Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.977
1.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710561

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
2.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710573

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Antiviral Agents , Herpesvirus 1, Human , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Herpesvirus 1, Human/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Vero Cells , Humans , Sulfates/chemistry , Sulfates/pharmacology , Respiratory Syncytial Viruses/drug effects
3.
Carbohydr Polym ; 337: 122156, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710572

Seaweeds represent a rich source of sulfated polysaccharides with similarity to heparan sulfate, a facilitator of myriad virus host cell attachment. For this reason, attention has been drawn to their antiviral activity, including the potential for anti-SARS-CoV-2 activity. We have identified and structurally characterized several fucoidan extracts, including those from different species of brown macroalga, and a rhamnan sulfate from a green macroalga species. A high molecular weight fucoidan extracted from Saccharina japonica (FSjRPI-27), and a rhamnan sulfate extracted from Monostroma nitidum (RSMn), showed potent competitive inhibition of spike glycoprotein receptor binding to a heparin-coated SPR chip. This inhibition was also observed in cell-based assays using hACE2 HEK-293 T cells infected by pseudotyped SARS-CoV-2 virus with IC50 values <1 µg/mL. Effectiveness was demonstrated in vivo using hACE2-transgenic mice. Intranasal administration of FSjRPI-27 showed protection when dosed 6 h prior to and at infection, and then every 2 days post-infection, with 100 % survival and no toxicity at 104 plaque-forming units per mouse vs. buffer control. At 5-fold higher virus dose, FSjRPI-27 reduced mortality and yielded reduced viral titers in bronchioalveolar fluid and lung homogenates vs. buffer control. These findings suggest the potential application of seaweed-based sulfated polysaccharides as promising anti-SARS-CoV-2 prophylactics.


Antiviral Agents , COVID-19 , Mannans , Polysaccharides , SARS-CoV-2 , Seaweed , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Humans , SARS-CoV-2/drug effects , Seaweed/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , HEK293 Cells , Mice , COVID-19/prevention & control , COVID-19/virology , COVID-19 Drug Treatment , Mice, Transgenic , Spike Glycoprotein, Coronavirus/metabolism , Deoxy Sugars/pharmacology , Deoxy Sugars/chemistry , Angiotensin-Converting Enzyme 2/metabolism
4.
AAPS PharmSciTech ; 25(5): 101, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714629

BACKGROUND: Niacin, an established therapeutic for dyslipidemia, is hindered by its propensity to induce significant cutaneous flushing when administered orally in its unmodified state, thereby constraining its clinical utility. OBJECTIVE: This study aimed to fabricate, characterize, and assess the in-vitro and in-vivo effectiveness of niacin-loaded polymeric films (NLPFs) comprised of carboxymethyl tamarind seed polysaccharide. The primary objective was to mitigate the flushing-related side effects associated with oral niacin administration. METHODS: NLPFs were synthesized using the solvent casting method and subsequently subjected to characterization, including assessments of tensile strength, moisture uptake, thickness, and folding endurance. Surface characteristics were analyzed using a surface profiler and scanning electron microscopy (SEM). Potential interactions between niacin and the polysaccharide core were investigated through X-ray diffraction experiments (XRD) and Fourier transform infrared spectroscopy (FTIR). The viscoelastic properties of the films were explored using a Rheometer. In-vitro assessments included drug release studies, swelling behavior assays, and antioxidant assays. In-vivo efficacy was evaluated through skin permeation assays, skin irritation assays, and histopathological analyses. RESULTS: NLPFs exhibited a smooth texture with favorable tensile strength and moisture absorption capabilities. Niacin demonstrated interaction with the polysaccharide core, rendering the films amorphous. The films displayed slow and sustained drug release, exceptional antioxidant properties, optimal swelling behavior, and viscoelastic characteristics. Furthermore, the films exhibited biocompatibility and non-toxicity towards skin cells. CONCLUSION: NLPFs emerged as promising carrier systems for the therapeutic transdermal delivery of niacin, effectively mitigating its flushing-associated adverse effects.


Administration, Cutaneous , Drug Liberation , Niacin , Polysaccharides , Rats, Wistar , Skin Absorption , Skin , Animals , Rats , Niacin/administration & dosage , Niacin/chemistry , Niacin/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Polysaccharides/pharmacology , Skin/metabolism , Skin/drug effects , Skin Absorption/drug effects , Flushing/chemically induced , Tensile Strength , Male , Drug Delivery Systems/methods , Tamarindus/chemistry , Polymers/chemistry
5.
Int J Med Mushrooms ; 26(6): 1-12, 2024.
Article En | MEDLINE | ID: mdl-38801084

The prevalence of diabetes is increasing worldwide, and it is very important to study new hypoglycemic active substances. In this study, we investigated the hypoglycemic effect of Chroogomphus rutilus crude polysaccharide (CRCP) in HepG2 cells and streptozotocin-induced diabetic mice. A glucose consumption experiment conducted in HepG2 cells demonstrated the in vitro hypoglycemic activity of CRCP. Furthermore, CRCP exhibited significant hypoglycemic effects and effectively ameliorated insulin resistance in insulin resistant HepG2 cells. In high-fat diet and streptozotocin-induced diabetic mice, after 4 weeks of CRCP administration, fasting blood glucose, fasting serum insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, glutamate transaminase, alanine transaminase, and insulin resistance index significantly decreased, while high-density lipoprotein cholesterol and insulin sensitivity index (ISI) were markedly increased. Moreover, hematoxylin-eosin (HE) staining and immunofluorescence labeling of tissue sections indicated that CRCP attenuated the pathological damage of liver and pancreas in diabetic mice. These results indicate that CRCP is a potential hypoglycemic agent.


Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Insulin Resistance , Polysaccharides , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Humans , Diabetes Mellitus, Experimental/drug therapy , Mice , Hep G2 Cells , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Liver/drug effects , Liver/metabolism , Diet, High-Fat/adverse effects , Insulin/blood , Insulin/metabolism , Pancreas/drug effects , Pancreas/pathology , Agaricales/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Streptozocin
6.
Food Res Int ; 187: 114428, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763678

In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 µg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.


Glucose , Lipid Metabolism , Nanoparticles , Polysaccharides , Rubus , Selenium , Humans , Selenium/chemistry , Hep G2 Cells , Polysaccharides/pharmacology , Polysaccharides/chemistry , Lipid Metabolism/drug effects , Glucose/metabolism , Nanoparticles/chemistry , Rubus/chemistry , Particle Size , Oxidative Stress/drug effects , Antioxidants/pharmacology , Signal Transduction/drug effects
7.
Food Chem ; 451: 139408, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38735097

Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.


Fruit , Polysaccharides , Fruit/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Structure-Activity Relationship , Humans , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology
8.
Adv Clin Exp Med ; 33(5): 533-542, 2024 May.
Article En | MEDLINE | ID: mdl-38775333

BACKGROUND: Circulating cancer cells have characteristics of tumor self-targeting. Modified circulating tumor cells may serve as tumor-targeted cellular drugs. Tremella fuciformis-derived polysaccharide (TFP) is related to immune regulation and tumor inhibition, so could B16 cells reeducated by TFP be an effective anti-tumor drug? OBJECTIVES: To evaluate the intrinsic therapeutic potential of B16 cells exposed to TFP and clarify the therapeutic molecules or pathways altered by this process. MATERIAL AND METHODS: RNA-seq technology was used to study the effect of TFP-reeducated B16 cells on the immune and inflammatory system by placing the allograft subcutaneously in C57BL/6 mice. RESULTS: Tremella fuciformis-derived polysaccharide-reeducated B16 cells recruited leukocytes, neutrophils, dendritic cells (DCs), and mast cells into the subcutaneous region and promoted the infiltration of several cytokines such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1ß (IL-1ß), and interleukin 1 (IL-1). Tumor necrosis factor alpha also activated Th17 lymphocytes to secrete interleukin 17 (IL-17) and interferon gamma (IFN-γ). The co-expression of IFN-γ and IL-17 was favorable for tumor immunity to shrink tumors. In short, TFP-reeducated B16 cells activated the innate and adaptive immune responses, especially Th17 cell differentiation and IFN-γ production, as well as the TNF-α signaling pathway, which re-regulated the inflammatory and immune systems. CONCLUSION: B16 cells subcutaneously exposed to TFP in mice induced an immune and inflammatory response to inhibit tumors. The study of the function of TFP-reeducated B16 cells to improve cancer immunotherapy may be of particular research interest. This approach could be an alternative and more efficient strategy to deliver cytokines and open up new possibilities for long-lasting, multi-level tumor control.


Melanoma, Experimental , Mice, Inbred C57BL , Animals , Melanoma, Experimental/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Mice , Gene Expression Profiling/methods , Cytokines/metabolism , Basidiomycota/chemistry , Cell Line, Tumor , Polysaccharides/pharmacology , Fungal Polysaccharides/pharmacology , Inflammation/immunology
9.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731484

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Antioxidants , Emulsifying Agents , Emulsions , Glycyrrhizic Acid , Molecular Docking Simulation , Wound Healing , Wound Healing/drug effects , Animals , Emulsions/chemistry , Emulsifying Agents/chemistry , Emulsifying Agents/pharmacology , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Green Chemistry Technology , Humans , Rats, Sprague-Dawley , Nanoparticles/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Fabaceae/chemistry , Male , Particle Size , Cell Movement/drug effects
10.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731534

Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.


Cell Proliferation , Polysaccharides , Stomach Neoplasms , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Weight , Caryophyllaceae/chemistry
11.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731567

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Macrophages , Phagocytosis , Polygonatum , Polysaccharides , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Polygonatum/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Phagocytosis/drug effects , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , RAW 264.7 Cells , Cytokines/metabolism , Cell Proliferation/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Molecular Weight
12.
Molecules ; 29(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38731576

In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.


Dietary Fiber , Dietary Fiber/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Solubility , Cellulase/chemistry , Cellulase/metabolism , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification
13.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731598

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Abelmoschus , Antioxidants , Plant Extracts , Plant Roots , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Abelmoschus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Spectroscopy, Fourier Transform Infrared , Skin Care/methods , Rhamnose/chemistry , Galactose , Hexuronic Acids/chemistry , Phenols/chemistry , Phenols/analysis , Phenols/pharmacology , Humans
14.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691832

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
15.
Org Biomol Chem ; 22(19): 3986-3994, 2024 05 15.
Article En | MEDLINE | ID: mdl-38695061

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Angiotensin-Converting Enzyme 2 , Antiviral Agents , Microwaves , Polysaccharides , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Chlorocebus aethiops , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Vero Cells , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemical synthesis , Humans , Animals , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Hexuronic Acids/chemical synthesis , Sulfates/chemistry , Sulfates/pharmacology , Sulfates/chemical synthesis , COVID-19 Drug Treatment , Structure-Activity Relationship
16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731895

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Agaricus , Cell Proliferation , Filaggrin Proteins , HaCaT Cells , Ultraviolet Rays , Agaricus/chemistry , Humans , Ultraviolet Rays/adverse effects , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Cytokines/metabolism
17.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732217

The Euganean Thermal District, situated in North-East Italy, is one of Europe's largest and oldest thermal centres. The topical application of its therapeutic thermal muds is recognised by the Italian Health System as a beneficial treatment for patients suffering from arthro-rheumatic diseases. Polysaccharides produced by the mud microbiota have been recently identified as anti-inflammatory bioactive molecules. In this paper we analysed the efficacy of Microbial-Polysaccharides (M-PS) derived from mature muds obtained at different maturation temperatures, both within and outside the codified traditional mud maturation range. M-PSs were extracted from six mature muds produced by five spas of the Euganean Thermal District and investigated for their chemical properties, monosaccharide composition and in vivo anti-inflammatory potential, using the zebrafish model organism. Additionally, mature muds were characterized for their microbiota composition using Next-Generation Sequencing. The results showed that all M-PSs exhibit similar anti-inflammatory potential, referable to their comparable chemical composition. This consistency was observed despite changes in cyanobacteria populations, suggesting a possible role of the entire microbial community in shaping the properties of these biomolecules. These findings highlight the importance of scientific research in untangling the origins of the therapeutic efficacy of Euganean Thermal muds in the treatment of chronic inflammatory conditions.


Anti-Inflammatory Agents , Zebrafish , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Italy , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry , Microbiota/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Mud Therapy
18.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732527

Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief.


Gastrointestinal Microbiome , Hippophae , Polysaccharides , Animals , Hippophae/chemistry , Polysaccharides/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Colitis/drug therapy , Colitis/chemically induced , Colitis/microbiology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Disease Models, Animal , Male , Mice, Inbred C57BL , Oxidative Stress/drug effects , Fecal Microbiota Transplantation , Colon/drug effects , Colon/microbiology , Colon/metabolism , Dextran Sulfate , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fruit/chemistry , Fatty Acids, Volatile/metabolism
19.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732552

Ulcerative colitis (UC) is a chronic intestinal ailment which cannot be completely cured. The occurrence of UC has been on the rise in recent years, which is highly detrimental to patients. The effectiveness of conventional drug treatment is limited. The long-term usage of these agents can lead to substantial adverse effects. Therefore, the development of a safe and efficient dietary supplement is important for the prevention of UC. Echinacea purpurea polysaccharide (EPP) is one of the main bioactive substances in Echinacea purpurea. EPP has many favorable effects, such as antioxidative, anti-inflammatory, and antitumor effects. However, whether EPP can prevent or alleviate UC is still unclear. This study aims to analyze the effect and mechanism of EPP on UC in mice using a 3% dextran sulfate sodium (DSS)-induced UC model. The results showed that dietary supplementation with 200 mg/kg EPP significantly alleviated the shortening of colon length, weight loss, and histopathological damage in DSS-induced colitis mice. Mechanistically, EPP significantly inhibits the activation of the TLR4/NF-κB pathway and preserves the intestinal mechanical barrier integrity by enhancing the expression of claudin-1, ZO-1, and occludin and reducing the loss of goblet cells. Additionally, 16S rRNA sequencing revealed that EPP intervention reduced the abundance of Bacteroides, Escherichia-Shigella, and Klebsiella; the abundance of Lactobacillus increased. The results of nontargeted metabonomics showed that EPP reshaped metabolism. In this study, we clarified the effect of EPP on UC, revealed the potential function of EPP, and supported the use of polysaccharide dietary supplements for UC prevention.


Colitis, Ulcerative , Dextran Sulfate , Echinacea , Gastrointestinal Microbiome , NF-kappa B , Polysaccharides , Toll-Like Receptor 4 , Animals , Gastrointestinal Microbiome/drug effects , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Polysaccharides/pharmacology , Echinacea/chemistry , Mice , Male , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Disease Models, Animal , Signal Transduction/drug effects , Mice, Inbred C57BL , Dietary Supplements , Colon/drug effects , Colon/pathology , Colon/metabolism , Colitis/chemically induced , Colitis/drug therapy
20.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732614

The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.


Dextran Sulfate , Gastrointestinal Microbiome , Oxidative Stress , Polysaccharides , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Animals , Humans , Polysaccharides/pharmacology , Mice , Male , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Disease Models, Animal , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , HT29 Cells , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy
...