Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 285
1.
Chemosphere ; 361: 142498, 2024 Aug.
Article En | MEDLINE | ID: mdl-38825250

Freshwater aquaculture serves as a significant focal point for antibiotic contamination, yet understanding antibiotic distribution across different aquaculture models and stages remains limited. This study evaluated antibiotic pollution in three distinct freshwater aquaculture models: rice-crayfish coculture, fish aquaculture, and crab-crayfish aquaculture, during various aquaculture stages. Of the 33 target antibiotics, 16 antibiotics were detected, with the total concentrations ranging from 111.81 ng/L to 15,949.05 ng/L in water and 10.11 ng/g to 8986.30 ng/g in sediment. Among these antibiotics, erythromycin and lomefloxacin are prohibited for use in Chinese aquaculture. Dominant antibiotics in water included lincomycin, enrofloxacin, and enoxacin, whereas in sediment, oxytetracycline and erythromycin were predominant. Notably, lincomycin emerged as a dominant antibiotic in aquaculture for the first time. The concentrations of these dominant antibiotics were high compared to other aquaculture settings and exhibited elevated ecological risk. Critical periods for antibiotic contamination in water and sediment were found to be incongruent, occurring during the rainy season in July for water and the dry season in October for sediment. Notably, the rice-crayfish coculture model exerts a good effect in reducing antibiotic pollution. Overall, these findings offer valuable evidence for the healthful and sustainable advancement of aquaculture.


Anti-Bacterial Agents , Aquaculture , Environmental Monitoring , Fresh Water , Ponds , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Water Pollutants, Chemical/analysis , China , Risk Assessment , Fresh Water/chemistry , Animals , Environmental Monitoring/methods , Ponds/chemistry , Agriculture , Geologic Sediments/chemistry , Fishes
2.
Sci Total Environ ; 931: 172909, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38703834

The concentration of heavy metals (HMs) in aquaculture pond sediments significantly affects aquatic food safety and environmental quality. The contamination characteristics, drivers and potential sources of HMs in typical bulk freshwater aquaculture pond sediments in major provinces of China were systematically investigated using a variety of methods and models. Specifically, 130 surface sediment samples were collected from the study area, and the geoaccumulation index (Igeo) and potential ecological risk index (RI) were used to jointly evaluate the characteristics of the HMs. Spearman's correlation and redundancy analysis revealed the main drivers of the HMs. Additionally, the positive matrix factorization (PMF) model and absolute principal component score-multiple linear regression (APCS-MLR) model were used to identify the sources of HMs. The results revealed that the pond sediments were safe for fish culture in most of the study areas. Aquafeed protein content is an important driver of HM concentrations in sediments. The total organic carbon (TOC) content, percentage of clay particles, and pH of the aquaculture pond sediments determined the sediment HMs enrichment abilities as 13.6 %, 52 %, and 9.8 %, respectively. Cd, a significantly enriched pollutant, posed a greater ecological risk than the other five HMs (Cr, Cu, Zn, As, and Pb). Three sources of HMs were identified, including agricultural activity (e.g., aquafeeds, pesticides, and fertilizers), industrial production, and natural sources, with contributions of 44.29 %, 36.66 %, and 19.05 %, respectively. This study provides a scientific basis for minimizing the input and accumulation of HMs in freshwater aquaculture pond sediments, and this can provide insights into the prevention and control of the ecological risks posed by HMs.


Aquaculture , Environmental Monitoring , Geologic Sediments , Metals, Heavy , Ponds , Water Pollutants, Chemical , China , Metals, Heavy/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Ponds/chemistry , Fresh Water/chemistry
3.
Sci Total Environ ; 939: 173610, 2024 Aug 20.
Article En | MEDLINE | ID: mdl-38815821

During the process of cleaning aquaculture ponds, the drainage contributes significantly to antibiotic pollution in the surrounding water environment. Therefore, we conducted a study on the distribution of 26 antibiotics in 57 ponds within the Taihu Lake basin. The results revealed that the detection frequency of antibiotics ranged from 1.75 % to 80.7 %, with the overall detection concentrations ranging from 3.27 to 708.72 ng/L. Among them, the detection rate of 8 antibiotics exceeded 50 %. Regarding the spatial distribution, the concentration of antibiotics was relatively high in aquaculture ponds located in the Changzhou area, with the highest concentration reaching 708.72 ng/L. This observation is likely due to the large size and intensive breeding practices in Changzhou. Fish ponds exhibited a significantly higher total antibiotic concentration of 3.27 to 445.57 ng/L compared to crab ponds (13.01 to 206.30 ng/L) and shrimp ponds (23.17 to 107.40 ng/L). Quinolones and sulfonamides were the predominant antibiotic classes found in fish ponds, accounting for 51.49 % of the total antibiotic concentration. Notably, sulfamethoxazole (SMX) and enrofloxacin (ENR) exhibited the highest antibiotic concentrations. Risk assessments demonstrated that SMX, ENR, and ofloxacin (OFX) contributed significantly to ecological risks. Furthermore, the study found that the tertiary constructed wetland treatment process achieved a remarkable removal rate of 92.44 % for antibiotics in aquaculture wastewater, while other treatment processes displayed limited effectiveness in removing antibiotics. This study addresses the knowledge gap concerning antibiotic pollution during the cleaning process of aquaculture ponds within the Taihu Lake basin.


Anti-Bacterial Agents , Aquaculture , Environmental Monitoring , Lakes , Ponds , Water Pollutants, Chemical , China , Water Pollutants, Chemical/analysis , Ponds/chemistry , Lakes/chemistry , Anti-Bacterial Agents/analysis , Risk Assessment
4.
Food Chem ; 454: 139795, 2024 Oct 01.
Article En | MEDLINE | ID: mdl-38810450

Pelodiscus sinensis is an aquatic product with a long growth cycle in pond culture and high nutritional value meat. The flavor compounds, nutrients, and lipidome were investigated to explore the edible value changes of turtle meat aged 3 to 6 years (Y3 to Y6). Typically, P. sinensis meat is rich in high-quality protein (EAAI ≥81.22, AAS ≥86.47). Y6 has the highest level of Se, protein, amino acids, and high unsaturated fatty acids, including EPA + DHA. Y5 has the most delicious amino acids, polyunsaturated fatty acids, and key odorant content. The stronger flavor of Y5 may be mainly related to C18:2n6t and C18:2n6c. Further, triacylglycerols (TAG) and phosphatidylcholine (PC) were significant changes in Y5. Additionally, PI (16:0/18:1) was identified as the potential biomarker. These results provided available information on P. sinensis marketing age and revealed the potential impact of nutrients on the formation of VOCs.


Flavoring Agents , Lipidomics , Turtles , Animals , Male , Turtles/metabolism , Turtles/growth & development , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Nutritive Value , Nutrients/analysis , Nutrients/metabolism , Taste , Amino Acids/analysis , Amino Acids/metabolism , Amino Acids/chemistry , Ponds/chemistry , Meat/analysis
5.
Environ Pollut ; 351: 124078, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38703986

As of now, submerged plants and biochar have demonstrated significant benefits in aquaculture pond sediment remediation. However, there is limited research on the synergistic effects of biochar and submerged plants in mitigating hydrophobic organic contaminant (HOC) accumulation in aquaculture benthic organisms and in controlling the nutrient (nitrogen and phosphorus) levels in aquaculture water. This study assesses a submerged plant-biochar system's efficacy in removing HOCs from simulated freshwater aquaculture ponds. Vallisneria natans was planted in sediment with varying levels of wheat straw biochar, while Corbicula fluminea served as the targeted benthic organism. The bioaccumulation experiment identified the optimal biochar ratio for the Vallisneria natans-biochar system in controlling HOCs in aquaculture products. Analyses included final accumulation concentrations in benthic organisms, changes in freely-dissolved concentrations in aquaculture sediment, and a mass balance calculation to explore key factors in their removal from the system. Results indicated that the Vallisneria natans-1.5% biochar composite system achieved optimal control of HOCs in sediment and aquaculture products. Biochar addition to the sediment in the composite system demonstrated a "promotion with low addition, inhibition with high addition" effect on Vallisneria natans growth. Notably, the addition of 1.5% biochar (VN1.5 group) significantly promoted the growth of Vallisneria natans leaves and roots. Comparing the final pollutant proportions in different environmental media, concentrations in water (0.20%-1.8%), clam accumulation (0.032%-0.11%), and plant absorption (0.10%-0.44%) constituted a minimal portion of the overall pollutant load in the system. The majority of pollutants (24%-65%) were degraded in the aquaculture environment, with microbial degradation likely playing a predominant role. Bacterial phyla, particularly Proteobacteria and Firmicutes, were identified as potential direct contributors to pollutant degradation in the Vallisneria natans-biochar system.


Aquaculture , Charcoal , Geologic Sediments , Ponds , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Charcoal/chemistry , Ponds/chemistry , Geologic Sediments/chemistry , Corbicula , Biodegradation, Environmental , Hydrocharitaceae/metabolism , Animals
6.
Food Chem ; 451: 139325, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38657519

Muscle protein stability during freeze-thaw (F-T) cycles was investigated with tilapia cultured in recirculating aquaculture systems (RAS) and traditional aquaculture in ponds (TAP). This study found that fatty acids (eg., palmitic acid) were enriched in TAP, while antioxidants (eg., glutathione) were enriched in RAS. Generally, proteins in the RAS group exhibited greater stability against denaturation during the F-T cycle, suggested by a less decrease in haem protein content (77% in RAS and 86% in TAP) and a less increase in surface hydrophobicity of sarcoplasmic protein (63% in RAS and 101% in TAP). There was no significant difference in oxidative stability of myofibrillar protein between the two groups. This study provides a theoretical guide for the quality control of tilapia cultured in RAS during frozen storage.


Aquaculture , Fish Proteins , Freezing , Protein Stability , Tilapia , Animals , Tilapia/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Metabolomics , Ponds/chemistry , Muscles/chemistry , Muscles/metabolism , Fatty Acids/metabolism , Fatty Acids/chemistry , Fatty Acids/analysis
7.
Sci Total Environ ; 918: 170534, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38301793

Stormwater ponds frequently receive urban runoff, increasing the likelihood of pesticide contamination. Biofilms growing in surface waters of these ponds are known to accumulate a range of aquatic contaminants, paradoxically providing both water purification services and potentially posing a threat to urban wildlife. Thus, sampling biofilms in stormwater ponds may be a critical and biologically relevant tool for characterizing pesticide contamination and toxicity in urban environments. Here, we aimed to investigate pesticide occurrences at 21 stormwater ponds in Brampton, ON, one of Canada's fastest growing municipalities, and quantify their accumulation in biofilm. Over nine weeks, we collected time-integrated composite water and biofilm samples for analysis of ∼500 current-use and legacy pesticides. Thirty-two pesticide compounds were detected across both matrices, with 2,4-D, MCPA, MCPP, azoxystrobin, bentazon, triclopyr, and diuron having near-ubiquitous occurrences. Several compounds not typically monitored in pesticide suites (e.g., melamine and nicotine) were also detected, but only in biofilms. Overall, 56 % of analytes detected in biofilms were not found in water samples, indicating traditional pesticide monitoring practices fail to capture all exposure routes, as even when pesticides are below detection levels in water, organisms may still be exposed via dietary pathways. Calculated bioconcentration factors ranged from 4.2 to 1275 and were not predicted by standard pesticide physicochemical properties. Monitoring biofilms provides a sensitive and comprehensive supplement to water sampling for pesticide quantification in urban areas, and identifying pesticide occurrences in stormwater could improve source-tracking efforts in the future. Further research is needed to understand the mechanisms driving pesticide accumulation, to investigate toxicity risks associated with pesticide-contaminated biofilm, and to evaluate whether pesticide accumulation in stormwater pond biofilms represents a route through which contaminants are mobilized into the surrounding terrestrial and downstream aquatic environments.


Pesticides , Water Pollutants, Chemical , Water Purification , Pesticides/analysis , Ponds/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
8.
Environ Sci Pollut Res Int ; 31(7): 10184-10197, 2024 Feb.
Article En | MEDLINE | ID: mdl-37160521

Grass carp (Ctenopharyngodon idellus) is the most productive freshwater fish in China, but its traditional aquaculture model still has problems, such as poor water quality and frequent diseases. We have taken monoculture and 80:20 polyculture grass carp ponds as the research object and used EwE software to build the Ecopath model of two ponds. We analyzed and compared the characteristics of ecological structure and energy flow in two ponds. The result showed the highest effective trophic level in the polyculture pond that was higher than that in the monoculture pond, and fish in polyculture had higher EE values which showed the production of fish in polyculture contributed more to the energy conversion efficiency of the ecosystem. Flows into detritus were the largest component of TST both in the two ponds, which accounted for 49.34% and 50.37%. And the average transfer efficiency in monoculture was 13.07%, while that in polyculture was 15.6%. The ascendency/total development capacity (A/TDC) and overhead/total development capacity (O/TDC) were 0.35 and 0.65 both in the two ponds, respectively, which indicated that both systems had a strong anti-perturbation ability, but the stability could be improved. Finn's cycling index (FCI) in polyculture was higher and showed that the polyculture pond was more mature and stable. Unused energy of functional groups will flow to detritus, and that in the monoculture pond was higher, the energy of C. idellus that flowed to detritus in monoculture was 48.17% higher than that in polyculture; unused energy of bacteria and phytoplankton were also high. The result showed that polyculture could improve energy utilization, increase transfer efficiency, and raise the stability of the ecosystem. Grass carp ponds still need to be improved in the aspects of mixed species and energy consumption. It is necessary to improve the ecological and economic benefits of grass carp ponds by optimizing the aquaculture structure and adjusting the aquaculture proportion.


Carps , Animals , Ponds/chemistry , Ecosystem , Fresh Water , China , Aquaculture
9.
Environ Monit Assess ; 196(1): 73, 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38129741

This study elucidates the distribution and characteristics of microplastics (MPs) in 20 tropical freshwater ponds, located in the urban settlement of Raipur city in state of Chhattisgarh, India. The ponds were divided into 4 groups based on the habitat types to understand the influence of land use patterns and human activity on the distribution of MPs. Here, we provide an improved sampling technique that is economical, traditional, indigenous, independent of vessels or structures, and replicable for smaller waterbodies. The efficiency of the proposed method is closer to the traditional boat-based net sampling technique. MPs are ubiquitous in surface water samples of all 20 ponds. The average abundance of MPs was 2.52 ± 1.28 particles/L for bucket samples and 2.93 ± 1.34 particles/L for net samples. Among extracted MPs, fragments, films, and foams were dominant. MPs within size class 1 mm to 500 µm were prevailing for both bucket samples and tube-net samples. Color-wise, white/transparent and black MPs were abundant in both types of samples while the majority of MPs were polyethylene and polystyrene. The tube-net sampling method is economical and replicable and provides comparable results. This can help study MPs distribution in smaller inland waterbodies where boats and structures are not readily available to conduct net sampling. We provide the first insight into the distribution of MPs in urban ponds, and the results can be used to determine the ubiquity of MPs in urban ponds located in different regions of the subcontinent.


Microplastics , Water Pollutants, Chemical , Humans , Plastics , Ponds/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
10.
Sci Total Environ ; 904: 166291, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37586508

Karenia brevis blooms occur almost annually in southwest Florida, imposing significant ecological and human health impacts. Currently, 13 nutrient sources have been identified supporting blooms, including nearshore anthropogenic inputs such as stormwater and wastewater outflows. A 21-day bioassay was performed, where K. brevis cultures were inoculated with water sourced from three stormwater ponds along an age gradient (14, 18, and 34 yrs.) and one municipal wastewater effluent sample, with the aim of identifying biomolecular classes and transformations of dissolved organic matter (DOM) compounds used by K. brevis. All sample types supported K. brevis growth and showed compositional changes in their respective DOM pools. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) catalogued the molecular composition of DOM and identified specific compound classes that were biodegraded. Results showed that K. brevis utilized species across a wide range of compositions that correspond to amino sugars, humic, and lignin-like biomolecular classes. The municipal wastewater and the youngest stormwater pond (SWP 14) effluent contained the largest pools of labile DOM compounds which were bioavailable to K. brevis, which indicates younger stormwater pond effluents may be as ecologically important as wastewater effluents to blooms. Conversely, generation of DOM compounds of greater complexity and a wide range of aromaticity was observed with the older (SWP 18 and SWP 34) stormwater pond treatments. These data confirm the potential for stormwater ponds and/or wastewater to contribute nutrients which can potentially support K. brevis blooms, revealing the need for improved nutrient retention strategies to protect coastal waters from the potential ill effects of urban effluent.


Dinoflagellida , Harmful Algal Bloom , Humans , Dissolved Organic Matter , Ponds/chemistry , Wastewater
11.
Environ Res ; 232: 116336, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37321336

Tailings ponds, large man-made structures conceived during the mining process for waste storage, often become deserted post-mining, leaving behind a stark, contaminated landscape. This paper posits that these forsaken tailings ponds can be rejuvenated into fertile agricultural land through adept reclamation efforts. Serving as a discussion paper, it engages in a stimulating exploration of the environmental and health risks linked to tailings ponds. It sheds light on the potential and impediments in the transformation of these ponds into agricultural land. The discussion concludes that despite the substantial hurdles in repurposing tailings ponds for agriculture, there are encouraging prospects with the application of multifaceted efforts.


Agriculture , Ponds , Humans , Ponds/chemistry
12.
Water Res ; 235: 119825, 2023 May 15.
Article En | MEDLINE | ID: mdl-36905732

Smart stormwater systems equipped with real-time controls are transforming urban drainage management by enhancing the flood control and water treatment potential of previously static infrastructure. Real-time control of detention basins, for instance, has been shown to improve contaminant removal by increasing hydraulic retention times while also reducing downstream flood risk. However, to date, few studies have explored optimal real-time control strategies for achieving both water quality and flood control targets. This study advances a new model predictive control (MPC) algorithm for stormwater detention ponds that determines the outlet valve control schedule needed to maximize pollutant removal and minimize flooding using forecasts of the incoming pollutograph and hydrograph. Comparing MPC against three rule-based control strategies, MPC is found to be more effective at balancing between multiple competing control objectives such as preventing overflows, reducing peak discharges, and improving water quality. Moreover, when paired with an online data assimilation scheme based on Extended Kalman Filtering (EKF), MPC is found to be robust to uncertainty in both pollutograph forecasts and water quality measurements. By providing an integrated control strategy that optimizes both water quality and quantity goals while remaining robust to uncertainty in hydrologic and pollutant dynamics, this study paves the way for real-world smart stormwater systems that will achieve improved flood and nonpoint source pollution management.


Environmental Pollutants , Floods , Uncertainty , Water Quality , Ponds/chemistry , Rain
13.
Environ Pollut ; 320: 121052, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36632967

Stormwater runoff is often assumed to be an important pathway for microplastics from the terrestrial to the marine environment, although few studies have attempted to quantify the significance of this pathway or the interactions between stormwater infrastructure and plastic pollution. The objective of this study was to determine what factors influence the concentrations and behaviors of microplastics in stormwater ponds. Samples were taken from the water and bottom sediments of six stormwater ponds in Tampa (Florida, USA) using a neuston net and a sediment dredger. They were processed using a combination of density separations, visual sorting, and Raman spectroscopy. Concentrations ranged by several orders of magnitude between sites and rounds of sampling (0.0-55.5 items/m3 in water, 2.5-203.0 items/kg dry weight in sediment) but were comparable to other studies. The sediments of fenced and residential sites had significantly lower plastic count concentrations, compared to unfenced sites with mixed land uses. The ratio of impervious drainage area to pond surface area was found to be positively correlated with sediment concentrations. Particle shapes in water were more variable than those found in sediments, suggesting that regular-shaped plastics tend to settle first. Circularity was identified as an important parameter in determining settling behaviors. Shape characteristics were similar to those observed in a downstream river, suggesting that degradation leading to the observed shapes occurred prior to entering the ponds. This study highlights the importance of stormwater infrastructure in understanding plastic transport and how plastic shape characteristics can impact their behavior in the environment.


Ponds , Water Pollutants, Chemical , Ponds/chemistry , Plastics , Microplastics , Water Pollutants, Chemical/analysis , Water , Environmental Monitoring/methods , Geologic Sediments/chemistry
14.
Bioresour Technol ; 368: 128309, 2023 Jan.
Article En | MEDLINE | ID: mdl-36370938

The external carbon source and the installation of periphyton structures were applied in combined intensive-extensive aquaculture to test their efficiency of nutrient utilization to support clean and efficient fish production. Two aquaculture systems were tested, with one additionally treated with methanol as a source of carbohydrates for microbial activity stimulation and an additional area for periphyton installed. Each system was composed of fish tanks with intensively reared sturgeon and one extensive pond stocked with common carp in polyculture. The water from intensive fish production was discharged into the fish pond, to serve as a nutrient source for primary production in the pond. Obtained data revealed that applied manipulations enhanced microorganism development and pond productivity. The results of the research show that applied moderate, nature-based upgrade in aquaculture system may allow for more efficient and cost-effective treatment of wastewater from intensive aquaculture.


Carps , Periphyton , Animals , Aquaculture/methods , Ponds/chemistry , Nutrients
15.
PLoS One ; 17(12): e0278042, 2022.
Article En | MEDLINE | ID: mdl-36520938

Despite Bangladesh being one of the leading countries in aquaculture food production worldwide, there is a considerable lack of updated scientific information about aquaculture activities in remote sites, making it difficult to manage sustainably. This study explored the use of geospatial and field data to monitor spatio-temporal changes in aquaculture production sites in the Satkhira district from 2017-2019. We used Shuttle Radar Topographic Mission digital elevation model (SRTM DEM) to locate aquaculture ponds based on the terrain elevation and slope. Radar backscatter information from the Sentinel-1 satellite, and different water indices derived from Sentinel-2 were used to assess the spatio-temporal extents of aquaculture areas. An image segmentation algorithm was applied to detect aquaculture ponds based on backscattering intensity, size and shape characteristics. Our results show that the highest number of aquaculture ponds were observed in January, with a size of more than 30,000 ha. Object-based image classification of Sentinel-1 data showed an overall accuracy above 80%. The key factors responsible for the variation in aquaculture were investigated using field surveys. We noticed that despite a significant number of aquaculture ponds in the study area, shrimp production and export are decreasing because of a lack of infrastructure, poor governance, and lack of awareness in the local communities. The result of this study can provide in-depth information about aquaculture areas, which is vital for policymakers and environmental administrators for successful aquaculture management in Satkhira, Bangladesh and other countries with similar issues.


Aquaculture , Ponds , Animals , Bangladesh , Ponds/chemistry , Crustacea , Radar
16.
Environ Sci Process Impacts ; 24(10): 1661-1677, 2022 Oct 19.
Article En | MEDLINE | ID: mdl-36004537

Wildfires, which are increasing in frequency and severity in the western U.S., impact water quality through increases in erosion, and transport of nutrients and metals. Meanwhile, beaver populations have been increasing since the early 1900s, and the ponds they create slow or impound hydrologic and elemental fluxes, increase soil saturation, and have a high potential to transform redox active elements (e.g., oxygen, nitrogen, sulfur, and metals). However, it remains unknown how the presence of beaver ponds in burned watersheds may impact retention and transformation of chemical constituents originating in burned uplands (e.g., pyrogenic dissolved organic matter; pyDOM) and the consequences for downstream water quality. Here, we investigate the impact of beaver ponds on the chemical properties and molecular composition of dissolved forms of C and N, and the microbial functional potential encoded within these environments. The chemistry and microbiology of surface water and sediment changed along a stream sequence starting upstream of fire and flowing through multiple beaver ponds and interconnecting stream reaches within a burned high-elevation forest watershed. The relative abundance of N-containing compounds increased in surface water of the burned beaver ponds, which corresponded to lower C/N and O/C, and higher aromaticity as characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The resident microbial communities lack the capacity to process such aromatic pyDOM, though genomic analyses demonstrate their potential to metabolize various compounds in the anaerobic sediments of the beaver ponds. Collectively, this work highlights the role of beaver ponds as biological "hotspots" with unique biogeochemistry in fire-impacted systems.


Nitrogen , Ponds , Animals , Ponds/chemistry , Nitrogen/analysis , Carbon/chemistry , Rodentia , Soil , Oxygen/analysis , Sulfur
17.
Environ Sci Pollut Res Int ; 29(44): 66858-66873, 2022 Sep.
Article En | MEDLINE | ID: mdl-35513618

Pesticides are still widely used by agriculture, leading to the exposure of surface water. This may be the case for fish ponds located in farmland landscapes. To address this issue, the present study investigated the contamination by pesticides of fish ponds located in the mixed agriculture-pond landscape of the Dombes area, France. Ten ponds were selected in water catchments with a gradient of 3-57 ha of cropland with maize and winter cereals as the dominant crops. A total of 197 water samples were collected in the ponds during the fish production season over 3 years. Recently used pesticides were the most frequent residues occurring. Occurrences greater than 0.1 µgL-1 particularly concerned chlorotoluron and S-metolachlor. Maximum observed concentrations were slightly above 3 µgL-1 for S-metolachlor, acetochlor, and dimethenamide, all herbicides allowed for maize cultivation. Isoproturon and chlorotoluron, herbicides allowed in cereal crops, reached up to 1.2 and 1.0 µgL-1, respectively. We found a significant positive effect of crop area in catchments on the pond contamination frequency by pesticides and more significantly on the contamination frequency by broad-spectrum herbicides (glyphosate and AMPA residues). The cumulative antecedent rainfall was best correlated to the frequency of highest contaminations (> 0.5 µgL-1). In such a hydrological context, the crop area within catchment was identified as a good indicator of fish pond exposure to pesticide residues. Finally, we proposed to adapt some mitigation measures to reduce fish pond contamination.


Herbicides , Pesticide Residues , Pesticides , Water Pollutants, Chemical , Acetamides , Animals , Environmental Monitoring , Farms , Fishes , Pesticide Residues/analysis , Pesticides/analysis , Phenylurea Compounds , Ponds/chemistry , Water , Water Pollutants, Chemical/analysis , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
18.
PLoS One ; 17(3): e0265576, 2022.
Article En | MEDLINE | ID: mdl-35298558

While high rate algal ponds (HRAPs) can provide efficient pathogen removal from wastewater, the mechanisms involved remain unclear. To address this knowledge gap, the mechanisms potentially causing Escherichia coli (E. coli) removal during microalgae-based wastewater treatment were successively assessed using laboratory microcosms designed to isolate known mechanisms, and bench scale assays performed in real HRAP broth. During laboratory assays, E. coli decay was only significantly increased by alkaline pH (above temperature-dependent thresholds) due to pH induced toxicity, and direct sunlight exposure via UV-B damage and/or endogenous photo-oxidation. Bench assays confirmed alkaline pH toxicity caused significant decay but sunlight-mediated decay was not significant, likely due to light attenuation in the HRAP broth. Bench assays also evidenced the existence of uncharacterized 'dark' decay mechanism(s) not observed in laboratory microcosms. To numerically evaluate the contribution of each mechanism and the uncertainty associated, E. coli decay was modelled assuming dark decay, alkaline pH induced toxicity, and direct sunlight-mediated decay were independent mechanisms. The simulations confirmed E. coli decay was mainly caused by dark decay during bench assays (48.2-89.5% estimated contribution to overall decay at the 95% confidence level), followed by alkaline-pH induced toxicity (8.3-46.5%), and sunlight-mediated decay (0.0-21.9%).


Ponds , Water Purification , Escherichia coli , Ponds/chemistry , Waste Disposal, Fluid , Wastewater/chemistry
19.
Environ Sci Pollut Res Int ; 29(31): 47462-47487, 2022 Jul.
Article En | MEDLINE | ID: mdl-35182337

The present field study evaluates the health status of the catfish Clarias batrachus reared in coal mine effluent (CME)-fed pond water at Rajrappa mining complex using biochemical, haematological and histopathological parameters. Simultaneously, risk assessment along with recovery response of the CME intoxicated fish following their treatment with CME-free freshwater was also studied. The CME-fed pond water fish revealed significant decrease in biomolecules concentrations and considerable increase in activities of several enzymes along with metallothionein level as compared to control. The impaired regulation of metabolic function was also revealed by blood parameters showing significant decrease in haemoglobin content (8.78 ± 0.344 g/100 mL) and red blood cells count (1.77 ± 0.12 × 106 mm3) while substantial elevation in white blood cells (187.13 ± 9.78 × 103 mm3). The histopathological study also confirmed the changes including hypertrophy of club cells of skin, swelling of secondary lamella of gills, extensive fibrosis in liver and glomerular shrinkage with increased Bowman's space in kidney. Potential health risk assessments based on estimated daily intake and target hazard quotient indicated health risks associated with the consumption of such fishes. The CME-contaminated fish when transferred to CME-free freshwater exhibited decreased metal content accompanied by eventual recovery response as evident by retrieval in biochemical and haematological parameters. Withdrawal study also revealed restoration in the activity of different marker enzymes in fish tissues including blood as well as recovery in their cellular architecture. The results of the present study validate the depuration process as an effective practice for detoxification of fish contaminated with effluent.


Catfishes , Health Status , Ponds , Animals , Catfishes/metabolism , Coal Mining , Ponds/chemistry , Risk Assessment
20.
Sci Data ; 8(1): 221, 2021 08 19.
Article En | MEDLINE | ID: mdl-34413318

Thermokarst activity at permafrost sites releases considerable amounts of ancient carbon to the atmosphere. A large part of this carbon is released via thermokarst ponds, and fungi could be an important organismal group enabling its recycling. However, our knowledge about aquatic fungi in thermokarstic systems is extremely limited. In this study, we collected samples from five permafrost sites distributed across circumpolar Arctic and representing different stages of permafrost integrity. Surface water samples were taken from the ponds and, additionally, for most of the ponds also the detritus and sediment samples were taken. All the samples were extracted for total DNA, which was then amplified for the fungal ITS2 region of the ribosomal genes. These amplicons were sequenced using PacBio technology. Water samples were also collected to analyze the chemical conditions in the ponds, including nutrient status and the quality and quantity of dissolved organic carbon. This dataset gives a unique overview of the impact of the thawing permafrost on fungal communities and their potential role on carbon recycling.


Fungi/classification , Mycobiome , Permafrost/microbiology , Ponds/microbiology , Arctic Regions , DNA Barcoding, Taxonomic , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , DNA, Ribosomal Spacer/genetics , Freezing , Fungi/genetics , Fungi/isolation & purification , Ponds/chemistry
...