Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.055
Filter
2.
mBio ; 15(8): e0003824, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38958440

ABSTRACT

The physiology and ecology of particle-associated marine bacteria are of growing interest, but our knowledge of their aggregation behavior and mechanisms controlling their association with particles remains limited. We have found that a particle-associated isolate, Alteromonas sp. ALT199 strain 4B03, and the related type-strain A. macleodii 27126 both form large (>500 µm) aggregates while growing in rich medium. A non-clumping variant (NCV) of 4B03 spontaneously arose in the lab, and whole-genome sequencing revealed a partial deletion in the gene encoding UDP-glucose-4-epimerase (galEΔ308-324). In 27126, a knock-out of galE (ΔgalE::kmr) resulted in a loss of aggregation, mimicking the NCV. Microscopic analysis shows that both 4B03 and 27126 rapidly form large aggregates, whereas their respective galE mutants remain primarily as single planktonic cells or clusters of a few cells. Strains 4B03 and 27126 also form aggregates with chitin particles, but their galE mutants do not. Alcian Blue staining shows that 4B03 and 27126 produce large transparent exopolymer particles (TEP), but their galE mutants are deficient in this regard. This study demonstrates the capabilities of cell-cell aggregation, aggregation of chitin particles, and production of TEP in strains of Alteromonas, a widespread particle-associated genus of heterotrophic marine bacteria. A genetic requirement for galE is evident for each of the above capabilities, expanding the known breadth of requirement for this gene in biofilm-related processes. IMPORTANCE: Heterotrophic marine bacteria have a central role in the global carbon cycle. Well-known for releasing CO2 by decomposition and respiration, they may also contribute to particulate organic matter (POM) aggregation, which can promote CO2 sequestration via the formation of marine snow. We find that two members of the prevalent particle-associated genus Alteromonas can form aggregates comprising cells alone or cells and chitin particles, indicating their ability to drive POM aggregation. In line with their multivalent aggregation capability, both strains produce TEP, an excreted polysaccharide central to POM aggregation in the ocean. We demonstrate a genetic requirement for galE in aggregation and large TEP formation, building our mechanistic understanding of these aggregative capabilities. These findings point toward a role for heterotrophic bacteria in POM aggregation in the ocean and support broader efforts to understand bacterial controls on the global carbon cycle based on microbial activities, community structure, and meta-omic profiling.


Subject(s)
Alteromonas , UDPglucose 4-Epimerase , Alteromonas/genetics , Alteromonas/enzymology , Alteromonas/metabolism , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/genetics , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Seawater/microbiology , Whole Genome Sequencing
3.
Infect Genet Evol ; 123: 105640, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002874

ABSTRACT

The Klebsiella oxytoca complex comprises diverse opportunistic bacterial pathogens associated with hospital and community-acquired infections with growing alarming antimicrobial resistance. We aimed to uncover the genomic features underlying the virulence and antimicrobial resistance of isolates from Mulago National Hospital in Uganda. We coupled whole genome sequencing with Pathogenwatch multilocus sequence typing (MLST) and downstream bioinformatic analysis to delineate sequence types (STs) capsular polysaccharide K- and O-antigen loci, along with antimicrobial resistance (AMR) profiles of eight clinical isolates from the National Referral Hospital of Uganda. Our findings revealed that only two isolates (RSM6774 and RSM7756) possess a known capsular polysaccharide K-locus (KL74). The rest carry various unknown K-loci (KL115, KL128, KLI52, KL161 and KLI63). We also found that two isolates possess unknown loci for the lipopolysaccharide O-antigen (O1/O2v1 type OL104 and unknown O1). The rest possess known O1 and O3 serotypes. From MLST, we found four novel sequence types (STs), carrying novel alleles for the housekeeping genes glyceraldehyde-6-phosphate dehydrogenase A (gapA), glucose-6-phosphate isomerase (pgi), and RNA polymerase subunit beta (rpoB). Our AMR analysis revealed that all the isolates are resistant to ampicillin and ceftriaxone, with varied resistance to other antibiotics, but all carry genes for extended-spectrum beta-lactamases (ESBLs). Notably, one strain (RSM7756) possesses outstanding chromosomal and plasmid-encoded AMR to beta-lactams, cephalosporins, fluoroquinolones and methoprims. Conclusively, clinical samples from Mulago National Referral Hospital harbor novel STs and multidrug resistant K. oxytoca strains, with significant public health importance, which could have been underrated.


Subject(s)
Drug Resistance, Multiple, Bacterial , Klebsiella oxytoca , O Antigens , Uganda , O Antigens/genetics , Humans , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella oxytoca/genetics , Klebsiella oxytoca/drug effects , Multilocus Sequence Typing , Genomics/methods , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Whole Genome Sequencing/methods , Polysaccharides, Bacterial/genetics
4.
Microb Genom ; 10(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38896467

ABSTRACT

Since the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Malawi in 2011, there has been persistent carriage of vaccine serotype (VT) Streptococcus pneumoniae, despite high vaccine coverage. To determine if there has been a genetic change within the VT capsule polysaccharide (cps) loci since the vaccine's introduction, we compared 1022 whole-genome-sequenced VT isolates from 1998 to 2019. We identified the clonal expansion of a multidrug-resistant, penicillin non-susceptible serotype 23F GPSC14-ST2059 lineage, a serotype 14 GPSC9-ST782 lineage and a novel serotype 14 sequence type GPSC9-ST18728 lineage. Serotype 23F GPSC14-ST2059 had an I253T mutation within the capsule oligosaccharide repeat unit polymerase Wzy protein, which is predicted in silico to alter the protein pocket cavity. Moreover, serotype 23F GPSC14-ST2059 had SNPs in the DNA binding sites for the cps transcriptional repressors CspR and SpxR. Serotype 14 GPSC9-ST782 harbours a non-truncated version of the large repetitive protein (Lrp), containing a Cna protein B-type domain which is also present in proteins associated with infection and colonisation. These emergent lineages also harboured genes associated with antibiotic resistance, and the promotion of colonisation and infection which were absent in other lineages of the same serotype. Together these data suggest that in addition to serotype replacement, modifications of the capsule locus associated with changes in virulence factor expression and antibiotic resistance may promote vaccine escape. In summary, the study highlights that the persistence of vaccine serotype carriage despite high vaccine coverage in Malawi may be partly caused by expansion of VT lineages post-PCV13 rollout.


Subject(s)
Bacterial Capsules , Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/pathogenicity , Pneumococcal Vaccines/immunology , Humans , Malawi , Bacterial Capsules/genetics , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Vaccines, Conjugate , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/immunology , Virulence/genetics , Genotype , Whole Genome Sequencing , Bacterial Proteins/genetics , Virulence Factors/genetics , Child, Preschool , Polymorphism, Single Nucleotide , Infant , Male
5.
Nat Commun ; 15(1): 5258, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898034

ABSTRACT

Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.


Subject(s)
Bacterial Capsules , Mutation, Missense , Polysaccharides, Bacterial , Salmonella typhi , Typhoid Fever , Salmonella typhi/genetics , Salmonella typhi/pathogenicity , Animals , Mice , Virulence/genetics , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Typhoid Fever/microbiology , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Female , Whole Genome Sequencing
6.
Microbiol Res ; 285: 127775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788350

ABSTRACT

Vibrio alginolyticus is one of the most common opportunistic pathogens in marine animals and humans. In this study, A transposon mutation library of the V. alginolyticus E110 was used to identify motility-related genes, and we found three flagellar and one capsular polysaccharide (CPS) synthesis-related genes were linked to swarming motility. Then, gene deletion and complementation further confirmed that CPS synthesis-related gene ugd is involved in the swarming motility of V. alginolyticus. Phenotype assays showed that the Δugd mutant reduced CPS production, decreased biofilm formation, impaired swimming ability, and increased cytotoxicity compared to the wild-type strain. Transcriptome analysis showed that 655 genes (15%) were upregulated and 914 genes (21%) were downregulated in the Δugd strain. KEGG pathway and heatmap analysis revealed that genes involved in two-component systems (TCSs), chemotaxis, and flagella assembly pathways were downregulated in the Δugd mutant. On the other hand, genes involved in pathways of human diseases, biosynthesis ABC transporters, and metabolism were upregulated in the Δugd mutant. The RT-qPCR further validated that ugd-regulated genes are associated with motility, biofilm formation, virulence, and TCSs. These findings imply that ugd may be an important player in the control of some physiological processes in V. alginolyticus, highlighting its potential as a target for future research and potential therapeutic interventions.


Subject(s)
Bacterial Capsules , Bacterial Proteins , Biofilms , Flagella , Gene Expression Regulation, Bacterial , Vibrio alginolyticus , Vibrio alginolyticus/genetics , Vibrio alginolyticus/physiology , Vibrio alginolyticus/metabolism , Biofilms/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flagella/genetics , Flagella/metabolism , Flagella/physiology , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Virulence , Animals , Gene Expression Profiling , Gene Deletion , Humans , Vibrio Infections/microbiology
7.
Int J Antimicrob Agents ; 64(2): 107221, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810938

ABSTRACT

Phage therapy has shown great promise in the treatment of bacterial infections. However, the effectiveness of phage therapy is compromised by the inevitable emergence of phage-resistant strains. In this study, a phage-resistant carbapenem-resistant Klebsiella pneumoniae strain SWKP1711R, derived from parental carbapenem-resistant K. pneumoniae strain SWKP1711 was identified. The mechanism of bacteriophage resistance in SWKP1711R was investigated and the molecular determinants causing altered growth characteristics, antibiotic resistance, and virulence of SWKP1711R were tested. Compared to SWKP1711, SWKP1711R showed slower growth, smaller colonies, filamentous cells visible under the microscope, reduced production of capsular polysaccharide (CPS) and lipopolysaccharide, and reduced resistance to various antibiotics accompanied by reduced virulence. Adsorption experiments showed that phage vB_kpnM_17-11 lost the ability to adsorb onto SWKP1711R, and the adsorption receptor was identified to be bacterial surface polysaccharides. Genetic variation analysis revealed that, compared to the parental strain, SWKP1711R had only one thymine deletion at position 78 of the open reading frame of the lpcA gene, resulting in a frameshift mutation that caused alteration of the bacterial surface polysaccharide and inhibition of phage adsorption, ultimately leading to phage resistance. Transcriptome analysis and quantitative reverse transcriptase PCR revealed that genes encoding lipopolysaccharide synthesis, ompK35, blaTEM-1, and type II and Hha-TomB toxin-antitoxin systems, were all downregulated in SWKP1711R. Taken together, the evidence presented here indicates that the phenotypic alterations and phage resistance displayed by the mutant may be related to the frameshift mutation of lpcA and altered gene expression. While evolution of phage resistance remains an issue, our study suggests that the reduced antibiotic resistance and virulence of phage-resistant strain derivatives might be beneficial in alleviating the burden caused by multidrug-resistant bacteria.


Subject(s)
Bacteriophages , Klebsiella pneumoniae , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Virulence/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Frameshift Mutation , Animals , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/virology , Gene Expression Profiling , Humans , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Microbial Sensitivity Tests
8.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793652

ABSTRACT

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Subject(s)
Acinetobacter , Bacterial Capsules , Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/enzymology , Bacteriophages/classification , Acinetobacter/virology , Acinetobacter/genetics , Acinetobacter/enzymology , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Acinetobacter baumannii/virology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Glycoside Hydrolases
9.
Microbes Infect ; 26(4): 105306, 2024.
Article in English | MEDLINE | ID: mdl-38316375

ABSTRACT

Staphylococcus aureus is one of the major pathogens isolated from the airways of people with cystic fibrosis (pwCF). Recently, we described a mucoid S. aureus phenotype from respiratory specimens of pwCF, which constitutively overproduced biofilm that consisted of polysaccharide intercellular adhesin (PIA) due to a 5bp-deletion (5bp-del) in the intergenic region of the intercellular adhesin (ica) locus. Since we were not able to identify the 5bp-del in mucoid isolates of two pwCF with long-term S. aureus persistence and in a number of mucoid isolates of pwCF from a prospective multicenter study, these strains were (i) characterized phenotypically, (ii) investigated for biofilm formation, and (iii) molecular typed by spa-sequence typing. To screen for mutations responsible for mucoidy, the ica operon of all mucoid isolates was analyzed by Sanger sequencing. Whole genome sequencing was performed for selected isolates. For all mucoid isolates without the 5 bp-del, various mutations in icaR, which is the transcriptional repressor of the icaADBC operon. Mucoid and non-mucoid strains belonged to the same spa-type. Transformation of PIA-overproducing S. aureus with a vector expressing the intact icaR gene restored the non-mucoid phenotype. Altogether, we demonstrated a new mechanism for the emergence of mucoid S. aureus isolates of pwCF.


Subject(s)
Biofilms , Cystic Fibrosis , Mutation , Staphylococcal Infections , Staphylococcus aureus , Cystic Fibrosis/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Humans , Biofilms/growth & development , Staphylococcal Infections/microbiology , Operon/genetics , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Repressor Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Prospective Studies , Whole Genome Sequencing , Respiratory System/microbiology
10.
Biotechnol Adv ; 69: 108279, 2023 12.
Article in English | MEDLINE | ID: mdl-37913948

ABSTRACT

The Streptococcus genus comprises both commensal and pathogenic species. Additionally, Streptococcus thermophilus is exploited in fermented foods and in probiotic preparations. The ecological and metabolic diversity of members of this genus is matched by the complex range of cell wall polysaccharides that they present on their cell surfaces. These glycopolymers facilitate their interactions and environmental adaptation. Here, current knowledge on the genetic and compositional diversity of streptococcal cell wall polysaccharides including rhamnose-glucose polysaccharides, exopolysaccharides and teichoic acids is discussed. Furthermore, the species-specific cell wall polysaccharide combinations and specifically highlighting the presence of rhamnose-glucose polysaccharides in certain species, which are replaced by teichoic acids in other species. This review highlights model pathogenic and non-pathogenic species for which there is considerable information regarding cell wall polysaccharide composition, structure and genetic information. These serve as foundations to predict and focus research efforts in other streptococcal species for which such data currently does not exist.


Subject(s)
Rhamnose , Teichoic Acids , Teichoic Acids/analysis , Rhamnose/analysis , Rhamnose/metabolism , Polysaccharides/chemistry , Streptococcus/genetics , Streptococcus/chemistry , Streptococcus/metabolism , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/analysis , Polysaccharides, Bacterial/metabolism , Cell Wall/metabolism , Glucose
11.
J Clin Invest ; 133(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37402153

ABSTRACT

BACKGROUNDTyphoid fever is caused by the Gram-negative bacterium Salmonella enterica serovar Typhi and poses a substantial public health burden worldwide. Vaccines have been developed based on the surface Vi-capsular polysaccharide of S. Typhi; these include a plain-polysaccharide-based vaccine, ViPS, and a glycoconjugate vaccine, ViTT. To understand immune responses to these vaccines and their vaccine-induced immunological protection, molecular signatures were analyzed using bioinformatic approaches.METHODSBulk RNA-Seq data were generated from blood samples obtained from adult human volunteers enrolled in a vaccine trial, who were then challenged with S. Typhi in a controlled human infection model (CHIM). These data were used to conduct differential gene expression analyses, gene set and modular analyses, B cell repertoire analyses, and time-course analyses at various post-vaccination and post-challenge time points between participants receiving ViTT, ViPS, or a control meningococcal vaccine.RESULTSTranscriptomic responses revealed strong differential molecular signatures between the 2 typhoid vaccines, mostly driven by the upregulation in humoral immune signatures, including selective usage of immunoglobulin heavy chain variable region (IGHV) genes and more polarized clonal expansions. We describe several molecular correlates of protection against S. Typhi infection, including clusters of B cell receptor (BCR) clonotypes associated with protection, with known binders of Vi-polysaccharide among these.CONCLUSIONThe study reports a series of contemporary analyses that reveal the transcriptomic signatures after vaccination and infectious challenge, while identifying molecular correlates of protection that may inform future vaccine design and assessment.TRIAL REGISTRATIONClinicalTrials.gov NCT02324751.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Adult , Humans , Polysaccharides, Bacterial/genetics , Receptors, Antigen, B-Cell , Salmonella typhi/genetics , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/genetics , Vaccination
12.
Microbiol Spectr ; 11(4): e0143223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37358457

ABSTRACT

Bacterial capsules provide protection against environmental challenges and host immunity. Historically, Escherichia coli K serotyping scheme, which relies on the hypervariable capsules, has identified around 80 K forms that fall into four distinct groups. Based on recent work by us and others, we predicted that E. coli capsular diversity is grossly underestimated. We exploited group 3 capsule gene clusters, the best genetically defined capsule group in E. coli, to analyze publicly available E. coli sequences for overlooked capsular diversity within the species. We report the discovery of seven novel group 3 clusters that fall into two distinct subgroups (3A and 3B). The majority of the 3B capsule clusters were found on plasmids, contrary to the defining feature of group 3 capsule genes localizing at the serA locus on the E. coli chromosome. Other new group 3 capsule clusters were derived from ancestral sequences through recombination events between shared genes found within the serotype variable central region 2. Intriguingly, flanking regions 1 and 3, known to be conserved areas among capsule clusters, showed considerable intra-subgroup variation in clusters from the 3B subgroup, containing genes of shared ancestry with other Enterobacteriaceae species. Variation of group 3 kps clusters within dominant E. coli lineages, including multidrug-resistant pathogenic lineages, further supports that E. coli capsules are undergoing rigorous change. Given the pivotal role of capsular polysaccharides in phage predation, our findings raise attention to the need of monitoring kps evolutionary dynamics in pathogenic E. coli in supporting phage therapy. IMPORTANCE Capsular polysaccharides protect pathogenic bacteria against environmental challenges, host immunity, and phage predations. The historical Escherichia coli K typing scheme, which relies on the hypervariable capsular polysaccharide, has identified around 80 different K forms that fall into four distinct groups. Taking advantage of the supposedly compact and genetically well-defined group 3 gene clusters, we analyzed published E. coli sequences to identify seven new gene clusters and revealed an unexpected capsular diversity. Genetic analysis revealed that group 3 gene clusters shared closely related serotype-specific region 2 and were diversified through recombination events and plasmid transfer between multiple Enterobacteriaceae species. Overall, capsular polysaccharides in E. coli are undergoing rigorous change. Given the pivotal role capsules play in phage interactions, this work highlighted the need to monitor the evolutionary dynamics of capsules in pathogenic E. coli for effective phage therapy.


Subject(s)
Escherichia coli , Polysaccharides, Bacterial , Escherichia coli/genetics , Polysaccharides, Bacterial/genetics , Capsules , Plasmids/genetics , Recombination, Genetic , Bacterial Capsules/genetics
13.
Int J Biol Macromol ; 242(Pt 3): 125014, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37230445

ABSTRACT

Exopolysaccharides (EPS) produced by bacterial species are an important component of bacteria's survival strategy. Synthesis of EPS, principal component of extracellular polymeric substance, occurs through multiple pathways involving multitude of genes. While stress-induced concomitant increase in exoD transcript levels and EPS content have been shown earlier, experimental evidence for direct correlation is lacking. In the present study, role of ExoD in Nostoc sp. strain PCC 7120 was evaluated by generating a recombinant Nostoc strain AnexoD+, wherein the ExoD (Alr2882) protein was constitutively overexpressed. AnexoD+ exhibited higher EPS production, propensity for formation of biofilms and tolerance to Cd stress compared to vector control AnpAM cells. Both Alr2882 and its paralog All1787 exhibited 5 transmembrane domains, with only All1787 predicted to interact with several proteins in polysaccharide synthesis. Phylogenetic analysis of orthologs of these proteins across cyanobacteria indicated that the two paralogs Alr2882 and All1787 and their corresponding orthologs arose divergently during evolution, and could have distinct roles to perform in the biosynthesis of EPS. This study has thrown open the possibility of engineering overproduction of EPS and inducing biofilm formation through genetic manipulation of EPS biosynthesis genes in cyanobacteria, thus building a cost-effective green platform for large scale production of EPS.


Subject(s)
Nostoc , Nostoc/genetics , Nostoc/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Phylogeny , Proteins/metabolism , Biofilms , Metals/metabolism , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism
14.
BMC Genomics ; 24(1): 168, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016299

ABSTRACT

BACKGROUND: Surface polysaccharides (SPs), such as lipopolysaccharide (O antigen) and capsular polysaccharide (K antigen), play a key role in the pathogenicity of Escherichia coli (E. coli). Gene cluster for polysaccharide antigen biosynthesis encodes various glycosyltransferases (GTs), which drive the process of SP synthesis and determine the serotype. RESULTS: In this study, a total of 7,741 E. coli genomic sequences were chosen for systemic data mining. The monosaccharides in both O and K antigens were dominated by D-hexopyranose, and the SPs in 70-80% of the strains consisted of only the five most common hexoses (or some of them). The linkages between the two monosaccharides were mostly α-1,3 (23.15%) and ß-1,3 (20.49%) bonds. Uridine diphosphate activated more than 50% of monosaccharides for glycosyltransferase reactions. These results suggest that the most common pathways could be integrated into chassis cells to promote glycan biosynthesis. We constructed a database (EcoSP, http://ecosp.dmicrobe.cn/ ) for browse this information, such as monosaccharide synthesis pathways. It can also be used for serotype analysis and GT annotation of known or novel E. coli sequences, thus facilitating the diagnosis and typing. CONCLUSIONS: Summarizing and analyzing the properties of these polysaccharide antigens and GTs are of great significance for designing glycan-based vaccines and the synthetic glycobiology.


Subject(s)
Escherichia coli , Polysaccharides , Escherichia coli/genetics , Escherichia coli/metabolism , Polysaccharides/metabolism , Lipopolysaccharides , O Antigens , Monosaccharides/metabolism , Multigene Family , Computational Biology , Polysaccharides, Bacterial/genetics
15.
Microbiol Spectr ; 11(1): e0363122, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36651782

ABSTRACT

The type of capsular polysaccharide (CPS) on the cell surface of Acinetobacter baumannii can determine the specificity of lytic bacteriophage under consideration for therapeutic use. Here, we report the isolation of a phage on an extensively antibiotic resistant ST2 A. baumannii isolate AB5001 that carries the KL3 CPS biosynthesis gene cluster predicting a K3-type CPS. As the phage did not infect isolates carrying KL3 or KL22 and known to produce K3 CPS, the structure of the CPS isolated from A. baumannii AB5001 was determined. AB5001 produced a variant CPS form, K3-v1, that lacks the ß-d-GlсpNAc side chain attached to the d-Galp residue in the K3 structure. Inspection of the KL3 sequence in the genomes of AB5001 and other phage-susceptible isolates with a KL3 locus revealed single-base deletions in gtr6, causing loss of the Gtr6 glycosyltransferase that adds the missing d-GlсpNAc side chain to the K3 CPS. Hence, the presence of this sugar profoundly restricts the ability of the phage to digest the CPS. The 41-kb linear double-stranded DNA (dsDNA) phage genome was identical to the genome of a phage isolated on a K37-producing isolate and thus was named APK37.1. APK37.1 also infected isolates carrying KL116. Consistent with this, K3-v1 resembles the K37 and K116 structures. APK37.1 is a Friunavirus belonging to the Autographiviridae family. The phage-encoded tail spike depolymerase DpoAPK37.1 was not closely related to Dpo encoded by other sequenced Friunaviruses, including APK37 and APK116. IMPORTANCE Lytic bacteriophage have potential for the treatment of otherwise untreatable extensively antibiotic-resistant bacteria. For Acinetobacter baumannii, most phage exhibit specificity for the type of capsular polysaccharide (CPS) produced on the cell surface. However, resistance can arise via mutations in CPS genes that abolish this phage receptor. Here, we show that single-base deletions in a CPS gene result in alteration of the final structure rather than deletion of the capsule layer and hence affect the ability of a newly reported podophage to infect strains producing the K3 CPS.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Acinetobacter baumannii/metabolism , Sugars/metabolism , Polysaccharides, Bacterial/genetics , Myoviridae , Bacteriophages/genetics , Bacteriophages/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Bacterial Capsules/metabolism
16.
Microb Genom ; 8(10)2022 10.
Article in English | MEDLINE | ID: mdl-36214673

ABSTRACT

Several novel non-antibiotic therapeutics for the critical priority bacterial pathogen, Acinetobacter baumannii, rely on specificity to the cell-surface capsular polysaccharide (CPS). Hence, prediction of CPS type deduced from genes in whole genome sequence data underpins the development and application of these therapies. In this study, we provide a comprehensive update to the A. baumannii K locus reference sequence database for CPS typing (available in Kaptive v. 2.0.1) to include 145 new KL, providing a total of 237 KL reference sequences. The database was also reconfigured for compatibility with the updated Kaptive v. 2.0.0 code that enables prediction of 'K type' from special logic parameters defined by detected combinations of KL and additional genes outside the K locus. Validation of the database against 8994 publicly available A. baumannii genome assemblies from NCBI databases identified the specific KL in 73.45 % of genomes with perfect, very high or high confidence. Poor sequence quality or the presence of insertion sequences were the main reasons for lower confidence levels. Overall, 17 KL were overrepresented in available genomes, with KL2 the most common followed by the related KL3 and KL22. Substantial variation in gene content of the central portion of the K locus, that usually includes genes specific to the CPS type, included 34 distinct groups of genes for synthesis of various complex sugars and >400 genes for forming linkages between sugars or adding non-sugar substituents. A repertoire of 681 gene types were found across the 237 KL, with 88.4 % found in <5 % of KL.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Bacterial Capsules/genetics , DNA Transposable Elements , Multigene Family , Polysaccharides, Bacterial/genetics
17.
Food Res Int ; 158: 111550, 2022 08.
Article in English | MEDLINE | ID: mdl-35840244

ABSTRACT

Streptococcus thermophilus is an economically prominent starter for common dairy products due to its potential health and nutritional benefits. However, lack of precise genetic manipulation approaches has greatly hampered the industrial application of S. thermophilus.. Herein, we developed an efficient genome editing toolbox (pKLH353) based on CRISPR/nCas9 (Cas9 nickase) in S. thermophilus to seamlessly edit single or multiple genes. A native constitutive promoter library was used to optimize the nCas9 and sgRNA expression with gene deletion efficiencies of 14-60%. The epsA, epsB and epsE were identified as key genes affecting exopolysaccharide (EPS) biosynthesis in S. thermophilus S-3 using the CRISPR/nCas9 toolbox. Moreover, compared to the wild-type, knockout of epsC, epsE or epsG led to a decrease of EPS titer with reducing in its molecular weight (>2.5-fold) and intrinsic viscosity (>19.8-fold). The ratio of monosaccharide composition of the mutants has also changed, suggesting that these eps genes are involved in the chain length synthesis and repeat unit assembly. Taken together, this CRISPR/nCas9 system can serve as a basic toolkit for precise genetic engineering of S. thermophilus and facilitate strain engineering to produce bio-based products.


Subject(s)
Gene Editing , Streptococcus thermophilus , Dairy Products , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism
19.
J Proteomics ; 257: 104513, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35149254

ABSTRACT

Xanthomonas is a phytopathogenic bacterium and of industrial interest due to its capability to produce xanthan, used as a thickener and emulsifier in the food and non-food industry. Until now, proteome analyses of Xcc lacking a detailed view on the proteins involved in xanthan biosynthesis. The proteins involved in the biosynthesis of this polysaccharide are located near, in or at the cell membrane. This study aims to establish a robust and rapid protocol for a comprehensive proteome analysis of Xcc strains, without the need to isolate different cell fractions. Therefore, a method for the analysis of the whole cell proteome was compared to the isolation of specific fractions regarding the total number of identified proteins, the overlap, and the differences between the approaches. The whole cell proteome analysis with extended peptide separation methods resulted in more than 3254 identified proteins covering 73.1% of the whole proteome. The protocol was used to study xanthan production in a label-free quantification approach. Expression profiles of 8 Gum proteins were compared between the stationary and logarithmic growth phase. Differential expression levels within the operon structure indicate a complex regulatory mechanism for xanthan biosynthesis. Data are available via ProteomeXchange with identifier PXD027261. SIGNIFICANCE: Bacteria are metabolite factories with a wide variety of natural products. Thus, proteome analyses play a crucial role to understand the biological processes within a cell behind the biosynthesis of those metabolites. Proteins involved in the biosynthesis of secreted products are often organised on, in or around the membrane allowing metabolite channelling. Experiments targeting those biosynthesis pathways on protein level often require the analysis of multiple cell fractions like cytosolic, inner, and outer membrane. This is time consuming and demands different protocols. The protocol presented here is a rapid and robust solution to study biosynthetic pathways of biological or biotechnological interest in a single approach on protein level, where gene products are partitioned across multiple cell fractions. The use of a single method also simplifies the comparison of different experiments, for example, production vs. nonproduction conditions.


Subject(s)
Xanthomonas campestris , Xanthomonas , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Proteome/metabolism
20.
Microb Cell Fact ; 21(1): 6, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34986868

ABSTRACT

BACKGROUND: Campylobacter is an animal and zoonotic pathogen of global importance, and a pressing need exists for effective vaccines, including those that make use of conserved polysaccharide antigens. To this end, we adapted Protein Glycan Coupling Technology (PGCT) to develop a versatile Escherichia coli strain capable of generating multiple glycoconjugate vaccine candidates against Campylobacter jejuni. RESULTS: We generated a glycoengineering E. coli strain containing the conserved C. jejuni heptasaccharide coding region integrated in its chromosome as a model glycan. This methodology confers three advantages: (i) reduction of plasmids and antibiotic markers used for PGCT, (ii) swift generation of many glycan-protein combinations and consequent rapid identification of the most antigenic proteins or peptides, and (iii) increased genetic stability of the polysaccharide coding-region. In this study, by using the model glycan expressing strain, we were able to test proteins from C. jejuni, Pseudomonas aeruginosa (both Gram-negative), and Clostridium perfringens (Gram-positive) as acceptors. Using this pgl integrant E. coli strain, four glycoconjugates were readily generated. Two glycoconjugates, where both protein and glycan are from C. jejuni (double-hit vaccines), and two glycoconjugates, where the glycan antigen is conjugated to a detoxified toxin from a different pathogen (single-hit vaccines). Because the downstream application of Live Attenuated Vaccine Strains (LAVS) against C. jejuni is to be used in poultry, which have a higher body temperature of 42 °C, we investigated the effect of temperature on protein expression and glycosylation in the E. coli pgl integrant strain. CONCLUSIONS: We determined that glycosylation is temperature dependent and that for the combination of heptasaccharide and carriers used in this study, the level of PglB available for glycosylation is a step limiting factor in the glycosylation reaction. We also demonstrated that temperature affects the ability of PglB to glycosylate its substrates in an in vitro glycosylation assay independent of its transcriptional level.


Subject(s)
Bacterial Proteins/metabolism , Chromosomes/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Glycoconjugates/metabolism , Temperature , Bacterial Proteins/genetics , Bacterial Vaccines , Campylobacter jejuni/genetics , Campylobacter jejuni/immunology , Glycosylation , Membrane Proteins/genetics , Metabolic Engineering/methods , Polysaccharides, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL