Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
Biosens Bioelectron ; 264: 116686, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39173339

ABSTRACT

Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation. In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.


Subject(s)
Biosensing Techniques , Endocannabinoids , Nanotubes, Carbon , Receptor, Cannabinoid, CB1 , Humans , Endocannabinoids/metabolism , Nanotubes, Carbon/chemistry , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Transistors, Electronic , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Arachidonic Acids/chemistry , Arachidonic Acids/pharmacology , Cannabinoids/metabolism , Cannabinoids/pharmacology , Cannabinoids/chemistry , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemistry , Dronabinol/pharmacology , Dronabinol/chemistry , Escherichia coli/drug effects , Escherichia coli/metabolism
2.
Carbohydr Polym ; 342: 122350, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048216

ABSTRACT

Piperine (PiP), a bioactive molecule, exhibits numerous health benefits and is frequently employed as a co-delivery agent with various phytomedicines (e.g., curcumin) to enhance their bioavailability. This is attributed to PiP's inhibitory activity against drug-metabolizing proteins, notably CYP3A4. Nevertheless, PiP encounters solubility challenges addressed in this study using cyclodextrins (CDs). Specifically, γ-CD and its derivatives, Hydroxypropyl-γ-CD (HP-γ-CD), and Octakis (6-O-sulfo)-γ-CD (Octakis-S-γ-CD), were employed to form supramolecular complexes with PiP. The conformational space of the complexes was assessed through 1 µs molecular dynamics simulations and umbrella sampling. Additionally, quantum mechanical calculations using wB97X-D dispersion-corrected DFT functional and 6-311 + G(d,p) basis set were conducted on the complexes to examine the thermodynamics and kinetic stability. Results indicated that Octakis-S-γ-CD exhibits superior host capabilities for PiP, with the most favorable complexation energy (-457.05 kJ/mol), followed by HP-γ-CD (-249.16 kJ/mol). Furthermore, two conformations of the Octakis-S-γ-CD/PiP complex were explored to elucidate the optimal binding orientation of PiP within the binding pocket of Octakis-S-γ-CD. Supramolecular chemistry relies significantly on non-covalent interactions. Therefore, our investigation extensively explores the critical atoms involved in these interactions, elucidating the influence of substituted groups on the stability of inclusion complexes. This comprehensive analysis contributes to emphasizing the γ-CD derivatives with improved host capacity.


Subject(s)
Alkaloids , Benzodioxoles , Density Functional Theory , Molecular Dynamics Simulation , Piperidines , Polyunsaturated Alkamides , Thermodynamics , Polyunsaturated Alkamides/chemistry , Piperidines/chemistry , Alkaloids/chemistry , Benzodioxoles/chemistry , gamma-Cyclodextrins/chemistry , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/chemistry
3.
Fitoterapia ; 177: 106118, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38977252

ABSTRACT

A series of piperine derivatives were designed and successfully synthesized. The antitumor activities of these compounds against 293 T human normal cells, as well as MDA-MB-231 (breast) and Hela (cervical) cancer cell lines, were assessed through the MTT assay. Notably, compound H7 exhibited moderate activity, displaying reduced toxicity towards non-tumor 293 T cells while potently enhancing the antiproliferative effects in Hela and MDA-MB-231 cells. The IC50 values were determined to be 147.45 ± 6.05 µM, 11.86 ± 0.32 µM, and 10.50 ± 3.74 µM for the respective cell lines. In subsequent mechanistic investigations, compound H7 demonstrated a dose-dependent inhibition of clone formation, migration, and adhesion in Hela cells. At a concentration of 15 µM, its inhibitory effect on Hela cell function surpassed that of both piperine and 5-Fu. Furthermore, compound H7 exhibited promising antitumor activity in vivo, as evidenced by significant inhibition of tumor angiogenesis and reduction in tumor weight in a chicken embryo model. These findings provide a valuable scientific foundation for the development of novel and efficacious antitumor agents, particularly highlighting the potential of compound H7 as a therapeutic candidate for cervical cancer and breast cancer.


Subject(s)
Alkaloids , Benzodioxoles , Piperidines , Polyunsaturated Alkamides , Humans , Piperidines/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Benzodioxoles/pharmacology , Benzodioxoles/chemical synthesis , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemical synthesis , Polyunsaturated Alkamides/chemistry , Alkaloids/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Animals , Molecular Structure , Cell Line, Tumor , HeLa Cells , Chick Embryo , Cell Movement/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Drug Design , Cell Proliferation/drug effects
4.
J Pharm Sci ; 113(9): 2843-2850, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004416

ABSTRACT

Candidemia leaves a trail of approximately 750,000 cases yearly, with a morbidity rate of up to 30%. While Candida albicans still ranks as the most predominantly isolated Candida species, C. glabrata comes in second, with a death rate of 40-50%. Although infections by Candida spp are commonly treated with azoles, the side effects and rise in resistance against it has significantly limited its clinical usage. The current study aims to address the insolubility of piperine and provide an alternative treatment to Candida infection by formulating a stable piperine-loaded O/W nanoemulsion, comprised of Cremophor RH40, Transcutol HP and Capryol 90 as surfactant, co-surfactant, and oil, respectively. Characterization with zetasizer showed the droplet size, polydispersity (PDI) and zetapotential value of the nanoemulsion to be 24.37 nm, 0.453 and -21.10 mV, respectively, with no observable physical changes such as phase separation from thermostability tests. FTIR peaks confirms presence of piperine within the nanoemulsion and TEM imaging visualized the droplet shape and further confirms the droplet size range of 20-24 nm. The MIC90 value of the piperine-loaded nanoemulsion determined with in vitro broth microdilution assay was approximately 20-50% lower than that of the pure piperine in DMSO, at a range of 0.8-2.0 mg/mL across all Candida spp. tested. Overall, the study showed that piperine can be formulated into a stable nanoemulsion, which significantly enhances its antifungal activity compared to piperine in DMSO.


Subject(s)
Alkaloids , Antifungal Agents , Benzodioxoles , Candida , Emulsions , Microbial Sensitivity Tests , Piperidines , Polyunsaturated Alkamides , Benzodioxoles/pharmacology , Benzodioxoles/chemistry , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Emulsions/pharmacology , Microbial Sensitivity Tests/methods , Candida/drug effects , Nanoparticles/chemistry , Particle Size , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry
5.
Langmuir ; 40(29): 14941-14952, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38980061

ABSTRACT

The objective of the current study is to prepare amorphous solid dispersions (ASDs) containing piperine (PIP) by utilizing organic acid glycyrrhizic acid (GA) and inorganic disordered mesoporous silica 244FP (MSN/244FP) as carriers and to investigate their dissolution mechanism. The physicochemical properties of ASDs were characterized with scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) and one-dimensional proton nuclear magnetic resonance (1H NMR) studies collectively proved that strong hydrogen-bonding interactions formed between PIP and the carriers in ASDs. Additionally, molecular dynamic (MD) simulation was conducted to simulate and predict the physical stability and dissolution mechanisms of the ASDs. Interestingly, it revealed a significant increase in the dissolution of amorphous PIP in ASDs in in vitro dissolution studies. Rapid dissolution of GA in pH 6.8 medium resulted in the immediate release of PIP drugs into a supersaturated state, acting as a dissolution-control mechanism. This exhibited a high degree of fitting with the pseudo-second-order dynamic model, with an R2 value of 0.9996. Conversely, the silanol groups on the outer surface of the MSN and its porous nanostructures enabled PIP to display a unique two-step drug release curve, indicating a diffusion-controlled mechanism. This curve conformed to the Ritger-Peppas model, with an R2 > 0.9. The results obtained provide a clear evidence of the proposed transition of dissolution mechanism within the same ASD system, induced by changes in the properties of carriers in a solution medium of varying pH levels.


Subject(s)
Alkaloids , Benzodioxoles , Piperidines , Polyunsaturated Alkamides , Silicon Dioxide , Piperidines/chemistry , Benzodioxoles/chemistry , Polyunsaturated Alkamides/chemistry , Alkaloids/chemistry , Porosity , Silicon Dioxide/chemistry , Glycyrrhizic Acid/chemistry , Solubility , Molecular Dynamics Simulation , Drug Carriers/chemistry , Particle Size
6.
Bioorg Chem ; 150: 107594, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941701

ABSTRACT

Inhibition of human dihydroorotate dehydrogenase (hDHODH) represents a promising strategy for suppressing the proliferation of cancer cells. To identify novel and potent hDHODH inhibitors, a total of 28 piperine derivatives were designed and synthesized. Their cytotoxicities against three human cancer cell lines (NCI-H226, HCT-116, and MDA-MB-231) and hDHODH inhibitory activities were also evaluated. Among them, compound H19, exhibited the strongest inhibitory activities (NCI-H226 IC50 = 0.95 µM, hDHODH IC50 = 0.21 µM). Further pharmacological investigations revealed that H19 exerted anticancer effects by inducing ferroptosis in NCI-H226 cells, with its cytotoxicity being reversed by ferroptosis inhibitors. This was supported by the intracellular growth or decline of ferroptosis markers, including lipid peroxidation, Fe2+, GSH, and 4-HNE. Overall, H19 emerges as a promising hDHODH inhibitor with potential anticancer properties warranting development.


Subject(s)
Alkaloids , Antineoplastic Agents , Benzodioxoles , Cell Proliferation , Dihydroorotate Dehydrogenase , Drug Screening Assays, Antitumor , Enzyme Inhibitors , Ferroptosis , Piperidines , Polyunsaturated Alkamides , Humans , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Dihydroorotate Dehydrogenase/antagonists & inhibitors , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Benzodioxoles/pharmacology , Benzodioxoles/chemical synthesis , Benzodioxoles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Ferroptosis/drug effects , Cell Proliferation/drug effects , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Drug Discovery , Cell Line, Tumor
7.
Chem Biol Drug Des ; 103(6): e14562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898371

ABSTRACT

Docetaxel (DTX) resistance poses a significant challenge in the treatment of prostate cancer (PCa), often leading to chemotherapy failure. This study investigates the ability of piperine, a compound derived from black pepper, to enhance the sensitivity of PCa cells to DTX and elucidates its underlying mechanism. We established a DTX-resistant PCa cell line, DU145/DTX, to conduct our experiments. Through a series of assays, including MTT for cell viability, flow cytometry for apoptosis, Transwell for cell migration and invasion, and western blot for protein expression analysis, we assessed the effects of piperine on these cellular functions and on the Notch signaling pathway components. Our results demonstrated that we successfully established the DTX-resistant PCa cell line DU145/DTX. Piperine effectively decreased the viability of both DU145 and its DTX-resistant counterpart, DU145/DTX, in a concentration and time-dependent manner when used alone and in combination with DTX. Notably, piperine also induced apoptosis and reduced the migration and invasion capabilities of these cells. At the molecular level, piperine down-regulated the Notch pathway by inhibiting Notch1 and Jagged1 signaling, as well as reducing the expression of downstream effectors Hey1 and hes family bHLH transcription factor 1. The study concludes that piperine's ability to modulate the Notch signaling pathway and induce apoptosis highlights its potential as a complementary treatment for DTX-resistant PCa, paving the way for the use of traditional Chinese medicinal compounds in modern oncology treatment strategies.


Subject(s)
Alkaloids , Apoptosis , Benzodioxoles , Cell Movement , Docetaxel , Drug Resistance, Neoplasm , Piperidines , Polyunsaturated Alkamides , Prostatic Neoplasms , Signal Transduction , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Humans , Benzodioxoles/pharmacology , Benzodioxoles/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Docetaxel/pharmacology , Male , Cell Line, Tumor , Signal Transduction/drug effects , Drug Resistance, Neoplasm/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Apoptosis/drug effects , Cell Movement/drug effects , Receptors, Notch/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Receptor, Notch1/metabolism
8.
Food Chem ; 456: 139980, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38850607

ABSTRACT

Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.


Subject(s)
Alkaloids , Benzodioxoles , Piper nigrum , Piperidines , Plant Extracts , Polyunsaturated Alkamides , Piper nigrum/chemistry , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Benzodioxoles/pharmacology , Benzodioxoles/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Humans , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology
9.
Int J Biol Macromol ; 272(Pt 1): 132738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825269

ABSTRACT

Piperine (PIP) has been known for its pharmacological activities with low water solubility and poor dissolution, which limits its nutritional application. The purpose of this research was to enhance PIP stability, dispersibility and biological activity by preparing PIP nanoparticles using the wet-media milling approach combined with nanosuspension solidification methods of spray/freeze drying. Octenyl succinic anhydride (OSA)-modified waxy maize starch was applied as the stabilizer to suppress aggregation of PIP nanoparticles. The particle size, redispersibility, storage stability and in vitro release behavior of PIP nanoparticles were measured. The regulating effect on adipocyte differentiation was evaluated using 3T3-L1 cell model. Results showed that PIP nanoparticles had a reduced particle size of 60 ± 1 nm, increased release rate in the simulated gastric (SGF) and intestinal fluids (SIF) and enhanced inhibition effect on adipogenesis in 3T3-L1 cells compared with free PIP, indicating that PIP-loaded nanoparticles with improved stability and anti-adipogenic property were developed successfully by combining wet-media milling and drying methods.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Alkaloids , Benzodioxoles , Nanoparticles , Piperidines , Polyunsaturated Alkamides , Starch , Animals , Mice , Nanoparticles/chemistry , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Benzodioxoles/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Adipogenesis/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Adipocytes/drug effects , Starch/chemistry , Starch/analogs & derivatives , Particle Size , Drug Liberation , Cell Differentiation/drug effects
10.
Molecules ; 29(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792267

ABSTRACT

In this article, we introduce a proof-of-concept strategy, Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM), to expedite the discovery of drug metabolites. The use of a bioactive natural product, piperine, that has a well-curated metabolite profile but an unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an electrochemical reaction to oxidize piperine into a range of metabolites, which were detected by LC-MS. A series of chemically plausible metabolites were predicted based on ion fragmentation patterns. These metabolites were docked into the active site of CYP3A4 using Autodock4.2. From the clustered low-energy profile of piperine in the active site, it can be inferred that the most likely metabolic position of piperine (based on intermolecular distances to the Fe-oxo active site) is the benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by comparison with the literature, and the electrochemical reaction delivered plausible metabolites, vide infra, thus, demonstrating the power of the hyphenated technique of tandem electrochemical detection and computational evaluation of binding poses. Taken together, we outline a novel approach where diverse data sources are combined to predict and confirm a metabolic outcome for a bioactive structure.


Subject(s)
Alkaloids , Benzodioxoles , Electrochemical Techniques , Piperidines , Polyunsaturated Alkamides , Benzodioxoles/chemistry , Benzodioxoles/metabolism , Polyunsaturated Alkamides/metabolism , Polyunsaturated Alkamides/chemistry , Piperidines/chemistry , Piperidines/metabolism , Alkaloids/metabolism , Alkaloids/chemistry , Electrochemical Techniques/methods , Molecular Docking Simulation , Humans , Chromatography, Liquid/methods
11.
Int J Biol Macromol ; 268(Pt 1): 131777, 2024 May.
Article in English | MEDLINE | ID: mdl-38663710

ABSTRACT

In this study, a new carrier for loading piperine was prepared using pepper starch, and its interaction mechanism was investigated. The porous pepper starch-piperine complex (PPS-PIP) showed higher loading efficiency (76.15 %) compared to the porous corn starch-piperine complex (PCS-PIP (52.34 %)). This may be ascribed to the hemispherical shell structure of porous pepper starch (PPS) compared to the porous structure of porous corn starch (PCS) based on the SEM result. PPS-PIP had smaller particle size (10.53 µm), higher relative crystallinity (38.95 %), and better thermal stability (87.45 °C) than PCS-PIP (17.37 µm, 32.17 %, 74.35 °C). Fourier transform infrared spectroscopy (FTIR) results implied that piperine not only forms a complex with amylose but may also be physically present in porous starch. This was demonstrated by the short-range order and X-ray type. Molecular dynamics simulations confirmed that hydrogen bonding is the primary interaction between amylose and piperine. Besides the formation of the amylose-piperine complex, some of the piperine is also present in physical form.


Subject(s)
Alkaloids , Benzodioxoles , Piperidines , Polyunsaturated Alkamides , Starch , Piperidines/chemistry , Benzodioxoles/chemistry , Alkaloids/chemistry , Starch/chemistry , Polyunsaturated Alkamides/chemistry , Porosity , Amylose/chemistry , Molecular Dynamics Simulation , Hydrogen Bonding , Particle Size , Spectroscopy, Fourier Transform Infrared , Capsicum/chemistry
12.
Sci Rep ; 14(1): 9483, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664520

ABSTRACT

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.


Subject(s)
Alkaloids , Benzodioxoles , HSP90 Heat-Shock Proteins , Hyperglycemia , Molecular Docking Simulation , Piperidines , Poly (ADP-Ribose) Polymerase-1 , Polylactic Acid-Polyglycolic Acid Copolymer , Polyunsaturated Alkamides , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , HSP90 Heat-Shock Proteins/metabolism , Animals , Piperidines/pharmacology , Piperidines/chemistry , Benzodioxoles/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/administration & dosage , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Alloxan , Rats , Humans , Male , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , DNA Damage/drug effects
13.
J Biomater Sci Polym Ed ; 35(8): 1177-1196, 2024 06.
Article in English | MEDLINE | ID: mdl-38436277

ABSTRACT

This research aims to develop the formulation of Dissolving Microneedle Piperine (DMNs PIP) and evaluate the effect of polymer concentration on characterisation and permeation testing results in ex vivo. DMNs PIP were prepared from varying concentrations of piperine (PIP) (10, 15, and 20% w/w) and polymers of polyvinyl alcohol (PVA): Polyvinyl pyrrolidone (30:60 and 60:25), respectively. Then the morphological evaluation of the formula was carried out, followed by mechanical strength testing. Furthermore, the density, LOD, and weight percentage of piperine in the dried microneedle were calculated and the determination of volume, needle weight and piperine weight and analysed. Ex vivo testing, X-Ray Diffraction, FTIR and hemolysis tests were carried out. PIP with PVA and PVP (F1) polymers produced DMN with mechanical strength (8.35 ± 0.11%) and good penetration ability. In vitro tests showed that the F1 polymer mixture gave good penetration (95.02 ± 1.42 µg/cm2), significantly higher than the F2, F3, F4, and F5 polymer mixtures. The DMNs PIP characterisation results through XRD analysis showed a distinctive peak in the 20-30 region, indicating the presence of crystals. The FTIR study showed that the characteristics of piperine found in DMNs PIP indicated that piperine did not undergo interactions with polymers. The results of the ex vivo study through DMNs PIP hemolytic testing showed no hemolysis occurred, with the hemolysis index below the 5% threshold reported in the literature. These findings indicate that DMNs PIP is non-toxic and safe to use as alternative for treating inflammation.


Subject(s)
Administration, Cutaneous , Alkaloids , Benzodioxoles , Needles , Piperidines , Polyunsaturated Alkamides , Polyvinyl Alcohol , Benzodioxoles/administration & dosage , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/administration & dosage , Polyunsaturated Alkamides/pharmacokinetics , Piperidines/chemistry , Piperidines/administration & dosage , Piperidines/pharmacology , Piperidines/pharmacokinetics , Alkaloids/chemistry , Alkaloids/administration & dosage , Alkaloids/pharmacology , Animals , Polyvinyl Alcohol/chemistry , Hemolysis/drug effects , Povidone/chemistry , Drug Delivery Systems , Solubility , Skin/metabolism , Skin/drug effects , Skin Absorption
14.
J Pharm Sci ; 113(7): 1874-1884, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38354909

ABSTRACT

Intermolecular interactions between drug and co-former are crucial in the formation, release and physical stability of co-amorphous system. However, the interactions remain difficult to investigate with only experimental tools. In this study, intermolecular interactions of co-amorphous curcumin-piperine (i.e., CUR-PIP CM) during formation, dissolution and storage were explored by integrating experimental and modeling techniques. The formed CUR-PIP CM exhibited the strong hydrogen bond interaction between the phenolic OH group of CUR and the CO group of PIP as confirmed by FTIR, ss 13C NMR and molecular dynamics (MD) simulation. In comparison to crystalline CUR, crystalline PIP and their physical mixture, CUR-PIP CM performed significantly increased dissolution accompanied by the synchronized release of CUR and PIP, which arose from the greater interaction energy of H2O-CUR molecules and H2O-PIP molecules than CUR-PIP molecules, breaking the hydrogen bond between CUR and PIP molecules, and then causing a pair-wise solvation of CUR-PIP CM at the molecular level. Furthermore, the stronger intermolecular interaction between CUR and PIP was revealed by higher binding energy of CUR-PIP molecules, which contributed to the excellent physical stability of CUR-PIP CM over amorphous CUR or PIP. The study provides a unique insight into the formation, release and stability of co-amorphous system from MD perspective. Meanwhile, this integrated technique can be used as a practical methodology for the future design of co-amorphous formulations.


Subject(s)
Benzodioxoles , Curcumin , Drug Stability , Hydrogen Bonding , Molecular Dynamics Simulation , Piperidines , Polyunsaturated Alkamides , Solubility , Curcumin/chemistry , Piperidines/chemistry , Polyunsaturated Alkamides/chemistry , Benzodioxoles/chemistry , Drug Liberation , Crystallization/methods , Spectroscopy, Fourier Transform Infrared/methods , Chemistry, Pharmaceutical/methods , Magnetic Resonance Spectroscopy/methods , Alkaloids
15.
Appl Environ Microbiol ; 89(11): e0114523, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37874289

ABSTRACT

IMPORTANCE: Pepper is a spice that has been used worldwide since the Age of Discovery. The substance that is responsible for the spiciness in pepper is piperine, a type of alkaloid. It has never been reported how piperine is degraded by microorganisms. In this study, we discovered a bacterium in the soil that is capable of catabolizing piperine as its sole nitrogen source. Furthermore, we discovered the enzyme involved in piperine metabolism. This enzyme decomposed the methylenedioxyphenyl group, which is the common structure in various plant-derived bioactive compounds such as sesamin, piperonal, safrole, and berberin. By utilizing this enzyme, piperine can be converted into a useful antioxidant compound. The findings about previously unknown metabolic pathways in nature can lead to the discovery of new enzymes and provide methods for the enzymatic synthesis of useful compounds.


Subject(s)
Actinobacteria , Alkaloids , Polyunsaturated Alkamides/chemistry , Piperidines/chemistry
16.
Molecules ; 28(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37513459

ABSTRACT

Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential encompasses a vast research field in which natural products arise as promising alternatives. In this scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity, including anticancer attributes. The present work proposes three heating-independent, reliable, low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic (SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and 1H NMR), and optical spectroscopies (UV-Vis, photoluminescence, and FTIR) confirm the obtention of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics (5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower concentrations. These results establish piperine as a promising molecule for therapy investigations in aggressive gastric cancer, both in its isolated form or as a bioenhancer.


Subject(s)
Alkaloids , Antineoplastic Agents , Piper nigrum , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Alkaloids/chemistry , Benzodioxoles/chemistry , Piperidines/chemistry , Polyunsaturated Alkamides/chemistry , Piper nigrum/chemistry , Antineoplastic Agents/pharmacology
17.
Food Funct ; 14(14): 6422-6431, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37395089

ABSTRACT

It has been reported in many studies that piperine (PIP) has multiple activity properties, the most prominent of which is antioxidant activity. This work reports the binding behavior and antioxidant activity of the spice extract piperine towards myoglobin (Mb) using spectroscopic and fluorescence spectra analysis, and computational approaches. Antioxidant activity studies have shown that the antioxidant effect of the Mb-PIP complex system depends on the concentration of PIP added. An appropriate concentration of PIP can successfully prevent the release of free iron from Mb. The fluorescence results indicated that the binding of PIP to Mb was via static quenching. After binding to PIP, the α-helix content of Mb decreased by about 5%. Synchronous fluorescence results indicate that PIP is closer to Trp, and MD simulations also demonstrate that PIP enters the hydrophobic cavity of Mb and binds stably. This explains the structural changes in proteins that lead to changes in antioxidant properties. The results of this study provide a reference for the quality control of additives of plant origin in the processing and storage of meat and meat products.


Subject(s)
Antioxidants , Myoglobin , Spices , Benzodioxoles , Polyunsaturated Alkamides/chemistry , Meat
18.
Food Chem ; 418: 135941, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36989650

ABSTRACT

The Transient Receptor Potential Vanilloid 1 (TRPV1) has been identified as a suitable candidate for a spicy taste (Zanthoxylum plant) sensor. In this study, we investigated the response of TRPV1 expressed on human HepG2 cell membranes following stimulation with Hydroxy-α-sanshool. A three-dimensional (3D) cell-based electrochemical sensor was fabricated by layering cells expressing hTRPV1. l-cysteine/AuNFs electrodes were functionalized on indium tin oxide-coated glass (ITO) to enhance the sensor's selectivity and sensitivity. HepG2 cells were encapsulated in sodium alginate/gelatin hydrogel to create a 3D cell cultivation system, which was immobilized on the l-cysteine/AuNFs/ITO to serve as biorecognition elements. Using differential pulse voltammetry (DPV), the developed biosensor was utilized to detect Hydroxy-α-sanshool, a representative substance in Zanthoxylum bungeanum Maxim. The result obtained from DPV was linear with Hydroxy-α-sanshool concentrations ranging from 0 to 70 µmol/L, with a detection limit of 2.23 µmol/L. This biosensor provides a sensitive and novel macroscopic approach for TRPV1 detection.


Subject(s)
Biosensing Techniques , Zanthoxylum , Humans , Taste , Cysteine , Polyunsaturated Alkamides/chemistry , Electrodes , Zanthoxylum/chemistry , Electrochemical Techniques , Limit of Detection
19.
Crit Rev Food Sci Nutr ; 63(16): 2840-2850, 2023.
Article in English | MEDLINE | ID: mdl-34609267

ABSTRACT

Brain aging is one of the unavoidable aspects of geriatric life. As one ages, changes such as the shrinking of certain parts (particularly the frontal cortex, which is vital to learning and other complex mental activities) of the brain may occur. Consequently, communications between neurons are less effective, and blood flow to the brain could also decrease. Efforts made at the biological level for repair become inadequate, leading to the accumulation of ß-amyloid peptide in the brain faster than its probable degradation mechanism, resulting in cognitive malfunction. Subsequent clinical usage of drugs in battling related brain-aging ailments has been associated with several undesirable side effects. However, recent research has investigated the potential use of natural compounds from food in combating such occurrences. This review provides information about the use of Piper guineense (black pepper) as a possible agent in managing brain aging because of its implications for practical brain function. P. guineense contains an alkaloid (piperine) reported to be an antioxidant, anti-depressant, and central nervous system stimulant. This alkaloid and other related compounds are neuroprotective agents that reduce lipid oxidation and inhibit tangles in the brain tissues.


Subject(s)
Alkaloids , Piper nigrum , Piper , Piper nigrum/chemistry , Piper/chemistry , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Brain
20.
Mini Rev Med Chem ; 23(8): 917-940, 2023.
Article in English | MEDLINE | ID: mdl-35894471

ABSTRACT

Natural products are an invaluable source for the discovery of drug and pesticide candidates. Piperine, a simple and pungent alkaloid, is isolated from several plants of Piperaceae. Piperine and its derivatives displayed a wide range of biological properties, such as antitumor activity, anti-inflammatory activity, antioxidant activity, neuroprotective activity, insecticidal activity, etc. In recent years, lots of works focused on the biological activities, mechanisms of action, total synthesis, and structural modifications of piperine and its derivatives have been conducted. To the best of our knowledge, however, few review articles related to the biological activities, mechanisms of action, total synthesis, and structural modifications of piperine and its derivatives have been reported to date. Therefore, this review summarizes the research advances (from 2014 to 2020) of piperine and its derivatives regarding bioactivity, mechanisms of action, total synthesis, and structural modifications. Meanwhile, the structure-activity relationships of piperine and its derivatives are also discussed.


Subject(s)
Alkaloids , Structure-Activity Relationship , Alkaloids/chemistry , Benzodioxoles/pharmacology , Benzodioxoles/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL