Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.470
Filter
1.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39225032

ABSTRACT

Poplar is a valuable tree species that is distributed all over the world. However, many insect pests infest poplar trees and have caused significant damage. To control poplar pests, we transformed a poplar species, Populus davidiana × P. bolleana Loucne, with the dsRNA of the chitinase gene of a poplar defoliator, Clostera anastomosis (Linnaeus) (Lepidoptera: Notodontidae), employing an Agrobaterium-mediated approach. The transgenic plant has been identified by cloning the T-DNA flanking sequences using TAIL-PCR and quantifying the expression of the dsRNA using qPCR. The toxicity assay of the transgenic poplar lines was carried out by feeding the target insect species (C. anastomosis). The results showed that, in C. anastomosis, the activity of chitinase was significantly decreased, consistent with the expression on mRNA levels, and the larval mortality was significantly increased. These results suggested that the transgenic poplar of dsRNA could be used for pest control.


Subject(s)
Chitinases , Larva , Moths , Plants, Genetically Modified , Populus , RNA, Double-Stranded , Animals , Populus/genetics , Chitinases/genetics , Chitinases/metabolism , Moths/genetics , Moths/growth & development , Larva/growth & development , Larva/genetics , Pest Control, Biological , Insect Proteins/genetics , Insect Proteins/metabolism
2.
Physiol Plant ; 176(5): e14498, 2024.
Article in English | MEDLINE | ID: mdl-39223906

ABSTRACT

Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Plant Diseases , Populus , Populus/genetics , Populus/microbiology , MicroRNAs/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , RNA, Plant/genetics , Gene Expression Profiling
3.
Ecotoxicol Environ Saf ; 283: 116843, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39128449

ABSTRACT

Fifteen poplar varieties were used in a field trial to investigate the phytoremediation efficiency, stress resistance, and wood property of poplar hybrid varieties with diverse genetic backgrounds under the composite pollution of heavy metals. The coefficient of variation and clone repeatability for growth traits and Cd concentration were large. The Cd accumulation of poplar varieties 107 and QHQ reached 1.9 and 1.7 mg, respectively, followed by QHB, Ti, 69, and Pa, in which Cd accumulation reached 1.3 mg. Most of the intra-specific hybrid varieties (69, QH1, SL4, T3, and ZL46) had low Cd concentrations and small biomass, resulting in weak Cd accumulation and low phytoremediation efficiency for Cd-polluted soil. By contrast, the inter-sectional and inter-specific hybrid varieties exhibited better growth performance and accumulated higher concentrations of heavy metals than the intra-specific hybrids. The bioconcentration factor and translocation factor of Hg, As, and Pb were less than 1, indicating that poplars have low phytoremediation efficiency for these heavy metals. The hybrids between section Aigeiros and Tacamahaca (QHQ and QHB) and the inter-specific hybrid 107 within section Aigeiros were more resistant to composite heavy metal stress than the other poplar varieties were partially because of their high levels of free proline that exceeded 93 µg·g-1 FW. According to the correlation analysis of the concentrations of the different heavy metals, the poplar roots absorbed different heavy metals in a cooperative manner, indicating that elite poplar varieties with superior capacity for accumulating diverse heavy metals can be bred feasibly. Compared with the intra-specific hybrid varieties, the inter-sectional (QHQ and QHB) and inter-specific (107) hybrid varieties had higher pollution remediation efficiency, larger biomass, higher cellulose content, and lower lignin content, which is beneficial for pulpwood. Therefore, breeding and extending inter-sectional (QHQ and QHB) and inter-specific hybrid varieties can improve the phytoremediation of composite pollution.


Subject(s)
Biodegradation, Environmental , Cadmium , Lead , Metals, Heavy , Populus , Soil Pollutants , Populus/genetics , Populus/drug effects , Populus/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Metals, Heavy/analysis , Metals, Heavy/toxicity , Cadmium/toxicity , Cadmium/metabolism , Lead/toxicity , Lead/metabolism , Biomass , Arsenic/metabolism , Mercury/toxicity , Mercury/metabolism , Mercury/analysis , Hybridization, Genetic
4.
BMC Plant Biol ; 24(1): 759, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118015

ABSTRACT

BACKGROUND: Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS: Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION: Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.


Subject(s)
Fertilizers , Gene Expression Regulation, Plant , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , RNA-Seq , Agricultural Irrigation , Nitrogen/metabolism , Photosynthesis/genetics , Water/metabolism , Transcriptome
5.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125884

ABSTRACT

Base editing represents a cutting-edge genome editing technique that utilizes the CRISPR system to guide base deaminases with high precision to specific genomic sites, facilitating the targeted alteration of individual nucleotides. Unlike traditional gene editing approaches, base editing does not require DNA double-strand breaks or donor templates. It functions independently of the cellular DNA repair machinery, offering significant advantages in terms of both efficiency and accuracy. In this review, we summarize the core design principles of various DNA base editors, their distinctive editing characteristics, and tactics to refine their efficacy. We also summarize their applications in crop genetic improvement and explore their potential contributions to forest genetic engineering.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural , Gene Editing , Populus , Gene Editing/methods , Crops, Agricultural/genetics , Populus/genetics , Genome, Plant , Plants, Genetically Modified/genetics , Genetic Engineering/methods
6.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39201733

ABSTRACT

The BTB (Broad-complex, tramtrack, and bric-a-brac) gene family, characterized by a highly conserved BTB domain, is implicated in a spectrum of biological processes, encompassing growth and development, as well as stress responses. Characterization and functional studies of BTB genes in poplar are still limited, especially regarding their response to hormones and biotic/abiotic stresses. In this study, we conducted an HMMER search in conjunction with BLASTp and identified 95 BTB gene models in Populus trichocarpa. Through domain motif and phylogenetic relationship analyses, these proteins were classified into eight families, NPH3, TAZ, Ankyrin, only BTB, BACK, Armadillo, TPR, and MATH. Collinearity analysis of poplar BTB genes with homologs in six other species elucidated evolutionary relationships and functional conservations. RNA-seq analysis of five tissues of poplar identified BTB genes as playing a pivotal role during developmental processes. Comprehensive RT-qPCR analysis of 11 BTB genes across leaves, roots, and xylem tissues revealed their responsive expression patterns under diverse hormonal and biotic/abiotic stress conditions, with varying degrees of regulation observed in the results. This study marks the first in-depth exploration of the BTB gene family in poplar, providing insights into the potential roles of BTB genes in hormonal regulation and response to stress.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Growth Regulators , Plant Proteins , Populus , Stress, Physiological , Populus/genetics , Populus/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Genome, Plant , Gene Expression Profiling
7.
Tree Physiol ; 44(8)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39030690

ABSTRACT

Tension wood is a specialized xylem tissue associated with gravitropism in angiosperm trees. However, few regulators of tension wood formation have been identified. The molecular mechanisms underpinning tension wood formation remain elusive. Here, we report that a Populus KNOTTED-like homeobox gene, PagKNAT2/6b, is involved in tension wood formation and gravity response. Transgenic poplar plants overexpressing PagKNAT2/6b displayed more sensitive gravitropism than controls, as indicated by increased stem curvature. Microscopic examination revealed greater abundance of fibre cells with a gelatinous cell wall layer (G-layer) and asymmetric growth of secondary xylem in PagKNAT2/6b overexpression lines. Conversely, PagKNAT2/6b dominant repression plants exhibited decreased tension wood formation and reduced response to gravity stimulation. Moreover, sensitivity to gravity stimulation showed a negative relationship with development stage. Expression of genes related to growth and senescence was affected in PagKNAT2/6b transgenic plants. More importantly, transcription activation and electrophoretic mobility shift assays suggested that PagKNAT2/6b promotes the expression of cytokinin metabolism genes. Consistently, cytokinin content was increased in PagKNAT2/6b overexpression plants. Therefore, PagKNAT2/6b is involved in gravitropism and tension wood formation, likely via modulation of cytokinin metabolism.


Subject(s)
Cytokinins , Gravitropism , Plant Proteins , Plants, Genetically Modified , Populus , Wood , Gravitropism/physiology , Cytokinins/metabolism , Populus/genetics , Populus/growth & development , Populus/physiology , Populus/metabolism , Wood/growth & development , Wood/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Xylem/metabolism , Xylem/physiology , Xylem/growth & development , Xylem/genetics , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
8.
Plant Physiol Biochem ; 214: 108924, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991593

ABSTRACT

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.


Subject(s)
Cell Differentiation , Cell Wall , Gene Expression Regulation, Plant , Plant Proteins , Populus , Transcription Factors , Xylem , Populus/genetics , Populus/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation/genetics , Xylem/metabolism , Xylem/genetics , Plants, Genetically Modified/metabolism
9.
Plant Physiol Biochem ; 214: 108944, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033651

ABSTRACT

Anoplophora glabripennis (ALB) is one of the most devastating wood boring insects of poplars. Populus deltoides 'Shalinyang (PdS), a new poplar variety, shows strong resistance to ALB infestation. However, the molecular mechanism of insect resistance in PdS is unclear. Here, we found that lignan content was much higher in PdS phloem after ALB infestation than in healthy trees, and that adding lignan to artificial diet significantly reduced: larval weight; digestive enzyme activity (cellulase [CL], polygalacturonase [PG]); detoxification enzyme activity (carboxylesterase [CarE], glutathione S-transferase [GSH-ST]); and defense enzyme activity (Catalase [CAT]). We further identified the lignan biosynthesis-related PdPLR1 gene (Pinoresinol-lariciresinol reductase, PLR) based on transcriptome analysis, and it was significantly up-regulated in the PdS phloem attacked by ALB. Overexpression of PdPLR1 in Arabidopsis increased th lignan content. In contrast, silencing PdPLR1 in PdS significantly decreased expression levels of PdPLR1 and lignan content by 82.45% and 56.85%. However, silencing PdPLR1 increased the number of adults ovipositions and eggs hatching. The activity of CL, PG, CarE, GSH-ST and CAT and the biomass of larvae fed on phloem of PdS with silenced PdPLR1 were significantly higher than in the control. Taken together, up regulation of PdPLR1 enhanced PdS resistance to ALB by regulating lignan synthesis. Our findings provide in-depth insights into the molecular mechanisms of PdS-ALB interactions, which lay the foundation for understanding of defense in poplars to pest infection.


Subject(s)
Lignans , Plant Proteins , Populus , Lignans/biosynthesis , Lignans/metabolism , Populus/genetics , Populus/metabolism , Animals , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Larva , Plants, Genetically Modified , Coleoptera/metabolism
10.
Plant Sci ; 347: 112182, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39019090

ABSTRACT

Photosynthesis is the main source of energy for plants to sustain growth and development. Abnormalities in photosynthesis may cause defects in plant development. The elaborate regulatory mechanism underlying photosynthesis remains unclear. In this study, we identified a natural mutant from the Greater Khingan Mountains and named it as "1-T". This mutant had variegated leaf with irregular distribution of yellow and green. Chlorophyll contents and photosynthetic capacity of 1-T were significantly reduced compared to other poplar genotypes. Furthermore, a transcriptome analysis revealed 3269 differentially expressed genes (DEGs) in 1-T. The products of the DEGs were enriched in photosystem I and photosystem II. Three motifs were significantly enriched in the promoters of these DEGs. Yeast one-hybrid, Electrophoretic mobility shift assays and tobacco transient transformation experiments indicated that PdGLKs may bind to the three motifs. Further analysis indicated that these photosystem related genes were also significantly down-regulated in PdGLK-RNAi poplars. Therefore, we preliminarily concluded that the down-regulation of PdGLKs in 1-T may affect the expression of photosystem-related genes, resulting in abnormal photosystem development and thus affecting the growth and development. Our results provide new insights into the molecular mechanism of photosynthesis regulating plant growth.


Subject(s)
Gene Expression Profiling , Photosynthesis , Populus , Populus/genetics , Populus/metabolism , Populus/growth & development , Photosynthesis/genetics , Gene Expression Regulation, Plant , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Transcriptome , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism
11.
J Integr Plant Biol ; 66(8): 1658-1674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031878

ABSTRACT

The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.


Subject(s)
Cell Wall , Gene Expression Regulation, Plant , Plant Proteins , Populus , Wood , Populus/genetics , Populus/metabolism , Populus/growth & development , Cell Wall/metabolism , Wood/growth & development , Wood/genetics , Wood/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Xylem/metabolism , Xylem/genetics , Lignin/biosynthesis , Lignin/metabolism , Plants, Genetically Modified , Genes, Plant , Cellulose/biosynthesis , Cellulose/metabolism
12.
Planta ; 260(2): 47, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970694

ABSTRACT

MAIN CONCLUSION: Transcription of PagMYB147 was induced in poplar infected by Melampsora magnusiana, and a decline in its expression levels increases the host's susceptibility, whereas its overexpression promotes resistance to rust disease. Poplars are valuable tree species with diverse industrial and silvicultural applications. The R2R3-MYB subfamily of transcription factors plays a crucial role in response to biotic stresses. However, the functional studies on poplar R2R3-MYB genes in resistance to leaf rust disease are still insufficient. We identified 191 putative R2R3-MYB genes in the Populus trichocarpa genome. A phylogenetic analysis grouped poplar R2R3-MYBs and Arabidopsis R2R3-MYBs into 33 subgroups. We detected 12 tandem duplication events and 148 segmental duplication events, with the latter likely being the main contributor to the expansion of poplar R2R3-MYB genes. The promoter regions of these genes contained numerous cis-acting regulatory elements associated with response to stress and phytohormones. Analyses of RNA-Seq data identified a multiple R2R3-MYB genes response to Melampsora magnusiana (Mmag). Among them, PagMYB147 was significantly up-regulated under Mmag inoculation, salicylic acid (SA) and methyl jasmonate (MeJA) treatment, and its encoded product was primarily localized to the cell nucleus. Silencing of PagMYB147 exacerbated the severity of Mmag infection, likely because of decreased reactive oxygen species (ROS) production and phenylalanine ammonia-lyase (PAL) enzyme activity, and up-regulation of genes related to ROS scavenging and down-regulation of genes related to PAL, SA and JA signaling pathway. In contrast, plants overexpressing PagMYB147 showed the opposite ROS accumulation, PAL enzyme activity, SA and JA-related gene expressions, and improved Mmag resistance. Our findings suggest that PagMYB147 acts as a positive regulatory factor, affecting resistance in poplar to Mmag by its involvement in the regulation of ROS homeostasis, SA and JA signaling pathway.


Subject(s)
Basidiomycota , Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Phylogeny , Plant Diseases , Plant Proteins , Populus , Transcription Factors , Populus/genetics , Populus/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Basidiomycota/physiology , Disease Resistance/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Oxylipins/pharmacology , Genome-Wide Association Study , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Arabidopsis/genetics , Arabidopsis/microbiology
13.
New Phytol ; 243(5): 1776-1794, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38978318

ABSTRACT

Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.


Subject(s)
Adaptation, Physiological , Droughts , Gene Expression Regulation, Plant , Haplotypes , Plant Proteins , Plant Stomata , Populus , Populus/genetics , Populus/physiology , Populus/anatomy & histology , Plant Stomata/physiology , Plant Stomata/genetics , Haplotypes/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Quantitative Trait Loci/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Genome-Wide Association Study , Alternative Splicing/genetics , Genetic Variation , Drought Resistance
14.
New Phytol ; 243(6): 2157-2174, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39072753

ABSTRACT

The genetic control underlying natural variation in lignin content and composition in trees is not fully understood. We performed a systems genetic analysis to uncover the genetic regulation of lignin biosynthesis in a natural 'SwAsp' population of aspen (Populus tremula) trees. We analyzed gene expression by RNA sequencing (RNA-seq) in differentiating xylem tissues, and lignin content and composition using Pyrolysis-GC-MS in mature wood of 268 trees from 99 genotypes. Abundant variation was observed for lignin content and composition, and genome-wide association study identified proteins in the pentose phosphate pathway and arabinogalactan protein glycosylation among the top-ranked genes that are associated with these traits. Variation in gene expression and the associated genetic polymorphism was revealed through the identification of 312 705 local and 292 003 distant expression quantitative trait loci (eQTL). A co-expression network analysis suggested modularization of lignin biosynthesis and novel functions for the lignin-biosynthetic CINNAMYL ALCOHOL DEHYDROGENASE 2 and CAFFEOYL-CoA O-METHYLTRANSFERASE 3. PHENYLALANINE AMMONIA LYASE 3 was co-expressed with HOMEOBOX PROTEIN 5 (HB5), and the role of HB5 in stimulating lignification was demonstrated in transgenic trees. The systems genetic approach allowed linking natural variation in lignin biosynthesis to trees´ responses to external cues such as mechanical stimulus and nutrient availability.


Subject(s)
Gene Expression Regulation, Plant , Genome-Wide Association Study , Lignin , Populus , Quantitative Trait Loci , Lignin/biosynthesis , Lignin/metabolism , Populus/genetics , Populus/metabolism , Quantitative Trait Loci/genetics , Xylem/metabolism , Xylem/genetics , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Biosynthetic Pathways/genetics , Gene Regulatory Networks , Systems Biology , Alcohol Oxidoreductases , Mucoproteins
15.
ACS Synth Biol ; 13(8): 2412-2424, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39028299

ABSTRACT

Climate change poses a significant threat to global agriculture, necessitating innovative solutions. Plant synthetic biology, particularly chloroplast engineering, holds promise as a viable approach to this challenge. Chloroplasts present a variety of advantageous traits for genetic engineering, but the development of genetic tools and genetic part characterization in these organelles is hindered by the lengthy time scales required to generate transplastomic organisms. To address these challenges, we have established a versatile protocol for generating highly active chloroplast-based cell-free gene expression (CFE) systems derived from a diverse range of plant species, including wheat (monocot), spinach, and poplar trees (dicots). We show that these systems work with conventionally used T7 RNA polymerase as well as the endogenous chloroplast polymerases, allowing for detailed characterization and prototyping of regulatory sequences at both transcription and translation levels. To demonstrate the platform for characterization of promoters and 5' and 3' untranslated regions (UTRs) in higher plant chloroplast gene expression, we analyze a collection of 23 5'UTRs, 10 3'UTRs, and 6 chloroplast promoters, assessed their expression in spinach and wheat extracts, and found consistency in expression patterns, suggesting cross-species compatibility. Looking forward, our chloroplast CFE systems open new avenues for plant synthetic biology, offering prototyping tools for both understanding gene expression and developing engineered plants, which could help meet the demands of a changing global climate.


Subject(s)
Chloroplasts , Populus , Promoter Regions, Genetic , Spinacia oleracea , Triticum , Chloroplasts/genetics , Chloroplasts/metabolism , Triticum/genetics , Triticum/metabolism , Spinacia oleracea/genetics , Populus/genetics , Populus/metabolism , Promoter Regions, Genetic/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Synthetic Biology/methods , Cell-Free System , Viral Proteins/genetics , Viral Proteins/metabolism , Genetic Engineering/methods , 5' Untranslated Regions/genetics
16.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000320

ABSTRACT

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cadmium , Gene Expression Regulation, Plant , Plants, Genetically Modified , Populus , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Cadmium/toxicity , Cadmium/metabolism , Populus/genetics , Populus/metabolism , Populus/drug effects , Gene Expression Regulation, Plant/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Stress, Physiological/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding
17.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000510

ABSTRACT

Poplar coma, the fluff-like appendages of seeds originating from the differentiated surface cells of the placenta and funicle, aids in the long-distance dispersal of seeds in the spring. However, it also poses hazards to human safety and causes pollution in the surrounding environment. Unraveling the regulatory mechanisms governing the initiation and development of coma is essential for addressing this issue comprehensively. In this study, strand-specific RNA-seq was conducted at three distinct stages of coma development, revealing 1888 lncRNAs and 52,810 mRNAs. The expression profiles of lncRNAs and mRNAs during coma development were analyzed. Subsequently, potential target genes of lncRNAs were predicted through co-localization and co-expression analyses. Integrating various types of sequencing data, lncRNA-miRNA-TF regulatory networks related to the initiation of coma were constructed. Utilizing identified differentially expressed genes encoding kinesin and actin, lncRNA-miRNA-mRNA regulatory networks associated with the construction and arrangement of the coma cytoskeleton were established. Additionally, relying on differentially expressed genes encoding cellulose synthase, sucrose synthase, and expansin, lncRNA-miRNA-mRNA regulatory networks related to coma cell wall synthesis and remodeling were developed. This study not only enhances the comprehension of lncRNA but also provides novel insights into the molecular mechanisms governing the initiation and development of poplar coma.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , MicroRNAs , Populus , RNA, Long Noncoding , RNA, Messenger , Populus/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , Gene Expression Profiling/methods , Seeds/genetics , Seeds/growth & development
18.
BMC Genomics ; 25(1): 657, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956453

ABSTRACT

BACKGROUND: Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in plant growth and development as well as in response to environmental changes, by dynamically regulating gene acetylation levels. Although there have been numerous reports on the identification and function of HDAC and HAT in herbaceous plants, there are fewer report related genes in woody plants under drought stress. RESULTS: In this study, we performed a genome-wide analysis of the HDAC and HAT families in Populus trichocarpa, including phylogenetic analysis, gene structure, conserved domains, and expression analysis. A total of 16 PtrHDACs and 12 PtrHATs were identified in P. trichocarpa genome. Analysis of cis-elements in the promoters of PtrHDACs and PtrHATs revealed that both gene families could respond to a variety of environmental signals, including hormones and drought. Furthermore, real time quantitative PCR indicated that PtrHDA906 and PtrHAG3 were significantly responsive to drought. PtrHDA906, PtrHAC1, PtrHAC3, PtrHAG2, PtrHAG6 and PtrHAF1 consistently responded to abscisic acid, methyl jasmonate and salicylic acid under drought conditions. CONCLUSIONS: Our study demonstrates that PtrHDACs and PtrHATs may respond to drought through hormone signaling pathways, which helps to reveal the hub of acetylation modification in hormone regulation of abiotic stress.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Histone Acetyltransferases , Histone Deacetylases , Phylogeny , Populus , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Populus/genetics , Populus/enzymology , Stress, Physiological/genetics , Gene Expression Profiling , Promoter Regions, Genetic , Genome, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Environ Pollut ; 358: 124524, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38986760

ABSTRACT

Poplars are economically important tree crops and biologically important model plants, which are known to be sensitive to ozone (O3). Although surface O3 is considered as a significant global environmental issue because of its phytotoxicity and greenhouse effect, the knowledge of the dose-response (DR) relationships in poplars for the assessment of O3 risk is still limited. Hence, this study aimed at collecting data of studies with manipulative O3 exposures of poplars within FACE (Free Air Concentration Enhancement) and OTC (Open-Top Chamber) facilities. The datasets contain studies on hybrid poplar clones and a non-hybrid native poplar (Populus nigra L.) reporting both AOT40 (Accumulated exposure Over a Threshold of 40 ppb) and POD1 (Phytotoxic Ozone Dose above a threshold of 1 nmol m-2 Projected Leaf Area [PLA] s-1) to compare exposure- and flux-based indices. As a result, linear regression analysis showed that the flux-based POD1 was better than the exposure-based AOT40 to explain the biomass response of poplars to O3. From the DR relationships, a critical level (CL) of 5.7 mmol m-2 POD1 has been derived corresponding to 4% biomass growth reduction for hybrid poplar clones, which can be considered very sensitive to O3, while the non-hybrid native poplar was less sensitive to O3 (CL: 10.3 mmol m-2 POD1), although the potential risk of O3 for this taxon is still high due to very high stomatal conductance. Moreover, the different experimental settings (OTC vs. FACE) have affected the AOT40-based DR relationships but not the POD1-based DR relationships, suggesting that poplar responses to O3 were principally explained by stomatal O3 uptake regardless of the different experimental settings and exposure patterns. These results highlight the importance of the flux-based approach, especially when scaling up from experimental datasets to the O3 risk assessment for poplars at the regional or global scale.


Subject(s)
Air Pollutants , Ozone , Populus , Ozone/toxicity , Populus/drug effects , Populus/genetics , Air Pollutants/toxicity , Dose-Response Relationship, Drug , Biomass , Plant Leaves/drug effects
20.
Plant Biol (Stuttg) ; 26(5): 764-776, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38859551

ABSTRACT

The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Populus , Salt Stress , Transcription Factors , Populus/genetics , Populus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Genome, Plant , Chromosomes, Plant/genetics , Chromosome Mapping
SELECTION OF CITATIONS
SEARCH DETAIL