Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 534
Filter
1.
Arch Virol ; 169(11): 217, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39379633

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes the third most important disease in the pig industry, after African swine fever and porcine reproductive and respiratory syndrome, and leads to illness or death of the entire litter, causing significant economic losses. In this study, three PEDV strains (HN-1, HN-2, and SC2023) were isolated from swine farms with suspected PEDV infections in Sichuan and Henan provinces. Phylogenetic analysis based on complete S gene sequences showed that all three strains belonged to the G2c subgroup. HN-1 adapted readily to cell culture, grew to a viral titer as high as 2 × 108 TCID50/mL in Vero cells, and caused the formation of large syncytia. We analyzed the amino acid sequence of the HN-1 isolate and found that its S1 subunit contained a three-amino-acid insertion (355KRL358). A seven-amino-acid-deletion (1377FEKVHVQ1383) in the S2 subunit resulted in the partial deletion of the endocytosis signal YxxΦ and the complete deletion of the endoplasmic reticulum retrieval signal (ERRS) KVHVQ in the cytoplasmic tail of the S protein. Consequently, HN-1 is predicted to be less pathogenic than its parent strain, an attribute that facilitates rapid cell-to-cell spread by enhancing syncytium formation. In addition, strain HN-1 was found to have the mutation 884-885SG→RR, which may favor adaptation to cell culture by providing new trypsin cleavage sites. These results suggest that HN-1 is a G2c subtype variant that adapts well to cell culture and can be used to study the adaptive mechanisms of PEDV and develop attenuated vaccines.


Subject(s)
Coronavirus Infections , Phylogeny , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/classification , Swine , Vero Cells , Chlorocebus aethiops , Swine Diseases/virology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , China , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence
2.
Vet Res ; 55(1): 123, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334484

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has emerged in American countries, and it has reemerged in Asia and Europe, causing significant economic losses to the pig industry worldwide. In the present study, the 17GXCZ-1ORF3d strain, which has a naturally large deletion at the 172-554 bp position of the ORF3 gene, together with the 17GXCZ-1ORF3c strain, was serially propagated in Vero cells for up to 120 passages. The adaptability of the two strains gradually increased through serial passages in vitro. Genetic variation analysis of the variants of the two strains from different generations revealed that the naturally truncated ORF3 gene in the 17GXCZ-1ORF3d variants was stably inherited. Furthermore, the survival, viral shedding and histopathological lesions following inoculation of piglets demonstrated that the virulence of 17GXCZ-1ORF3d-P120 was significantly attenuated. These results indicate that the naturally truncated ORF3 gene may accelerate the attenuation of virulence and is involved in PEDV virulence together with mutations in other structural genes. Importantly, immunization of sows with G2b 17GXCZ-1ORF3d-P120 increased PEDV-specific IgG and IgA antibody levels in piglets and conferred partial passive protection against heterologous G2a PEDV strains. Our findings suggest that an attenuated strain with a truncated ORF3 gene may be a promising candidate for protection against PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/virology , Virulence , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Vero Cells , Chlorocebus aethiops , Genetic Variation , Viral Proteins/genetics , Viral Proteins/metabolism
3.
Biomolecules ; 14(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39334881

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has caused significant economic losses to the pig farming industry in various countries for a long time. Currently, there are no highly effective preventive or control measures available. Research into the pathogenic mechanism of PEDV has shown that it primarily causes infection by binding the S protein to the CD13 (APN) receptor on the membrane of porcine intestinal epithelial cells. The S1 region contains three neutralization epitopes and multiple receptor-binding domains, which are closely related to viral antigenicity and ad-sorption invasion. Nanobodies are a type of single-domain antibody that have been discovered in recent years. They can be expressed on a large scale through prokaryotic expression systems, which makes them cost-effective, stable, and less immunogenic. This study used a phage display library of nanobodies against the PEDV S1 protein. After three rounds of selection and enrichment, the DNA sequence of the highly specific nanobody S1Nb1 was successfully obtained. To obtain soluble nanobody S1Nb1, its DNA sequence was inserted into the vector Pcold and a solubility-enhancing SUMO tag was added. The resulting recombinant vector, Pcold-SUMO-S1Nb1, was then transformed into E. coli BL21(DE3) to determine the optimal expression conditions for the nanobody. Following purification using Ni-column affinity chromatography, Western blot analysis confirmed the successful purification of S1Nb1 carrying the solubility-enhancing tag. ELISA results demonstrated a strong affinity between the S1Nb1 nanobody and PEDV S1 protein.


Subject(s)
Escherichia coli , Porcine epidemic diarrhea virus , Single-Domain Antibodies , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Single-Domain Antibodies/isolation & purification , Single-Domain Antibodies/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine , Peptide Library , Gene Expression
4.
Virulence ; 15(1): 2397512, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39282989

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.


Subject(s)
Animals, Newborn , Coronavirus Infections , Diarrhea , Phylogeny , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/classification , Swine , Swine Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Virulence , Diarrhea/virology , Diarrhea/veterinary , Spike Glycoprotein, Coronavirus/genetics , Genome, Viral , Mutagenesis, Insertional , China , Vero Cells
5.
Microb Pathog ; 195: 106873, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173850

ABSTRACT

As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.


Subject(s)
Coronavirus Infections , Immune Evasion , Immunity, Innate , Porcine epidemic diarrhea virus , Swine Diseases , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/pathogenicity , Animals , Swine , Swine Diseases/virology , Swine Diseases/immunology , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Virulence/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism , Host-Pathogen Interactions/immunology , Virulence Factors/genetics
6.
Microb Pathog ; 195: 106885, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39182857

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis virus (TGEV) are three clinically common coronaviruses causing diarrhea in pigs, with indistinguishable clinical signs and pathological changes. Rapid, portable and reliable differential diagnosis of these three pathogens is crucial for the prompt implementation of appropriate control measures. In this study, we developed a triplex nucleic acid assay that combines reverse transcription recombinase-aided amplification (RT-RAA) with lateral flow assay (LFA) by targeting the most conserved genomic region in the ORF1b genes of PEDV, PDCoV and TGEV. The entire detection process of the triplex RT-RAA-LFA assay included 10-min nucleic acid amplification at 42 °C and 5-min visual LFA readout at room temperature. The assay could specifically differentiate PEDV, PDCoV and TGEV without cross-reaction with any other major swine pathogens. Sensitivity analysis showed that the triplex RT-RAA-LFA assay was able to detect the viral RNA extracted from the spiked fecal samples with the minimum of 1 × 100 TCID50 PEDV, 1 × 104 TCID50 PDCoV, and 1 × 102 TCID50 TGEV per reaction, respectively. Further analysis showed that the 95 % detection limit (LOD) of triplex RT-RAA-LFA for PEDV, PDCoV, and TGEV were 22, 478, and 205 copies of recombinant plasmids per reaction, respectively. The diagnostic performance of triplex RT-RAA-LFA was compared with that of PEDV, PDCoV and TGEV respective commercial real-time RT-PCR kits by testing 114 clinical rectal swab samples in parallel. The total diagnostic coincidence rates of triplex RT-RAA-LFA with real-time RT-PCR kits of PEDV, PDCoV and TGEV were 100 %, 99.1 % and 99.1 %, respectively, and their Kappa values were 1.00, 0.958 and 0.936, respectively. Collectively, the RT-RAA-LFA assay is a powerful tool for the rapid, portable, visual, and synchronous differential diagnosis of PEDV, PDCoV, and TGEV.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Feces , Nucleic Acid Amplification Techniques , Porcine epidemic diarrhea virus , RNA, Viral , Sensitivity and Specificity , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/isolation & purification , Transmissible gastroenteritis virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Swine Diseases/diagnosis , Swine Diseases/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Feces/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Diagnosis, Differential , Deltacoronavirus/isolation & purification , Deltacoronavirus/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/veterinary , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Molecular Diagnostic Techniques/methods , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/diagnosis
7.
Arch Virol ; 169(9): 180, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150572

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that has been the main cause of diarrhea in piglets since 2010 in China. The aim of this study was to investigate sequence variation and recombination events in the spike (S) gene of PEDV isolates from China. Thirty complete S gene sequences were obtained from PEDV-positive samples collected in six provinces in China from 2020 to 2023. Phylogenetic analysis showed that 10% (3/30) belonged to subtype GII-a, 6.67% (2/30) were categorized as subtype GII-b, 66.67% (20/30) were categorized as subtype GII-c, and 16.66% (5/30) were clustered with the S-INDEL strains. Amino acid sequence alignments showed that, when compared to strains of other subtypes, the GII-c strains had two characteristic amino acid substitutions (N139D and I289M). Five S-INDEL subtype strains had a single amino acid deletion (139N) and four amino acid substitutions (N118G, T137S, A138S, and D141G). Recombination analysis allowed six putative recombination events to be identified, one involving recombination between GII-c strains, two involving GII-c and GII-b strains, two involving GII-c and GI-a strains, and one involving GII-a and GI-b strains. These results suggest that recombination between PEDV strains has been common and complex in recent years and is one of the main reasons for the continuous variation of PEDV strains.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Recombination, Genetic , Spike Glycoprotein, Coronavirus , Swine Diseases , Animals , Amino Acid Sequence , Amino Acid Substitution , China/epidemiology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/epidemiology , Genetic Variation , Genotype , Phylogeny , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/classification , Porcine epidemic diarrhea virus/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Swine , Swine Diseases/virology , Swine Diseases/epidemiology
8.
Vet Microbiol ; 297: 110193, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116640

ABSTRACT

Porcine epidemic diarrhea virus is attenuated upon adaptation to cell culture. Exclusively genomic mutations have been traced to the ORF3 gene of the laboratory strains. Previous attempts to express the protein were unsuccessful. We sought to express the ORF3 protein in both mammalian and bacteria cells as a prerequisite for investigation of the protein's role. For prokaryotic expression, two vector systems, pET28-a(+) and pGEX-4T-1 were constructed and expressed in Escherichia coli cells. For eukaryotic analyses, ORF3/pEGFP-C1 vector constructs were expressed in human embryonic, green monkey kidney and mouse fibrous cells. Intriguingly, there was minimal expression of the ORF3 gene. Following a documented hint that truncated ORF3 revealed higher expression, ORF3 gene was truncated. The simple modular architecture research tool analysis predicted two transmembrane domains between amino acid (aa) 41-63 and aa 76-98. Consequently, we generated two fragments; ORF-N (aa 1-98) inclusive of transmembrane domains and ORF3-C (aa 99-224). These truncated sequences were constructed as the whole gene here referred to as ORF3 wild type (wt). Coomassie blue stained gels revealed bands of ORF3-C expressed as a fusion protein of 17.5 and 39 kDa in pET28-a(+) and pGEX-4T-1 vectors, respectively. In contrast, ORF3-N was not. Additionally, ORF3-N induction decreased total cellular proteins suggesting inhibition of protein synthesis or metabolism. Solubility tests carried out at 30 °C, 25 °C and 18 °C showed that ORF3 formed inclusion bodies. Similar findings were observed in mammalian cells. Noteworthy, morphological distortions appeared in mammalian cells expressing ORF3 protein or its truncated mutants suggesting significance in host viability.


Subject(s)
Porcine epidemic diarrhea virus , Animals , Porcine epidemic diarrhea virus/genetics , Mice , Humans , Swine , Chlorocebus aethiops , Viral Proteins/genetics , Viral Proteins/metabolism , Open Reading Frames , Cell Line , Escherichia coli/genetics , HEK293 Cells
9.
Microbiol Spectr ; 12(10): e0069224, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39145626

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus that causes substantial economic loss to the global pig industry. The emergence of PEDV variants has increased the need for new vaccines, as commercial vaccines confer inferior protection against currently circulating strains. It is well established that the induction of mucosal immunity is crucial for PEDV vaccines to provide better protection against PEDV infection. In this study, we constructed a recombinant adenovirus expressing the core neutralization epitope (COE) of G2b PEDV based on human adenovirus serotype 5 (Ad5). We evaluated the effects of different administration routes and doses of vaccine immunogenicity in Balb/c mice. Both intramuscular (IM) and intranasal (IN) administration elicited significant humoral responses, including COE-specific IgG in serum and mucosal secretions, along with serum-neutralizing antibodies. Moreover, IN delivery was more potent than IM in stimulating IgA in serum and mucosal samples and in dampening the immune response to the Ad5 vector. The immune response was stronger after high versus low dose IM injection, whereas no significant difference was observed between high and low IN doses. In summary, our findings provide important insights for developing novel PEDV vaccines.IMPORTANCEPorcine epidemic diarrhea (PED) is a highly contagious disease that has severe economic implications for the pork industry. Developing an effective vaccine against PEDV remains a necessity. Here, we generated a recombinant adenovirus vaccine based on Ad5 to express the COE protein of PEDV (rAd5-PEDV-COE) and systematically evaluated the immunogenicity of the adenovirus-vectored vaccine using different administration routes (intramuscular and intranasal) and doses in a mouse model. Our results show that rAd5-PEDV-COE induced potent systemic humoral response regardless of the dose or immunization route. Notably, intranasal delivery was superior to induce peripheral and mucosal IgA antibodies compared with intramuscular injection. Our data provide valuable insights into designing novel PEDV vaccines.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , Immunity, Mucosal , Mice, Inbred BALB C , Porcine epidemic diarrhea virus , Vaccines, Synthetic , Animals , Mice , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Adenoviridae/genetics , Adenoviridae/immunology , Humans , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Antibody Formation/immunology , Immunoglobulin A , Genetic Vectors/genetics
10.
Viruses ; 16(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39066288

ABSTRACT

The variant porcine epidemic diarrhea virus (PEDV) has caused considerable economic losses to the global pig industry since 2010. In this study, a total of 5859 diarrhea samples were collected from different pig farms in China's Guangxi province during January 2020 and March 2024 and tested for PEDV using RT-qPCR. The positivity rate of PEDV was 11.90% (697/5859). Ninety-two PEDV-positive samples were selected based on sampling time, and the sampling region for amplification, sequencing, and analysis of the S1, M, and N genes. Phylogenetic analysis of the S1 gene revealed that all strains from Guangxi province were distributed in three subgroups, i.e., 81.5% (75/92) in the G2a subgroup, 4.3% (4/92) in the G2b subgroup, and 14.1% (13/92) in the G2c subgroup. The sequence analysis revealed that the S1 gene sequences from Guangxi province had higher homology with the variant strains than with the classical strains, showing as high as 99.2% with the variant strain AJ1102 and only 94.3% with the classical strain CV777. Recombination analysis revealed that the GX-BS08-2023 strain (G2c) from Guangxi province originated from inter-lineage recombination between the GX-BS09-2023 (G2a) and CH-JN547228-2011 (G1a) strains. In addition, the S1 gene of the G2a and G2b subgroup strains shared many mutations and insertions. There were common mutations of N143D and P235L in the G2a subgroup. Evolutionary analysis revealed that all Guangxi strains belonged to the G2 genotype. These strains have spread rapidly since the PEDV variant strains that emerged in 2010, weakened until 2021, and then remained stable. In conclusion, the results revealed the latest genetic evolution of circulating PEDV strains in Guangxi province in recent years, providing important information for preventing and controlling PEDV infection. Currently, the G2a subgroup strains are the predominant strains circulating in pig herds in Guangxi province, southern China.


Subject(s)
Coronavirus Infections , Evolution, Molecular , Phylogeny , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/classification , Porcine epidemic diarrhea virus/isolation & purification , Swine , China/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Genetic Variation , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/epidemiology , Genotype , Spike Glycoprotein, Coronavirus/genetics
11.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2150-2161, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044581

ABSTRACT

This study aims to develop an effective bivalent subunit vaccine that is promising to prevent both porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV). The receptor-binding domains (RBDs) of PDCoV and PEDV were fused and cloned into the eukaryotic expression vector pCDNA3.1(+). The fusion protein PDCoV-RBD-PEDV-RBD (pdRBD-peRBD) was expressed by the ExpiCHOTM expression system and purified. Mice were immunized with the fusion protein at three different doses (10, 20, and 30 µg). The humoral immune response and cellular immune response induced by the fusion protein were evaluated by ELISA and flow cytometry. The neutralization titers of the serum of immunized mice against PDCoV and PEDV were determined by the microneutralization test. The results showed that high levels of IgG antibodies were induced in the three different dose groups after booster immunization, and there was no significant difference in the antibody level between different dose groups, indicating that the immunization dose of 10 µg could achieve the fine immune effect. The results of flow cytometry showed that the immunization groups demonstrated increased proportion of CD3+CD4+ T cells and decreased proportion of CD3+CD8+ T cells, which was consistent with the expectation about the humoral immune response induced by the subunit vaccine. At the same time, the levels of interleukin (IL)-2, IL-4, and interferon (IFN)-γ in the serum were determined. The results showed that the fusion protein induced both humoral immune effect and cellular immune response. The results of the neutralization test showed that the antibody induced by 10 µg fusion protein neutralized both PDCoV and PEDV in vitro, with the titers of 1:179.25 and 1:141.21, respectively. The above results suggested that the pdRBD-peRBD could induce a high level of humoral immune response at a dose of 10 µg, and the induced antibody could neutralize both PDCoV and PEDV. Therefore, the fusion protein pdRBD-peRBD is expected to be an effective subunit vaccine that can simultaneously prevent PDCoV and PEDV.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Porcine epidemic diarrhea virus , Recombinant Fusion Proteins , Viral Vaccines , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Mice , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Swine Diseases/prevention & control , Swine Diseases/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Mice, Inbred BALB C , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Protein Domains , Immunogenicity, Vaccine , Immunity, Humoral
12.
Microb Biotechnol ; 17(7): e14518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953907

ABSTRACT

Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.


Subject(s)
Antibodies, Viral , Bacillus subtilis , Porcine epidemic diarrhea virus , Spores, Bacterial , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Animals , Bacillus subtilis/genetics , Bacillus subtilis/immunology , Spores, Bacterial/genetics , Spores, Bacterial/immunology , Mice , Antibodies, Viral/blood , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Administration, Oral , Cytokines/metabolism , Immunoglobulin G/blood , Mice, Inbred BALB C , Female , Cell Surface Display Techniques , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
13.
PLoS One ; 19(7): e0306532, 2024.
Article in English | MEDLINE | ID: mdl-38968319

ABSTRACT

This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA's fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Swine Diseases/virology , Swine Diseases/diagnosis , Retrospective Studies , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Gastroenteritis, Transmissible, of Swine/epidemiology , Polymerase Chain Reaction/methods , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , United States/epidemiology
14.
Vet Res ; 55(1): 91, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039559

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) causes diarrhea in piglets, thereby causing very significant economic losses for the global swine industry. In previous studies, it has been confirmed that microRNAs (miRNAs) play an important role in the infection caused by PEDV. However, the precise molecular mechanism of miRNAs in the regulation of PEDV infection is still not fully understood. In the present study, we utilized miRNA-seq analysis to identify ssc-miR-1343 with differential expression between PEDV-infected and normal piglets. The expression of ssc-miR-1343 was detected in isolated exosomes, and it was found to be significantly higher than that in the controls following PEDV infection. The ssc-miR-1343 mimic was found to decrease PEDV replication, whereas the ssc-miR-1343 inhibitor was observed to increase PEDV replication, and ssc-miR-1343 was delivered by exosomes during PEDV infection. Mechanistically, ssc-miR-1343 binds to the 3'UTR region of FAM131C, down-regulating its expression, and FAM131C has been shown to enhance PEDV replication through simultaneously suppressing pathways associated with innate immunity. The ssc-miR-1343/FAM131C axis was found to upregulate the host immune response against PEDV infection. In conclusion, our findings indicate that the transport of ssc-miR-1343 in exosomes is involved in PEDV infection. This discovery presents a new potential target for the development of drugs to treat PEDV.


Subject(s)
Coronavirus Infections , Exosomes , MicroRNAs , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/physiology , Porcine epidemic diarrhea virus/genetics , Swine , MicroRNAs/metabolism , MicroRNAs/genetics , Swine Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Exosomes/metabolism , Virus Replication
15.
Viruses ; 16(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39066270

ABSTRACT

Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), emerges annually in several Asian countries. Its major symptoms include watery diarrhea, vomiting, anorexia, and dehydration. PED outbreaks incur significant economic losses. The efficacy of vaccines is limited by viral mutations and insufficient intestinal mucosal immunity. Therefore, new vaccines against these recent variants are urgently needed. Herein, we isolated and genetically characterized a novel Korean PEDV strain using NGS. Comparative genomic analysis demonstrated that the CKK1-1 strain belonged to genogroup 2. The isolated strain was cultured in sodium-glycochenodeoxycholic acid for 180 passages. Typically, PEDV isolation and passage require proteases, such as trypsin. However, the CKK1-1 strain adapted to this atypical culture condition, achieving a high titer of 8.83 ± 0.14 log TCID50/mL. In vitro biological analysis revealed no cell syncytium formation without trypsin; however, a cell-lysis-type cytopathic effect was noted. Notably, pathogenicity evaluation showed that CKK1-1 p0 exhibited naturally weakened virulence in five-day-old piglets, while piglets administered with CKK1-1 p180 exhibited 100% survival and reduced clinical symptoms. Collectively, our data demonstrate that this Korean PEDV strain, attenuated through atypical culture conditions with Na-glycochenodeoxycholic acid, has potential as a vaccine candidate, providing valuable insights into the genetic variation in and pathogenicity of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/pathogenicity , Porcine epidemic diarrhea virus/classification , Swine , Republic of Korea , Swine Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Virulence , Phylogeny , Genome, Viral , Chlorocebus aethiops , Vero Cells
16.
Arch Virol ; 169(8): 158, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970647

ABSTRACT

The highly pathogenic genotype 2b (HP-G2b) of porcine epidemic diarrhea virus (PEDV), which caused a pandemic in 2013-2014, evolved in South Korea and became endemic, affecting the domestic pig industry. This study describes the genotypic traits of novel HP-G2b PEDV strains identified on affected farms experiencing low disease severity with < 10% neonatal mortality. Nucleotide sequencing revealed common deletion patterns, termed S-DEL2, resulting in a two-amino-acid deletion at positions 60 and 61, 61 and 62, or 63 and 64 in the N-terminal domain of the spike (S) protein of all isolates. The S barcode profiles of S-DEL2 variants differed from each other and shared 96.0-99.4% and 98.5-99.6% nt sequence identity with other South Korean HP-G2b PEDV strains in the S gene and in the complete genome sequence, respectively. Genetic and phylogenetic analysis showed that the S-DEL2 strains belonged to diverse domestic clades: CK, CK.1, CK.2, or NC. The emergence of novel S-DEL2 strains suggests that continuous evolution of PEDV occurs under endemic circumstances, resulting in genetic diversity and distinct clinical presentations. This study advances our knowledge regarding the genetic and pathogenic heterogeneity of PEDV and emphasizes the importance of active monitoring and surveillance to identify novel variants and determine their genotypic and phenotypic characteristics.


Subject(s)
Coronavirus Infections , Genotype , Phylogeny , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Swine Diseases , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/classification , Porcine epidemic diarrhea virus/isolation & purification , Animals , Republic of Korea/epidemiology , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Genetic Variation , Genome, Viral/genetics , Sequence Deletion
17.
Vet Microbiol ; 295: 110162, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941767

ABSTRACT

Postweaning diarrhea (PWD) is a multifactorial disease caused by different aetiological agents, like viruses or bacteria and where the role of the microbiota remains unclear. The aim of this study was to assess differences between healthy and diarrheic weaned pigs concerning the prevalence of pathogens and changes in the intestinal microbiota. Eighteen farms with PWD were selected and 277 fecal samples were collected (152 diarrheic vs 125 healthy). Presence of Rotavirus A (RVA), B (RVB), C (RVC) and Porcine Epidemic Diarrhea Virus (PEDV), virulence factors of Escherichia coli and Clostridioides difficile were analyzed by PCR. Finally, the microbiota composition was also study by 16 S rRNA sequencing on 148 samples (102 diarrheic vs 46 healthy). RVA (53.95 % vs 36 %, p=0.04) and RVB (49.67 % vs 28.8 %, p<0.001) were more frequent in diarrheic animals. Furthermore, RVA viral load was higher in diseased animals. VT2 toxin was significantly associated with diarrhea, whereas other virulence factors were not. Presence of C. difficile and PEDV was almost negligible. Regarding microbiota changes, Fusobacteriota phylum was more frequent in diarrheic samples and Ruminococcaceae family in healthy penmates. During the first week postweaning, Enterobacteriace and Campylobacteria were enriched in animals presenting diarrhea. Furthermore, Lactobacillus was detected in those individuals with no RVA infection. In conclusion, RVA seems to play a primary role in PWD. Classic E. coli virulence factors were not associated with diarrhea, indicating the need for revising their implication in disease. Moreover, Lactobacillus was found frequently in animals negative for RVA, suggesting some protective effect.


Subject(s)
Diarrhea , Feces , Gastrointestinal Microbiome , Swine Diseases , Weaning , Animals , Swine , Diarrhea/veterinary , Diarrhea/microbiology , Diarrhea/virology , Swine Diseases/microbiology , Swine Diseases/virology , Feces/microbiology , Feces/virology , Rotavirus/isolation & purification , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Clostridioides difficile/isolation & purification , Clostridioides difficile/genetics , Virulence Factors/genetics , RNA, Ribosomal, 16S/genetics , Escherichia coli/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
19.
J Virol Methods ; 329: 114986, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914314

ABSTRACT

Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to the swine industry, causing severe disease and resulting in substantial economic losses. Despite China's implementation of a large-scale vaccine immunization strategy in recent years, various strains of PEDV, including classical attenuated vaccine strains, continue to emerge in immunized pig herds. Here, we established a one-step real-time fluorescent reverse transcription PCR (one-step real-time RT-PCR) assay targeting a 24-nucleotide deletion in the ORF1 region of three PEDV classical attenuated vaccine strains, derived from classical strains. This assay effectively distinguishes between PEDV classical attenuated vaccine strains and wild-type strains, and we also explore the causes of this discriminatory target deficiency of this method through phylogenetic and recombination analysis. We found that these three classical attenuated vaccine strains exhibit closer phylogenetic relationships and higher sequence similarity with five cell-adapted strains. Recombination analysis revealed that although recombination is widespread in the PEDV genome, the 24-nucleotide deletion site remains stable without undergoing recombination and can be utilized as a target for identification. Further analysis revealed there are no enzyme cleavage sites near the 24-nucleotide site, suggesting that this deletion may have been lost during the process of culturing these viral strains in cells.The detection method we have established exhibits high specificity and sensitivity to PEDV, without cross-reactivity with other viruses causing diarrheal diseases. A total of 117 swine fecal samples were analyzed using this established one-step real-time reverse transcription PCR assay, indicating the presence of classical attenuated vaccine strains in pig herds in Gansu province, China. Additionally, the designed primer pairs and two probes can be placed in a single reaction tube to differentiate between these two types of strains, effectively reducing detection costs. These findings offer an efficient and cost-effective technological platform for clinical rapid identification testing of both wild-type and classical attenuated vaccine strains of PEDV, as well as for precise investigation of clinical data on natural infections and vaccine immunity in pig herds.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Real-Time Polymerase Chain Reaction , Sequence Deletion , Swine Diseases , Vaccines, Attenuated , Viral Vaccines , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Swine Diseases/virology , Swine Diseases/prevention & control , Swine Diseases/diagnosis , Viral Vaccines/genetics , Viral Vaccines/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , China , Reverse Transcriptase Polymerase Chain Reaction/methods , Phylogeny , Sensitivity and Specificity , Cost-Benefit Analysis
20.
Virology ; 596: 110113, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801794

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections , Nanoparticles , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Swine Diseases , Viral Vaccines , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Nanoparticles/chemistry , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/immunology , Mice , Antibodies, Neutralizing/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Swine , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Mice, Inbred BALB C , Ferritins/immunology , Ferritins/genetics , Ferritins/metabolism , Female , Chlorocebus aethiops , Nanovaccines
SELECTION OF CITATIONS
SEARCH DETAIL