Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.167
Filter
1.
Cell Death Dis ; 15(10): 723, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39353941

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder associated with features of accelerated aging. HGPS is an autosomal dominant disease caused by a de novo mutation of LMNA gene, encoding A-type lamins, resulting in the truncated form of pre-lamin A called progerin. While asymptomatic at birth, patients develop symptoms within the first year of life when they begin to display accelerated aging and suffer from growth retardation, and severe cardiovascular complications including loss of vascular smooth muscle cells (VSMCs). Recent works reported the loss of VSMCs as a major factor triggering atherosclerosis in HGPS. Here, we investigated the mechanisms by which progerin expression leads to massive VSMCs loss. Using aorta tissue and primary cultures of murine VSMCs from a mouse model of HGPS, we showed increased VSMCs death associated with increased poly(ADP-Ribosyl)ation. Poly(ADP-Ribosyl)ation is recognized as a post-translational protein modification that coordinates the repair at DNA damage sites. Poly-ADP-ribose polymerase (PARP) catalyzes protein poly(ADP-Ribosyl)ation by utilizing nicotinamide adenine dinucleotide (NAD+). Our results provided the first demonstration linking progerin accumulation, augmented poly(ADP-Ribosyl)ation and decreased nicotinamide adenine dinucleotide (NAD+) level in VSMCs. Using high-throughput screening on VSMCs differentiated from iPSCs from HGPS patients, we identified a new compound, trifluridine able to increase NAD+ levels through decrease of PARP-1 activity. Lastly, we demonstrate that trifluridine treatment in vivo was able to alleviate aortic VSMCs loss and clinical sign of progeria, suggesting a novel therapeutic approach of cardiovascular disease in progeria.


Subject(s)
Disease Models, Animal , Lamin Type A , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Progeria , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Progeria/pathology , Progeria/genetics , Progeria/metabolism , Mice , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Lamin Type A/metabolism , Lamin Type A/genetics , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Poly ADP Ribosylation , Mice, Inbred C57BL , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
2.
Biomolecules ; 14(9)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39334838

ABSTRACT

Chondrosarcoma is a rare malignant tumor that forms in bone and cartilage. The primary treatment involves surgical removal of the tumor with a margin of healthy tissue. Especially if complete surgical removal is not possible, radiation therapy and chemotherapy are used in conjunction with surgery, but with a generally low efficiency. Ongoing researches are focused on understanding the genetic and molecular basis of chondrosarcoma following high linear energy transfer (LET) irradiation, which may lead to treatments that are more effective. The goal of this study is to evaluate the differential effects of DNA damage repair inhibitors and high LET irradiation on chondrosarcoma versus chondrocyte cells and the LET-dependency of the effects. Two chondrosarcoma cell lines with different IDH mutation status and one chondrocyte cell line were exposed to low LET (X-ray) and high LET (carbon ion) irradiation in combination with an Olaparib PARP inhibitor. Cell survival and DNA repair mechanisms were investigated. High LET irradiation drastically reduced cell survival, with a biological efficiency three times that of low LET. Olaparib significantly inhibited PARylation in all the tested cells. A significant reduction in cell survival of both chondrosarcoma and chondrocyte cells was observed following the treatment combining Olaparib and X-ray. PARP inhibition induced an increase in PARP-1 expression and a reduced effect on the cell survival of WT IDH chondrosarcoma cells. No radiosensitizing effect was observed in cells exposed to Olaparib paired with high LET irradiation. NHEJ was activated in response to high LET irradiation, neutralizing the PARP inhibition effect in both chondrosarcoma cell lines. When high LET irradiation is not available, PARP inhibition could be used in combination with low LET irradiation, with significant radiosensitizing effects on chondrosarcoma cells. Chondrocytes may be affected by the treatment combination too, showing the need to preserve normal tissues from radiation fields when this kind of treatment is suggested.


Subject(s)
Chondrocytes , Chondrosarcoma , Linear Energy Transfer , Poly(ADP-ribose) Polymerase Inhibitors , Chondrosarcoma/radiotherapy , Chondrosarcoma/drug therapy , Chondrosarcoma/pathology , Chondrosarcoma/genetics , Chondrosarcoma/metabolism , Humans , Chondrocytes/drug effects , Chondrocytes/radiation effects , Chondrocytes/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Phthalazines/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/radiotherapy , Bone Neoplasms/metabolism , Piperazines/pharmacology , DNA Repair/drug effects
3.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273083

ABSTRACT

DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.


Subject(s)
Cell Survival , Glioblastoma , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Rad52 DNA Repair and Recombination Protein , Temozolomide , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Temozolomide/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Survival/drug effects , Cell Proliferation/drug effects , DNA Polymerase theta , Apoptosis/drug effects , DNA Damage/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Synthetic Lethal Mutations/drug effects , Astrocytes/drug effects , Astrocytes/metabolism
4.
Cell ; 187(18): 4829-4830, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241744

ABSTRACT

Homologous-recombination deficiency in DNA repair characterizes a unique group of cancers that are vulnerable to PARP inhibitors and cytotoxic chemotherapy. In this issue of Cell, Luo et al., demonstrated that this genetic attribute in cancer cells may reprogram tumor immune microenvironment and show promise of targeting effector-Treg cells.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Tumor Microenvironment , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Animals
5.
Int J Mol Sci ; 25(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39273190

ABSTRACT

Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat or vorinostat), PARPi (talazoparib or olaparib), decitabine, or their combinations. HDACi, PARPi, and decitabine combinations had synergistic cytotoxicity (assessed by MTT and clonogenic assays) in all cell lines (combination index < 1). Clonogenic assays confirmed the sensitivity of breast and ovarian cancer cell lines to the three-drug combinations (panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine; vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine). Cell proliferation was inhibited by 48-70%, and Annexin V positivity was 42-59% in all cell lines exposed to the three-drug combinations. Western blot analysis showed protein PARylation inhibition, caspase 3 and PARP1 cleavage, and c-MYC down-regulation. The three-drug combinations induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs, impaired the DNA repair pathways, and altered the epigenetic regulation of gene expression. These results indicate that HDACi, PARPi, and decitabine combinations should be further explored in these tumor types. Further clinical validation is warranted to assess their safety and efficacy.


Subject(s)
Breast Neoplasms , Cell Proliferation , Decitabine , Drug Synergism , Histone Deacetylase Inhibitors , Ovarian Neoplasms , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Decitabine/pharmacology , Female , Histone Deacetylase Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Piperazines/pharmacology , Vorinostat/pharmacology , Panobinostat/pharmacology , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Hydroxamic Acids/pharmacology , MCF-7 Cells
6.
Biomed Pharmacother ; 179: 117366, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232384

ABSTRACT

The RNA N6-methyladenosine (m6A) regulator METTL3 is an important regulatory gene in various progressive processes of prostate cancer (PCa). METTL3 inhibitors have been reported to possess potent tumor suppression capacity in some cancer types. Nevertheless, the detailed influence and mechanism of METTL3 inhibitors on PCa progression and their potential synergy with other drugs are poorly understood. In this study, we demonstrated that METTL3 was overexpressed and associated with poor survival in most PCa patients. METTL3 inhibitor STM2457 reduced m6A levels of PCa cells, thus inhibiting their proliferation, colony formation, migration, invasion, and stemness in vitro. Furthermore, STM2457 suppressed PCa progression in both the CDX and PDX models in vivo. MeRIP-seq analysis coupled with biological validation revealed that STM2457 influenced multiple biological processes in PCa cells, mainly through the IGFBP3/AKT pathway. We also proved that STM2457 induced DNA damage and showed synergistic anti-PCa effects with the PARP inhibitor olaparib both in vitro and in vivo. All in all, this work provides a novel therapeutic strategy for targeting RNA m6A modifications for the treatment of PCa and provides a meaningful reference for further clinical trials.


Subject(s)
Cell Proliferation , Disease Progression , Drug Synergism , Insulin-Like Growth Factor Binding Protein 3 , Methyltransferases , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , Animals , Insulin-Like Growth Factor Binding Protein 3/metabolism , Cell Line, Tumor , Signal Transduction/drug effects , Cell Proliferation/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Mice , Xenograft Model Antitumor Assays , Mice, Nude , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology
7.
Redox Biol ; 76: 103350, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39265497

ABSTRACT

BRCA1 is one of the most frequently-mutated tumor suppressor genes in ovarian and breast cancers. Loss of BRCA1 triggers homologous recombination (HR) repair deficiency, consequently leading to genomic instability and PARP inhibitors (PARPi)-associated synthetic lethality. Although, the roles of BRCA1 in DNA repair and replication have been extensively investigated, its tumor suppressive functions beyond genome safeguard remain poorly understood. Here, we report that BRCA1 promotes ferroptosis susceptibility through catalyzing K6-linked polyubiquitination of GPX4 and subsequently accelerating GPX4 degradation. Depletion of BRCA1 induces ferroptosis resistance in ovarian cancer cells due to elevated GPX4 protein, and silence of GPX4 significantly suppresses the growth of BRCA1-deficient ovarian cancer xenografts. Importantly, we found that PARPi triggers ferroptosis in ovarian cancer cells, inhibition of GPX4 markedly increase PARPi-induced ferroptosis in BRCA1-deficient ovarian cancer cells. Combined treatment of GPX4 inhibitor and PARPi produces synergistic anti-tumor efficacy in BRCA1-deficient ovarian cancer cells, patient derived organoid (PDO) and xenografts. Thus, our study uncovers a novel mechanism via which BRCA1 exerts tumor suppressive function through regulating ferroptosis, and demonstrates the potential of GPX4 as a therapeutic target for BRCA1-mutant cancers.


Subject(s)
BRCA1 Protein , Ferroptosis , Ovarian Neoplasms , Phospholipid Hydroperoxide Glutathione Peroxidase , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Ferroptosis/drug effects , Ferroptosis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Female , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Animals , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Ubiquitination/drug effects
8.
Anticancer Res ; 44(10): 4203-4211, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39348956

ABSTRACT

BACKGROUND/AIM: The emergence of novel DNA damage repair (DDR) pathways in molecular-target therapy drugs (MTTD) has shown promising outcomes in treating patients with metastatic castration-resistant prostate cancer (mCRPC). About 25% of mCRPC patients have actionable deleterious aberrations in DDR genes, primarily in the homologous recombination (HR) pathway. However, the response rate in patients with BRCA1/2 or mutations in HRR-related genes is only 45%-55%, when exposed to poly ADP ribose polymerase (PARP) inhibitor-based therapy (PARPi). A frequent characteristic feature of prostate cancer (PC) is the occurrence of genomic rearrangement that affects the transmembrane protease serine 2 (TMPRSS2) and E26 transformation-specific (ETS)- transcription factor-related gene (ERG). MATERIALS AND METHODS: In this study, a total of 114 patients with mCRPC had their RNA and DNA sequenced using next-generation sequencing. RESULTS: Based on their genetic profile of deleterious gene alterations of BRCA1/2 or ATM, six patients were selected for PARPi. Patients with TMPRSS2:ERG gene fusion and homozygous alteration in ATM or BRCA2 (n=2) or heterozygous alterations (BRCA1 or BRCA2) and lack of TMPRSS2:ERG gene fusion (n=2) did not show clinical benefit from PARPi (treatment duration <16 weeks). In contrast, patients (n=2) without TMPRSS2:ERG gene fusion and homozygous deleterious alterations in ATM or BRCA2 all had clinical benefit from PARPi (treatment duration ≥16 weeks). CONCLUSION: The TMPRSS2:ERG transcript product might be used as a PARPi resistance biomarker.


Subject(s)
Drug Resistance, Neoplasm , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Oncogene Proteins, Fusion/genetics , Aged , Serine Endopeptidases/genetics , Middle Aged , BRCA2 Protein/genetics , BRCA1 Protein/genetics
9.
Cell Rep ; 43(9): 114751, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39276346

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive type of breast cancer. While most TNBCs are initially sensitive to chemotherapy, a substantial fraction acquires resistance to treatments and progresses to more advanced stages. Here, we identify the spliceosome U2 small nuclear ribonucleoprotein particle (snRNP) complex as a modulator of chemotherapy efficacy in TNBC. Transient U2 snRNP inhibition induces persistent DNA damage in TNBC cells and organoids, regardless of their homologous recombination proficiency. U2 snRNP inhibition pervasively deregulates genes involved in the DNA damage response (DDR), an effect relying on their genomic structure characterized by a high number of small exons. Furthermore, a pulse of splicing inhibition elicits long-lasting repression of DDR proteins and enhances the cytotoxic effect of platinum-based drugs and poly(ADP-ribose) polymerase inhibitors (PARPis) in multiple TNBC models. These findings identify the U2 snRNP as an actionable target that can be exploited to enhance chemotherapy efficacy in TNBCs.


Subject(s)
DNA Damage , RNA Splicing , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Female , RNA Splicing/drug effects , RNA Splicing/genetics , Cell Line, Tumor , Animals , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice , Spliceosomes/metabolism , Spliceosomes/drug effects
10.
ESMO Open ; 9(9): 103694, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232440

ABSTRACT

BACKGROUND: Poly(ADP-ribose) polymerase inhibitors (PARPis) improved advanced ovarian cancer treatment. Most patients progress during or following PARPi exposure, however, with concerns about sensitivity of subsequent chemotherapy. PATIENTS AND METHODS: In this international cohort study, we evaluated the efficacy of a subsequent chemotherapy following PARPi exposure in high-grade ovarian carcinoma patients. Endpoints included progression-free survival (PFS), overall survival and a multivariable Cox model was built to identify factors influencing PFS. RESULTS: We included 291 patients from four international centers treated between January 2002 and December 2021. The median number of previous chemotherapy was 1 (1.0-7.0), the median duration of PARPi exposure was 6.5 months (0.2-54.3 months). PARPi was used in first line in 14.1% patients. Most progressions occurred under PARPi exposure (89.1%). A BRCA pathogenic variant was identified in 130 patients (44.7%), absent in 157 patients (54.0%), and undocumented in 4 patients (1.4%). Platinum-based CT (PBC) and non-PBC were administered as subsequent treatments in, respectively, 182 patients (62.5%) and 109 patients (37.5%). Multivariable analyses showed that platinum-free interval (PFI) >6 months [adjusted hazards ratio (HR), 0.52; 95% confidence interval (CI) 0.39-0.70] and type of initial surgery (adjusted HR, 1.41; 95% CI 1.07-1.87; interval or closing surgery versus primary surgery) were associated with PFS, independent of BRCA status or line of therapy (≥2 versus 1). In patients with a PFI >6 months, PBC was numerically associated with the best PFS (adjusted HR, 0.68; 95% CI 0.46-1.01). CONCLUSION: This is the largest real-world study assessing the efficacy of subsequent chemotherapy in patients progressing during PARPi exposure. The patients have poor outcomes. PBC is the best option in patients progressing on PARPi and eligible for PBC rechallenge (PFI >6 months).


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/mortality , Ovarian Neoplasms/genetics , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Aged , Disease Progression , Adult , Progression-Free Survival , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cohort Studies , Aged, 80 and over
11.
ESMO Open ; 9(9): 103684, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39255537

ABSTRACT

BACKGROUND: Controlled trials have consistently demonstrated the efficacy of poly(ADP-ribose) polymerase inhibitors (PARPis) in patients with metastatic castration-resistant prostate cancer (mCRPC) and BRCA1 or BRCA2 alterations (BRCAalt). However, the reported efficacy of PARPi for alterations in other homologous recombination repair (HRR) genes is less consistent. We sought to evaluate the routine practice effectiveness of PARPi between and within these groups. DESIGN: Patient-level data from a deidentified nationwide (USA-based) cancer clinico-genomic database between January 2011 and September 2023 were extracted. Patients with mCRPC and comprehensive genomic profiling by liquid biopsy [circulating tumor DNA (ctDNA)] or tissue (tumor) biopsy and who received single-agent PARPi were included and grouped by BRCAalt, ATMalt, other HRR, or no HRR. We further subcategorized BRCAalt into homozygous loss (BRCAloss) and all other deleterious BRCAalt (otherBRCAalt). RESULTS: A total of 445 patients met inclusion criteria: 214 with tumor and 231 with ctDNA. BRCAalt had more favorable outcomes to PARPi compared with ATM, other HRR, and no HRR groups. Within the BRCAalt subgroup, compared with other BRCAalt, BRCAloss had a more favorable time to next treatment (median 9 versus 19.4 months, P = 0.005), time to treatment discontinuation (median 8 versus 14 months, P = 0.006), and routine practice overall survival (median 14.7 versus 19.4 months, P = 0.016). Tumor BRCAloss prevalence (3.1%) was similar to ctDNA prevalence in liquid biopsy specimens with high tumor fraction (>20%). BRCAloss was not detected in orthogonal germline testing. CONCLUSIONS: PARPi routine practice effectiveness between groups mirrors prospective trials. Within the BRCAalt group, BRCAloss had the best outcomes. Unless the ctDNA tumor fraction is very high, somatic tissue testing (archival or metastatic) should be prioritized to identify patients who may benefit most from PARPi. When tissue testing is not clinically feasible, sufficient ctDNA tumor fraction levels for detection are enriched at clinical timepoints associated with tumor progression.


Subject(s)
High-Throughput Nucleotide Sequencing , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics , BRCA2 Protein/genetics , Middle Aged , Circulating Tumor DNA/genetics , Liquid Biopsy/methods , BRCA1 Protein/genetics , Neoplasm Metastasis
12.
Eur J Med Chem ; 278: 116804, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39241482

ABSTRACT

Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.


Subject(s)
Antineoplastic Agents , Neoplasms , Small Molecule Libraries , Synthetic Lethal Mutations , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Molecular Structure , DNA Damage/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis
13.
Chin Clin Oncol ; 13(Suppl 1): AB067, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39295385

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most malignant brain tumor and ranks among the most lethal of all human cancers, without improvements in survival over the last 30 years. Data obtained in our group suggest that PARP1, a well-known DNA-repairing protein, could also play a key role in the regulation of cell cycle through its interaction with the transcription factor E2F1. Therefore, considering that most oncogenic processes are associated with cell cycle deregulation, we hypothesized that disruption of PARP1-E2F1 interaction would provide a novel therapeutic approach to different types of cancer. METHODS: The identification of novel compounds disrupting PARP1-E2F1 interaction was carried out by combining in silico and in vitro screening, using a rational drug design. The virtual screen was performed using a molecular library of several million compounds at the selected target site, using AtomNet® (Atomwise, San Francisco, CA, USA), the first deep learning neural network for structure-based drug design and discovery. Since there is no complete structural information of the PARP1-E2F1 protein-protein interaction, a homologous structure of the BRCT domain of BRCA1 complex with the phospho-peptide (PDBID: 1T2V) was used to identify the potential binding interface of BRCT domain of PARP-1 (PDBID: 2COK) and the E2F1 protein. Top scoring compounds were clustered and filtered to obtain a final subset of 83 compounds that were incorporated to our in vitro screening, which included both transcriptional E2F1 activity and survival studies. Complete culture medium supplemented with the compounds selected in the in silico screening (10 µM) were added and incubated for 24 hours. E2F1 activity was observed by measuring luminescence. For the viability assay, the fluorescence reading was performed (excitation 544 nm and emission 590 nm). RESULTS: The in silico and in vitro screening resulted in 12 compounds that inhibited E2F1 transcriptional activity and significantly reduced cell number. The highest inhibition of both E2F1 transcriptional activity and cell growth was observed with compound 3797, which was selected for further studies. CONCLUSIONS: Both in silico and in vitro results indicate that inhibition of PARP1-E2F1 transcriptional activity may provide a new rationale for designing novel therapeutic approaches for the treatment of GBM.


Subject(s)
E2F1 Transcription Factor , Glioblastoma , Poly (ADP-Ribose) Polymerase-1 , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , E2F1 Transcription Factor/metabolism , Drug Development/methods , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
14.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 104-109, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39262256

ABSTRACT

This study investigated the role of Poly (ADP-ribose) Polymerase (PARP) in myocardial ischemia-reperfusion injury (MIRI) in elderly mice. It involves 30 elderly male KM mice divided into three groups: Sham, MIRI, and DPQ, where the MIRI and DPQ groups undergo myocardial ischemia-reperfusion with the DPQ group also receiving DPQ for PARP-1 inhibition. Over three weeks, assessments include histological analysis of myocardial lesions, left ventricular ejection fraction (LVEF) measurements, and evaluations of serum cardiac enzymes and inflammatory markers. This approach aims to understand the protective effects of DPQ in MIRI, focusing on its impact on cardiac health and inflammation via the JAK2/STAT3 pathway. The findings suggest that PARP activation exacerbates cardiac dysfunction and inflammation in MIRI by possibly modulating the JAK2/STAT3 signaling pathway. Inhibition of PARP-1 with DPQ mitigates these effects, as indicated by reduced myocardial lesions and inflammatory infiltration, improved LVEF, and altered levels of inflammatory markers and signaling molecules. However, the differences in STAT3 and p-STAT3 protein expression between the DPQ and MIRI groups were not statistically significant, suggesting that while PARP inhibition affects many aspects of MIRI pathology, its impact on the JAK2/STAT3 pathway may not fully explain the observed benefits. This study contributes to our understanding of the complex mechanisms underlying myocardial ischemia-reperfusion injury, particularly in the context of aging. It highlights the potential of PARP inhibition as a therapeutic strategy to attenuate cardiac dysfunction and inflammation in MIRI, though further research is necessary to fully elucidate the underlying molecular pathways and to explore the clinical relevance of these findings in humans.


Subject(s)
Janus Kinase 2 , Myocardial Reperfusion Injury , Myocardium , STAT3 Transcription Factor , Signal Transduction , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Male , Mice , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Myocardium/pathology , Myocardium/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Aging , Poly (ADP-Ribose) Polymerase-1/metabolism , Inflammation/pathology , Inflammation/metabolism , Ventricular Function, Left/drug effects
15.
Cancer Lett ; 602: 217192, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39181433

ABSTRACT

PARPi is currently the most important breakthrough in the treatment of ovarian cancer in decades, and it has been integrated into the initial maintenance therapy for ovarian cancer. However, the mechanism leading to PARPi resistance remains unelucidated. Our study aims to screen novel targets to better predict and reverse resistance to PARPi and explore the potential mechanism. Here, we conducted a comparative analysis of differentially expressed genes between platinum-sensitive and platinum-resistant groups within the TCGA ovarian cancer cohort. The analysis indicated that lncRNA PART1 was significantly highly expressed in platinum-sensitive patients compared to platinum-resistant individuals in TCGA-OV cohort and further validated in the GEO dataset and Qilu hospital cohort. Moreover, the upregulation of PART1 was positively correlated with a favorable prognosis in ovarian cancer. Furthermore, in vitro and in vivo experiments showed that inhibition of PART1 conferred resistance to both cisplatin and PARP inhibitor and promoted cellular senescence. Senescent cells are more resistant to chemotherapeutics. RNA antisense purification and RNA immunoprecipitation assays revealed an interaction between PART1 and PHB2, a crucial mitophagy receptor. Knockdown of PART1 could promote the degradation of PHB2, impairing mitophagy and leading to cellular senescence. Rescue assays indicated that overexpression of PHB2 remarkably diminished the resistance to PARPi and cellular senescence caused by PART1 knockdown. PDX models were utilized to further confirm the findings. Altogether, our study demonstrated that lncRNA PART1 has the potential to serve as a novel promising target to reverse resistance to PARPi and improve prognosis in ovarian cancer.


Subject(s)
Cellular Senescence , Drug Resistance, Neoplasm , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , RNA, Long Noncoding , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prognosis , Repressor Proteins/genetics , Repressor Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Xenograft Model Antitumor Assays
16.
Expert Rev Anticancer Ther ; 24(10): 989-1008, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39199000

ABSTRACT

INTRODUCTION: Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED: PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION: While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Neoplasms , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Molecular Imaging/methods , Patient Selection
17.
Nat Commun ; 15(1): 6676, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107288

ABSTRACT

53BP1 nucleates the anti-end resection machinery at DNA double-strand breaks, thereby countering BRCA1 activity. Loss of 53BP1 leads to DNA end processing and homologous recombination in BRCA1-deficient cells. Consequently, BRCA1-mutant tumors, typically sensitive to PARP inhibitors (PARPi), become resistant in the absence of 53BP1. Here, we demonstrate that the 'leaky' DNA end resection in the absence of 53BP1 results in increased micronuclei and cytoplasmic double-stranded DNA, leading to activation of the cGAS-STING pathway and pro-inflammatory signaling. This enhances CD8+ T cell infiltration, activates macrophages and natural killer cells, and impedes tumor growth. Loss of 53BP1 correlates with a response to immune checkpoint blockade (ICB) and improved overall survival. Immunohistochemical assessment of 53BP1 in two malignancies, high grade serous ovarian cancer and pancreatic ductal adenocarcinoma, which are refractory to ICBs, reveals that lower 53BP1 levels correlate with an increased adaptive and innate immune response. Finally, BRCA1-deficient tumors that develop resistance to PARPi due to the loss of 53BP1 are susceptible to ICB. Therefore, we conclude that 53BP1 is critical for tumor immunogenicity and underpins the response to ICB. Our results support including 53BP1 expression as an exploratory biomarker in ICB trials for malignancies typically refractory to immunotherapy.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Ovarian Neoplasms , Pancreatic Neoplasms , Tumor Suppressor p53-Binding Protein 1 , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Female , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Animals , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Cell Line, Tumor , DNA Breaks, Double-Stranded , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Signal Transduction , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Mice, Inbred C57BL , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice, Knockout , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Immunity, Innate
18.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125873

ABSTRACT

The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.


Subject(s)
Nanoparticles , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals
19.
Nat Commun ; 15(1): 6755, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117659

ABSTRACT

Histone lysine methyltransferase 2D (KMT2D) is the most frequently mutated epigenetic modifier in head and neck squamous cell carcinoma (HNSCC). However, the role of KMT2D in HNSCC tumorigenesis and whether its mutations confer any therapeutic vulnerabilities remain unknown. Here we show that KMT2D deficiency promotes HNSCC growth through increasing glycolysis. Additionally, KMT2D loss decreases the expression of Fanconi Anemia (FA)/BRCA pathway genes under glycolytic inhibition. Mechanistically, glycolytic inhibition facilitates the occupancy of KMT2D to the promoter/enhancer regions of FA genes. KMT2D loss reprograms the epigenomic landscapes of FA genes by transiting their promoter/enhancer states from active to inactive under glycolytic inhibition. Therefore, combining the glycolysis inhibitor 2-DG with DNA crosslinking agents or poly (ADP-ribose) polymerase (PARP) inhibitors preferentially inhibits tumor growth of KMT2D-deficient mouse HNSCC and patient-derived xenografts (PDXs) harboring KMT2D-inactivating mutations. These findings provide an epigenomic basis for developing targeted therapies for HNSCC patients with KMT2D-inactivating mutations.


Subject(s)
Glycolysis , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Glycolysis/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/deficiency , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Female , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Signal Transduction , Promoter Regions, Genetic/genetics , Myeloid-Lymphoid Leukemia Protein
20.
Biochem J ; 481(17): 1097-1123, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39178157

ABSTRACT

ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.


Subject(s)
Poly (ADP-Ribose) Polymerase-1 , Tankyrases , Tankyrases/metabolism , Tankyrases/antagonists & inhibitors , Tankyrases/genetics , Tankyrases/chemistry , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Animals , Protein Processing, Post-Translational , DNA Repair , ADP-Ribosylation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly ADP Ribosylation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL