activities related to the respiratory chain and sugar metabolism. The IP9 strain presented copy number gains in genes related to sugar transport and cell morphogenesis; in JP14, genes were enriched for disaccharide metabolism and transport, response to reactive oxygen species, and polyamine transport. On the other hand, IP9 presented copy number losses related to disaccharide, thiamine, and aldehyde metabolism, while JP14 presented depletions related to disaccharide, oligosaccharide, asparagine, and aspartate metabolism. Notably, both strains presented a killer toxin gene, annotated from the assembling of unmapped reads, representing a potential mechanism for the control of other microorganisms population in the environment. Therefore, the annotated genomes of JP14 and IP9 presented a high selective pressure for sugar and nitrogen metabolism and stress response, consistent with their isolation source and fermentative properties.


Subject(s)
Genome, Fungal , Pollen , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Animals , Bees/microbiology , Bees/genetics , Pollen/genetics , Genome, Mitochondrial
19.
Acta Biotheor ; 72(2): 7, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869631

ABSTRACT

In angiosperms cytoplasmic DNA is typically passed on maternally through ovules. Genes in the mtDNA may cause male sterility. When male-sterile (female) cytotypes produce more seeds than cosexuals, they pass on more copies of their mtDNA and will co-occur with cosexuals with a neutral cytotype. Cytoplasmic gynodioecy is a well-known phenomenon in angiosperms, both in wild and crop plants. In some conifer families (e.g. Pinaceae) mitochondria are also maternally inherited. However in some other families (e.g. Taxaceae and Cupressaceae) mtDNA is paternally inherited through the pollen. With paternal mtDNA inheritance, male cytotypes that produce more pollen than cosexuals are expected to co-occur with cosexuals. This is uncharted territory. An ESS model shows that the presence of male cytotypes selects for more female allocation in the cosexual, i.e. for sexual specialisation. An allele that switches sex from male to female can then invade. This leads to rapid loss of the neutral cytotype of the cosexual, fixation of the male cytotype and dioecy with 50% males and 50% females. The models suggest that paternal inheritance of mtDNA facilitates the evolution dioecy. Consistent with this hypothesis the Pinaceae are 100% monoecious, while dioecy is common in the Taxaceae family and in the genus Juniperus (Cupressaceae). However, no reliable data are yet available on both mode of inheritance of mtDNA and gender variation of the same species. When cosexuals benefit from reproductive assurance (high selfing rate, low inbreeding depression, low fertilisation) they maintain themselves next to males and females. This predicted pattern with three sex types present in the same population is observed in conifers in nature.


Subject(s)
DNA, Mitochondrial , Paternal Inheritance , Tracheophyta , DNA, Mitochondrial/genetics , Tracheophyta/genetics , Reproduction/genetics , Pollen/genetics , DNA, Plant/genetics
20.
Plant Sci ; 346: 112146, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38848769

ABSTRACT

The Mediator complex is essential for eukaryotic transcription, yet its role and the function of its individual subunits in plants, especially in rice, remain poorly understood. Here, we investigate the function of OsMED14_2, a subunit of the Mediator tail module, in rice development. Overexpression and knockout of OsMED14_2 resulted in notable changes in panicle morphology and grain size. Microscopic analysis revealed impact of overexpression on pollen maturation, reflected by reduced viability, irregular shapes, and aberrant intine development. OsMED14_2 was found to interact with proteins involved in pollen development, namely, OsMADS62, OsMADS63 and OsMADS68, and its overexpression negatively affected the expression of OsMADS68 and the expression of other genes involved in intine development, including OsCAP1, OsGCD1, OsRIP1, and OsCPK29. Additionally, we found that OsMED14_2 overexpression influences jasmonic acid (JA) homeostasis, affecting bioactive JA levels, and expression of OsJAZ genes. Our data suggest OsMED14_2 may act as a regulator of JA-responsive genes through its interactions with OsHDAC6 and OsJAZ repressors. These findings contribute to better understanding of the Mediator complex's role in plant traits regulation.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Oryza , Oxylipins , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Oxylipins/metabolism , Cyclopentanes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Growth Regulators/metabolism , Mediator Complex/metabolism , Mediator Complex/genetics , Pollen/growth & development , Pollen/genetics , Pollen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL