Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.912
Filter
1.
Commun Biol ; 7(1): 848, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992164

ABSTRACT

Filamentous fungi produce polysaccharide-degrading enzymes, which is controlled by poorly understood transcriptional circuits. Here we show that a circuit comprising RsrC-RsrA-RsrB (Rsr: production of raw-starch-degrading enzyme regulator) that positively regulates production of raw starch-degrading enzymes in Penicillium oxalicum. Transcription factor (TF) RsrA is essential for biosynthesis of raw starch-degrading enzymes. RsrB and RsrC containing Zn2Cys6- and C2H2-zinc finger domains, act downstream and upstream of RsrA, respectively. RsrA activates rsrB transcription, and three nucleotides (G-286, G-287 and G-292) of rsrB promoter region are required for RsrA, in terms of TF, for binding. RsrB165-271 binds to DNA sequence 5'-TCGATCAGGCACGCC-3' in the promoter region of the gene encoding key raw-starch-degrading enzyme PoxGA15A. RsrC specifically binds rsrA promoter, but not amylase genes, to positively regulate the expression of rsrA and the production of raw starch-degrading enzymes. These findings expand complex regulatory network of fungal raw starch-degrading enzyme biosynthesis.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Penicillium , Transcription Factors , Penicillium/genetics , Penicillium/metabolism , Penicillium/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Gene Regulatory Networks
2.
Sci Rep ; 14(1): 12592, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824196

ABSTRACT

The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.


Subject(s)
Gene Expression Regulation, Plant , Polysaccharides , Populus , Promoter Regions, Genetic , Transcription Factors , Populus/genetics , Populus/metabolism , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Cell Wall/metabolism , Cell Wall/genetics
3.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930854

ABSTRACT

Glycogen, an α-glucan polymer serving as an energy storage compound in microorganisms, is synthesized through distinct pathways (GlgC-GlgA or GlgE pathway). Both pathways involve multiple enzymes, with a shared glycogen branching enzyme (GBE). GBEs play a pivotal role in establishing α-1,6-linkages within the glycogen structure. GBEs are also used for starch modification. Understanding how these enzymes work is interesting for both glycogen synthesis in microorganisms, as well as novel applications for starch modification. This study focuses on a putative enzyme GH13_9 GBE (PoGBE13), present in a polysaccharide utilization locus (PUL) of Pontibacter sp. SGAir0037, and related to the GlgE glycogen synthesis pathway. While the PUL of Pontibacter sp. SGAir0037 contains glycogen-degrading enzymes, the branching enzyme (PoGBE13) was also found due to genetic closeness. Characterization revealed that PoGBE13 functions as a typical branching enzyme, exhibiting a relatively high branching over non-branching (hydrolysis and α-1,4-transferase activity) ratio on linear maltooctadecaose (3.0 ± 0.4). Besides the GH13_9 GBE, a GH57 (PoGH57) enzyme was selected for characterization from the same PUL due to its undefined function. The combined action of both GH13 and GH57 enzymes suggested 4-α-glucanotransferase activity for PoGH57. The characterization of these unique enzymes related to a GlgE glycogen synthesis pathway provides a more profound understanding of their interactions and synergistic roles in glycogen synthesis and are potential enzymes for use in starch modification processes. Due to the structural similarity between glycogen and starch, PoGBE13 can potentially be used for starch modification with different applications, for example, in functional food ingredients.


Subject(s)
Glycoside Hydrolases , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Glycogen/metabolism , Glycogen/biosynthesis , Polysaccharides/metabolism , Polysaccharides/chemistry , Polysaccharides/biosynthesis , 1,4-alpha-Glucan Branching Enzyme/metabolism , 1,4-alpha-Glucan Branching Enzyme/genetics , Starch/metabolism , Starch/chemistry , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
4.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1845-1855, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914495

ABSTRACT

α-arbutin has important applications in cosmetics and medicine. However, the extraction yield from plant tissues is relatively low, which restricts its application value. In this study, we investigated the synthesis of α-arbutin using maltodextrin as the donor and hydroquinone as the acceptor, using a cyclodextrin glucosyltransferase (CGTase) from Anaerobranca gottschalkii. We performed site-saturated and site-directed mutagenesis on AgCGTase. The activity of the variant AgCGTase-F235G-N166H was 3.48 times higher than that of the wild type. Moreover, we achieved a conversion rate of 63% by optimizing the reaction pH, temperature, and hydroquinone addition amount. Overall, this study successfully constructed a strain with improved conversion rate for the synthetic production of α-arbutin and hydroquinone. These findings have significant implications for reducing the industrial production cost of α-arbutin and enhancing the conversion rate of the product.


Subject(s)
Arbutin , Glucosyltransferases , Hydroquinones , Mutagenesis, Site-Directed , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Arbutin/biosynthesis , Hydroquinones/metabolism , Polysaccharides/biosynthesis , Polysaccharides/metabolism
5.
Int J Biol Macromol ; 274(Pt 2): 133508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944067

ABSTRACT

Agave species are typical crassulacean acid metabolism (CAM) plants commonly cultivated to produce beverages, fibers, and medicines. To date, few studies have examined hemicellulose biosynthesis in Agave H11648, which is the primary cultivar used for fiber production. We conducted PacBio sequencing to obtain full-length transcriptome of five agave tissues: leaves, shoots, roots, flowers, and fruits. A total of 41,807 genes were generated, with a mean length of 2394 bp and an annotation rate of 97.12 % using public databases. We identified 42 glycosyltransferase genes related to hemicellulose biosynthesis, including mixed-linkage glucan (1), glucomannan (5), xyloglucan (16), and xylan (20). Their expression patterns were examined during leaf development and fungal infection, together with hemicellulose content. The results revealed four candidate glycosyltransferase genes involved in xyloglucan and xylan biosynthesis, including glucan synthase (CSLC), xylosyl transferase (XXT), xylan glucuronyltransferase (GUX), and xylan α-1,3-arabinosyltransferase (XAT). These genes can be potential targets for manipulating xyloglucan and xylan traits in agaves, and can also be used as candidate enzymatic tools for enzyme engineering. We have provided the first full-length transcriptome of agave, which will be a useful resource for gene identification and characterization in agave species. We also elucidated the hemicellulose biosynthesis machinery, which will benefit future studies on hemicellulose traits in agave.


Subject(s)
Agave , Gene Expression Regulation, Plant , Glycosyltransferases , Polysaccharides , Transcriptome , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Agave/genetics , Polysaccharides/biosynthesis , Xylans/metabolism , Xylans/biosynthesis , Gene Expression Profiling , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Curr Opin Biotechnol ; 87: 103145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781701

ABSTRACT

Plant-based expression systems have emerged as promising avenues for the production of recombinant N-linked glycoproteins. This review offers insights into the evolution and progress of plant glycoengineering. It delves into the distinctive features of plant-derived N-glycans, the diverse range of plant hosts employed for glycoprotein synthesis, and the advancements in glycoengineering strategies aimed at generating glycoproteins with N-glycan structures akin to those produced in mammalian cell lines. Furthermore, alternative strategies for augmenting glycoengineering efforts and the current spectrum of applications for plant-produced N-glycan recombinant proteins are examined, underscoring their potential significance in biopharmaceutical manufacturing.


Subject(s)
Glycoproteins , Plants, Genetically Modified , Recombinant Proteins , Glycoproteins/metabolism , Glycoproteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Crops, Agricultural/metabolism , Glycosylation , Protein Engineering/methods , Humans
7.
J Basic Microbiol ; 64(7): e2400103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38771080

ABSTRACT

This study aimed to enhance extracellular polysaccharide (EPS) production in Cordyceps militaris by constructing a quorum sensing (QS) system to regulate the expression of biosynthetic enzyme genes, including phosphoglucomutase, hexokinase, phosphomannomutase, polysaccharide synthase, and UDP-glucose 4-epimerase genes. The study found higher EPS concentrations in seven recombinant strains compared to the wild-type C. militaris, indicating that the overexpression of key enzyme genes increased EPS production. Among them, the CM-pgm-2 strain exhibited the highest EPS production, reaching a concentration of 3.82 ± 0.26 g/L, which was 1.52 times higher than the amount produced by the wild C. militaris strain. Additionally, the regulatory effects of aromatic amino acids on the QS system of the CM-pgm-2 strain were investigated. Under the influence of 45 mg/L tryptophan, the EPS production in CM-pgm-2 reached 4.75 ± 0.20 g/L, representing a 1.90-fold increase compared to wild C. militaris strains. This study provided an effective method for the large-scale production of EPSs in C. militaris, and opened up new avenues for research into fungal QS mechanisms.


Subject(s)
Cordyceps , Quorum Sensing , Cordyceps/genetics , Cordyceps/metabolism , Cordyceps/growth & development , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Gene Expression Regulation, Fungal , Fungal Polysaccharides/biosynthesis , Fungal Polysaccharides/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Tryptophan/metabolism , Tryptophan/biosynthesis
8.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731824

ABSTRACT

Agar, as a seaweed polysaccharide mainly extracted from Gracilariopsis lemaneiformis, has been commercially applied in multiple fields. To investigate factors indicating the agar accumulation in G. lemaneiformis, the agar content, soluble polysaccharides content, and expression level of 11 genes involved in the agar biosynthesis were analysed under 4 treatments, namely salinity, temperature, and nitrogen and phosphorus concentrations. The salinity exerted the greatest impact on the agar content. Both high (40‱) and low (10‱, 20‱) salinity promoted agar accumulation in G. lemaneiformis by 4.06%, 2.59%, and 3.00%, respectively. The content of agar as a colloidal polysaccharide was more stable than the soluble polysaccharide content under the treatments. No significant correlation was noted between the two polysaccharides, and between the change in the agar content and the relative growth rate of the algae. The expression of all 11 genes was affected by the 4 treatments. Furthermore, in the cultivar 981 with high agar content (21.30 ± 0.95%) compared to that (16.23 ± 1.59%) of the wild diploid, the transcriptional level of 9 genes related to agar biosynthesis was upregulated. Comprehensive analysis of the correlation between agar accumulation and transcriptional level of genes related to agar biosynthesis in different cultivation conditions and different species of G. lemaneiformis, the change in the relative expression level of glucose-6-phosphate isomerase II (gpiII), mannose-6-phosphate isomerase (mpi), mannose-1-phosphate guanylyltransferase (mpg), and galactosyltransferase II (gatII) genes was highly correlated with the relative agar accumulation. This study lays a basis for selecting high-yield agar strains, as well as for targeted breeding, by using gene editing tools in the future.


Subject(s)
Agar , Rhodophyta , Rhodophyta/genetics , Rhodophyta/metabolism , Rhodophyta/growth & development , Salinity , Gene Expression Regulation, Plant , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Temperature , Nitrogen/metabolism
9.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704385

ABSTRACT

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Subject(s)
Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
10.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711081

ABSTRACT

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Subject(s)
Fermentation , Recombinant Proteins , Saccharomycetales , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/genetics , Biomass , Batch Cell Culture Techniques , Polysaccharides/metabolism , Polysaccharides/biosynthesis
11.
STAR Protoc ; 5(2): 102937, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38630592

ABSTRACT

Glycans, present across all domains of life, comprise a wide range of monosaccharides assembled into complex, branching structures. Here, we present an in silico protocol to construct biosynthetic networks from a list of observed glycans using the Python package glycowork. We describe steps for data preparation, network construction, feature analysis, and data export. This protocol is implemented in Python using example data and can be adapted for use with customized datasets. For complete details on the use and execution of this protocol, please refer to Thomès et al.1.


Subject(s)
Polysaccharides , Polysaccharides/biosynthesis , Polysaccharides/metabolism , Polysaccharides/chemistry , Software , Biosynthetic Pathways , Computer Simulation , Computational Biology/methods
12.
Biol Chem ; 405(5): 325-340, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38487862

ABSTRACT

The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the "canonical" glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.


Subject(s)
Glycosyltransferases , Rhodococcus , Rhodococcus/enzymology , Rhodococcus/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Kinetics
13.
J Sci Food Agric ; 104(9): 4966-4976, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38294276

ABSTRACT

Red koji polysaccharides, derived from the fermentation of Monascus, have been recognized for their health-enhancing properties. This article reviews their structural characteristics, biosynthesis pathways, and biological activities. It emphasizes the need for sustainable practices in fermentation and the optimization of extraction methods for scalable production. The significance of exploring the molecular mechanisms involved in their biosynthesis is also highlighted to enhance yield and efficiency. Research indicates that red koji polysaccharides possess diverse biological functions, beneficial for pharmaceutical applications due to their health benefits and minimal toxicity. The review points out the necessity for more detailed studies on key enzymes and genes in biosynthesis to improve production methods. It also identifies the current challenges in production scalability and extraction efficiency. Furthermore, while these polysaccharides show potential in pharmaceuticals, their clinical efficacy and mechanism of action in human subjects require further investigation. The review briefly explores potential structural modifications to improve their biological activities. The review concludes that red koji polysaccharides hold significant untapped potential, particularly in drug formulation. Future research should focus on overcoming current production and application challenges, including conducting clinical trials to validate their efficacy and exploring structural modifications for enhanced therapeutic benefits. This comprehensive understanding of red koji polysaccharides paves the way for their expanded application in the pharmaceutical industry. © 2024 Society of Chemical Industry.


Subject(s)
Monascus , Polysaccharides , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/biosynthesis , Monascus/metabolism , Monascus/chemistry , Monascus/genetics , Animals , Fermentation
14.
Chem Commun (Camb) ; 58(87): 12139-12150, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36222364

ABSTRACT

The biosynthesis of glycans is a highly conserved biological process and found in all domains of life. The expression of cell surface glycans is increasingly recognized as a target for therapeutic intervention given the role of glycans in major pathologies such as cancer and microbial infection. Herein, we summarize our contributions to the development of unnatural monosaccharide derivatives to infiltrate and alter the expression of both mammalian and bacterial glycans and their therapeutic application.


Subject(s)
Fucose , Monosaccharides , Polysaccharides , Animals , Fucose/chemistry , Mammals , Monosaccharides/chemistry , N-Acetylneuraminic Acid/chemistry , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Bacteria
15.
Bioorg Med Chem ; 70: 116918, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35810714

ABSTRACT

Sugar additions to biomolecules, or glycans, are some of the most abundant biomolecule modifications in biology because they enable cells to adapt to changing nutrient and stress conditions. An unmet challenge for the field of glycobiology is the study of glycan biosynthetic pathways with chemical control, especially in live cell settings. The objective of this study was to create biocompatible glycan precursors with controlled release properties. Here, we report eleven "caged" sugar probes that release glycan biosynthetic precursor molecules upon light exposure. The specific sugar pathways we target with our probes regulate the addition of the N-acetyl sugars GlcNAc, GalNAc, and sialic acid onto biomolecules in cells, each of which has the potential to alter glycan processes involved in cell morphology, signaling, and behavior. We hypothesized that our glycan precursor probes would remain biologically inert until light-initiated decaging conditions were met, avoiding biological activities including metabolism and cytotoxicity. The photocaged analogs of GlcNAc, GalNAc, and ManNAc (sialic acid precursor) sugars, which we call "photo-sugars," were released within minutes of light exposure at their optimal wavelengths. During the course of the study, we characterized the cell compatibility of these sugars under their respective decaging conditions, and found highly cell compatible GlcNAc, GalNAc, and ManNAc photocaged precursors. Release of GlcNAc-1-phosphate precursors led to altered ATP levels in cells, demonstrating preliminary metabolic engineering. We envision these probes as useful additions to the chemical glycobiology field that will enable spatiotemporal control over glycosylation pathways in living mammalian cells.


Subject(s)
Metabolic Engineering , Polysaccharides , Animals , Mammals/metabolism , N-Acetylneuraminic Acid/metabolism , Polysaccharides/biosynthesis , Polysaccharides/metabolism , Sugars/metabolism
16.
Chem Pharm Bull (Tokyo) ; 70(2): 155-161, 2022.
Article in English | MEDLINE | ID: mdl-35110436

ABSTRACT

Exopolysaccharides (EPSs) occur widely in natural products made by bacteria, fungi and algae. Some EPSs have intriguing biological properties such as anticancer and immunomodulatory activities. Our group has recently found that EPSs generated from Leuconostoc mesenteroides ssp. mesenteroides strain NTM048 (NTM048 EPS) enhanced a production of mucosal immunoglobulin A (IgA) of mouse. Herein, we described the synthesis and evaluation of the tetrasaccharide fragments of NTM048 EPS to obtain information about the molecular mechanism responsible for the IgA-inducing activity.


Subject(s)
Biological Products/chemical synthesis , Biological Products/metabolism , Leuconostoc/chemistry , Polysaccharides/biosynthesis , Polysaccharides/chemical synthesis , Biological Products/chemistry , Carbohydrate Conformation , Leuconostoc/metabolism , Polysaccharides/chemistry
17.
Molecules ; 27(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35011549

ABSTRACT

Angelica sinensis, a perennial herb that produces ferulic acid and phthalides for the treatment of cardio-cerebrovascular diseases, prefers growing at an altitude of 1800-3000 m. Geographical models have predicted that high altitude, cool temperature and sunshade play determining roles in geo-authentic formation. Although the roles of altitude and light in yield and quality have been investigated, the role of temperature in regulating growth, metabolites biosynthesis and gene expression is still unclear. In this study, growth characteristics, metabolites contents and related genes expression were investigated by exposing A. sinensis to cooler (15 °C) and normal temperatures (22 °C). The results showed that plant biomass, the contents of ferulic acid and flavonoids and the expression levels of genes related to the biosynthesis of ferulic acid (PAL1, 4CLL4, 4CLL9, C3H, HCT, CCOAMT and CCR) and flavonoids (CHS and CHI) were enhanced at 15 °C compared to 22 °C. The contents of ligustilide and volatile oils exhibited slight increases, while polysaccharide contents decreased in response to cooler temperature. Based on gene expression levels, ferulic acid biosynthesis probably depends on the CCOAMT pathway and not the COMT pathway. It can be concluded that cool temperature enhances plant growth, ferulic acid and flavonoid accumulation but inhibits polysaccharide biosynthesis in A. sinensis. These findings authenticate that cool temperature plays a determining role in the formation of geo-authentic and also provide a strong foundation for regulating metabolites production of A. sinensis.


Subject(s)
Angelica sinensis/physiology , Cold Temperature , Coumaric Acids/metabolism , Flavonoids/biosynthesis , Polysaccharides/biosynthesis , 4-Butyrolactone/analogs & derivatives , Carbohydrate Metabolism , Gene Expression Regulation, Plant , Oils, Volatile , Plant Oils , Plant Physiological Phenomena
18.
Food Funct ; 13(3): 1393-1407, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35045151

ABSTRACT

Manipulating the structures, physicochemical properties, and monosaccharide compositions of exopolysaccharides (EPS) isolated from microorganisms has been reported to enhance their biological activities. Hence, the aim of this work was to examine the effects of genistein addition during fermentation on the amount, physicochemical properties, and immunomodulatory activity of EPS secreted by M. purpureus. Results showed that genistein addition significantly increased M. purpureus biomass and EPS yield to 2.42 g L-1 and 6.08 g L-1, respectively, and affected the physicochemical properties and structures of EPS. Furthermore, EPS produced by genistein-treated M. purpureus (G-EMP) improved the immunomodulatory activity of RAW264.7 macrophages by increasing the secretion of nitric oxide and cytokines. Moreover, phospho-Jun N-terminal kinase (p-JNK), phospho-extracellular regulated protein kinase (p-ERK), phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) phospho-p65 (p65) proteins were remarkably upregulated by G-EMP stimulation, blocking Toll-like receptor 4 (TLR4) that dramatically reduced the pinocytic and phagocytic capacities. Overall, these findings provide potential rationales for the application of genistein in improving the EPS yield of M. purpureus.


Subject(s)
Genistein/pharmacology , Immunologic Factors/pharmacology , Monascus , Polysaccharides/biosynthesis , Animals , Mice , RAW 264.7 Cells/drug effects
19.
Carbohydr Polym ; 277: 118764, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893214

ABSTRACT

Sulphated polysaccharides (SPs) are carbohydrate macromolecules with sulphate esters that are found among marine algae, seagrasses, mangroves and some terrestrial plants. The sulphate concentration in the ocean (28 mM) since ancient time could have driven the production of SPs in marine algae. SPs have a gelatinous property that can protect marine algae against desiccation and salinity stress. Agar and carrageenan are red algal SPs that are widely used as gelling agents in the food and pharmaceutical industries. The information on the SPs from freshwater and land plants are limited. In this review, we reviewed the taxonomic distribution and composition of SPs in different photosynthetic lineages, and explored the association of SP production in these diversified photosynthetic organisms with evolution history and environmental stresses. We also reviewed the genes/proteins involved in SP biosynthesis. Insights into SP biosynthetic machinery may shed light on the evolution that accompanied adaptation to life on earth.


Subject(s)
Polysaccharides/biosynthesis , Sulfates/metabolism , Embryophyta/chemistry , Embryophyta/metabolism , Fresh Water/chemistry , Photochemical Processes , Polysaccharides/chemistry , Sulfates/chemistry
20.
Prep Biochem Biotechnol ; 52(3): 245-252, 2022.
Article in English | MEDLINE | ID: mdl-34092177

ABSTRACT

Leuconostoc pseudomesenteroides belongs to a group of lactic acid bacteria normally isolated from fruits, which has the capacity to produce exopolysaccharides (EPS). The present study aimed to optimize the EPS production of L. pseudomesenteroides JF17, isolated from juçara fruits (palm trees threatened with extinction in the Atlantic Forest), using the response surface methodology (RSM), besides evaluating the fermentation kinetics. The maximum production of EPS 53.77 mg/mL was obtained under ideal conditions of MRS broth supplemented with sucrose at 18%, w/v, fermentation temperature of 20 °C and initial pH of 7.30. The Luedeking-Piret model suggested that the production of EPS by the JF17 strain appeared to be associated with the cell growth of the microorganism, in addition to having high efficiency in the production of the polysaccharide from the substrate (Yp/s = 17.85 ± 0.74 mg EPS/log CFU ). Thus, the ideal optimization conditions and kinetic parameters can be useful for increasing the scale up of the fermentation process in the industrial production of EPS by L. pseudomesenteroides JF17.


Subject(s)
Leuconostoc/metabolism , Polysaccharides/biosynthesis , Fermentation , Forests , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL