Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.188
Filter
1.
Methods Mol Biol ; 2839: 225-231, 2024.
Article in English | MEDLINE | ID: mdl-39008256

ABSTRACT

Radiolabeling enables the quantitation of newly synthesized heme and porphyrin, allowing us to distinguish heme synthesis rates from total cellular heme. Here, we describe a protocol for labeling heme with 14C-glycine or ALA and the sequential extraction of heme and porphyrin from the same samples for quantitation by liquid scintillation.


Subject(s)
Aminolevulinic Acid , Carbon Radioisotopes , Glycine , Heme , Porphyrins , Heme/chemistry , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/metabolism , Carbon Radioisotopes/chemistry , Porphyrins/chemistry , Glycine/chemistry , Isotope Labeling/methods , Humans
2.
J Nanobiotechnology ; 22(1): 416, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014402

ABSTRACT

Reactive oxygen species (ROS)-associated anticancer approaches usually suffer from two limitations, i.e., insufficient ROS level and short ROS half-life. Nevertheless, no report has synchronously addressed both concerns yet. Herein, a multichannel actions-enabled nanotherapeutic platform using hollow manganese dioxide (H-MnO2) carriers to load chlorin e6 (Ce6) sonosensitizer and CO donor (e.g., Mn2(CO)10) has been constructed to maximumly elevate ROS level and trigger cascade catalysis to produce CO. Therein, intratumoral H2O2 and ultrasound as endogenous and exogeneous triggers stimulate H-MnO2 and Ce6 to produce •OH and 1O2, respectively. The further cascade reaction between ROS and Mn2(CO)10 proceeds to release CO, converting short-lived ROS into long-lived CO. Contributed by them, such a maximumly-elevated ROS accumulation and long-lived CO release successfully suppresses the progression, recurrence and metastasis of lung cancer with a prolonged survival rate. More significantly, proteomic and genomic investigations uncover that the CO-induced activation of AKT signaling pathway, NRF-2 phosphorylation and HMOX-1 overexpression induce mitochondrial dysfunction to boost anti-tumor consequences. Thus, this cascade catalysis strategy can behave as a general means to enrich ROS and trigger CO release against refractory cancers.


Subject(s)
Carbon Monoxide , Lung Neoplasms , Manganese Compounds , Oxides , Porphyrins , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Humans , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Carbon Monoxide/chemistry , Animals , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Oxides/pharmacology , Mice , Porphyrins/chemistry , Porphyrins/pharmacology , Chlorophyllides , Cell Line, Tumor , Mice, Inbred BALB C , Hydrogen Peroxide/metabolism , Mice, Nude , A549 Cells
3.
Anal Chim Acta ; 1317: 342892, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030000

ABSTRACT

BACKGROUND: Pathogenic bacteria are keeping threatening global public health since they can cause many infectious diseases. The traditional microorganism identification and molecular diagnostic techniques are insufficiently sensitive, time-consuming, or expensive. Thus it is of great interest to establish pressure signal-based sensing platforms for point-of-care testing of pathogenic bacteria to achieve timely diagnosis of infectious diseases. Rational design and synthesis of nano-sized probes with high peroxidase-mimicking activity have been a long-term cherished goal for improving the sensitivity of pressure signal-based sensing methods. RESULTS: Guided by nanoconfinement effect, PCN-222(Pt) was prepared by confining Pt clusters within the channels of a zirconium porphyrin MOFs material termed as PCN-222. In comparison to regular platinum nanoparticles, palladium@platinum core-shell nanodendrites, and platinum-coated gold nanoparticles, the prepared PCN-222(Pt) displayed superior peroxidase-mimicking activity with outstanding efficiency for catalyzing the decay of H2O2 to produce O2. Thus it was used as a pressure signal probe to establish a sensitive method on a hydrogel pellets platform for analyzing Pseudomonas aeruginosa (P. aeruginosa), for which polymyxin B and a phage termed as JZ1 were used as recognition agents for the target pathogen. P. aeruginosa was quantified with a handheld pressure meter within a broad range of 2.2 × 102-2.2 × 107 cfu mL-1. This method was used to quantify P. aeruginosa in various biological and food samples with acceptable accuracy and reliability. SIGNIFICANCE: The proposed nanoconfinement-guided protocol provides a novel approach for rational design and preparation of nano-sized probes with high peroxidase-mimicking activity for catalyzing gas-generation reaction. Thus this study opens an avenue for establishment of sensitive pressure signal-based sensing methods for pathogenic bacteria, which shows broad application prospects in medical diagnosis of infectious diseases.


Subject(s)
Hydrogen Peroxide , Platinum , Point-of-Care Testing , Pseudomonas aeruginosa , Pseudomonas aeruginosa/isolation & purification , Catalysis , Hydrogen Peroxide/chemistry , Platinum/chemistry , Palladium/chemistry , Metal Nanoparticles/chemistry , Zirconium/chemistry , Porphyrins/chemistry , Metal-Organic Frameworks/chemistry , Humans
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000219

ABSTRACT

Chlorin e6 is a well-known photosensitizer used in photodynamic diagnosis and therapy. A method for identifying and purifying a novel process-related impurity during the synthesis of chlorin e6 has been developed. Its structure was elucidated using NMR and HRMS. This new impurity is formed from chlorophyll b rather than chlorophyll a, which is the source of chlorin e6. The intermediates formed during chlorin e6 synthesis were monitored using HPLC-mass spectrometry. This new impurity was identified as rhodin g7 71-ethyl ester, the structure of which remains unknown to date. The cytotoxic effects of this novel compound in both dark and light conditions were studied against five cancer cell lines (HT29, MIA-PaCa-2, PANC-1, AsPC-1, and B16F10) and a normal cell line (RAW264.7) and compared to those of chlorin e6. Upon irradiation using a laser at 0.5 J/cm2, rhodin g7 71-ethyl ester demonstrated higher cytotoxicity (2-fold) compared to chlorin e6 in the majority of the cancer cell lines. Furthermore, this new compound exhibited higher dark cytotoxicity compared to chlorin e6. Studies on singlet oxygen generation, the accumulation in highly vascular liver tissue, and the production of reactive oxygen species in MIA-PaCa-2 cancer cells via rhodin g7 71-ethyl ester correspond to its higher cytotoxicity as a newly developed photosensitizer. Therefore, rhodin g7 71-ethyl ester could be employed as an alternative or complementary agent to chlorin e6 in the photodynamic therapy for treating cancer cells.


Subject(s)
Chlorophyllides , Photosensitizing Agents , Porphyrins , Porphyrins/chemistry , Porphyrins/pharmacology , Humans , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Cell Line, Tumor , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Photochemotherapy/methods , Singlet Oxygen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
5.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000317

ABSTRACT

Chemotherapy is among the main classical approaches to the treatment of oncologic diseases. Its efficiency has been comprehensively proven by clinical examinations; however, the low selectivity of chemotherapeutic agents limits the possibilities of this method, making it necessary to search for new approaches to the therapy of oncologic diseases. Photodynamic therapy is the least invasive method and a very efficient alternative for the treatment of malignant tumors; however, its efficiency depends on the depth of light penetration into the tissue and on the degree of oxygenation of the treatment zone. In this work, a hitherto unknown conjugate of a natural bacteriochlorin derivative and doxorubicin was obtained. In vitro and in vivo studies showed a more pronounced activity of the conjugate against MCF-7 and 4T1 cells and its higher tumorotropicity in animal tumor-bearing animals compared to free anthracycline antibiotic. The suggested conjugate implements the advantages of photodynamic therapy and chemotherapy and has great potential in cancer treatment.


Subject(s)
Doxorubicin , Photochemotherapy , Porphyrins , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Photochemotherapy/methods , Animals , Humans , Mice , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/therapeutic use , Female , MCF-7 Cells , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Mice, Inbred BALB C , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Xenograft Model Antitumor Assays , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999116

ABSTRACT

The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.


Subject(s)
Antifungal Agents , Antioxidants , Porphyrins , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/chemical synthesis , Isonicotinic Acids/chemistry , Isonicotinic Acids/pharmacology , Isonicotinic Acids/chemical synthesis , Molecular Structure , Biphenyl Compounds/chemistry , Picrates/chemistry , Picrates/antagonists & inhibitors , Candida albicans/drug effects , Candida albicans/growth & development , Crystallography, X-Ray , Microbial Sensitivity Tests , Lens Plant/chemistry , Germination/drug effects , Allelopathy
7.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999141

ABSTRACT

Gemcitabine is a widely used antimetabolite drug of pyrimidine structure, which can exist as a free-base molecular form (Gem). The encapsulated forms of medicinal drugs are of interest for delayed and local drug release. We utilized, for the first time, a novel approach of mechano-chemistry by liquid-assisted grinding (LAG) to encapsulate Gem on a "matrix" of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (compound 2). The chemical bonding of Gem to compound 2 was studied by ATR-FTIR spectroscopy and powder XRD. The interaction involves the C=O group of Gem molecules, which indicates the formation of the encapsulation complex in the obtained composite. Further, the delayed release of Gem from the composite was studied to phosphate buffered saline (PBS) at 37 °C using an automated drug dissolution apparatus equipped with an autosampler. The concentration of the released drug was determined by HPLC-UV analysis. The composite shows delayed release of Gem due to the bonded form and constant concentration thereafter, while pure Gem shows quick dissolution in less than 45 min. Delayed release of Gem drug from the composite follows the kinetic pseudo-first-order rate law. Further, for the first time, the mechanism of delayed release of Gem was assessed by the variable stirring speed of drug release media, and kinetic rate constant k was found to decrease when stirring speed is decreased (diffusion control). Finally, the prolonged time scale of toxicity of Gem to pancreatic cancer PANC-1 cells was studied by continuous measurements of proliferation (growth) for 6 days, using the xCELLigence real-time cell analyzer (RTCA), for the composite vs. pure drug, and their differences indicate delayed drug release. Aluminum metal-organic frameworks are new and promising materials for the encapsulation of gemcitabine and related small-molecule antimetabolites for controlled delayed drug release and potential use in drug-eluting implants.


Subject(s)
Aluminum , Delayed-Action Preparations , Deoxycytidine , Drug Liberation , Gemcitabine , Metal-Organic Frameworks , Pancreatic Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Metal-Organic Frameworks/chemistry , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Aluminum/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/chemistry
8.
J Photochem Photobiol B ; 257: 112971, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955081

ABSTRACT

Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.


Subject(s)
Biofilms , Light , Mastitis, Bovine , Nanoparticles , Polymers , Animals , Cattle , Nanoparticles/chemistry , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Biofilms/drug effects , Biofilms/radiation effects , Female , Polymers/chemistry , Polymers/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Staphylococcus/drug effects , Staphylococcus/radiation effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microscopy, Electron, Scanning , Photochemotherapy
9.
ACS Appl Mater Interfaces ; 16(28): 35925-35935, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950334

ABSTRACT

The development of efficient theranostic nanoagents for the precise diagnosis and targeted therapy of glioblastoma (GBM) remains a big challenge. Herein, we designed and developed porphyrin-based organic nanoparticles (PNP NPs) with strong emission in the near-infrared IIa window (NIR-IIa) for orthotopic GBM theranostics. PNP NPs possess favorable photoacoustic and photothermal properties, high photostability, and low toxicity. After modification with the RGD peptide, the obtained PNPD NPs exhibited enhanced blood-brain barrier (BBB) penetration capability and GBM targeting ability. NIR-IIa imaging was employed to monitor the in vivo biodistribution and accumulation of the nanoparticles, revealing a significant enhancement in penetration depth and signal-to-noise ratio. Both in vitro and in vivo results demonstrated that PNPD NPs effectively inhibited the proliferation of tumor cells and induced negligible side effects in normal brain tissues. In general, the work presented a kind of brain-targeted porphyrin-based NPs with NIR-IIa fluorescence for orthotopic glioblastoma theranostics, showing promising prospects for clinical translation.


Subject(s)
Glioblastoma , Nanoparticles , Porphyrins , Theranostic Nanomedicine , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Animals , Nanoparticles/chemistry , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Mice , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Infrared Rays , Tissue Distribution , Blood-Brain Barrier/metabolism , Mice, Nude , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Mice, Inbred BALB C , Fluorescence
10.
J Am Chem Soc ; 146(28): 19434-19448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959476

ABSTRACT

Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB. This IPDT agent integrates a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous environments, the two components of LuCXB are self-associated through inferred donor-acceptor interactions. A consequence of this intramolecular association is that upon photoirradiation with 730 nm light, LuCXB produces superoxide radicals (O2-•) via a type I photodynamic pathway; this provides a first line of defense against the tumor while promoting IPDT. For in vivo therapeutic applications, we prepared a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) designed to target cancer stem cells. Ex-apt@LuCXB was found to display good photosensitivity, acceptable biocompatibility, and robust tumor targetability. Under conditions of photoirradiation, Ex-apt@LuCXB acts to amplify IPDT while exerting a significant antitumor effect in both liver and breast cancer mouse models. The observed therapeutic effects are attributed to a synergistic mechanism that combines antiangiogenesis and photoinduced cancer immunotherapy.


Subject(s)
Celecoxib , Lutetium , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Animals , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Mice , Lutetium/chemistry , Celecoxib/chemistry , Celecoxib/pharmacology , Immunotherapy , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Female
11.
Biomed Mater ; 19(4)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870927

ABSTRACT

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Subject(s)
Chlorophyllides , Cytokine-Induced Killer Cells , Gold , Lung Neoplasms , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Gold/chemistry , Photochemotherapy/methods , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Humans , Animals , Porphyrins/chemistry , Porphyrins/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Metal Nanoparticles/chemistry , Mice , Immunotherapy/methods , Cell Line, Tumor , Drug Delivery Systems , Polyethylene Glycols/chemistry , A549 Cells , Optical Imaging/methods , Mice, Nude
12.
ACS Appl Mater Interfaces ; 16(24): 30810-30818, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38850233

ABSTRACT

Photothermal therapy (PTT) is a promising clinical antitumor strategy. However, local hyperthermia inevitably induces heat damage to adjacent normal tissues, while alternative mild-temperature therapy (MPTT, T < 45 °C) is also inefficient due to the overexpressed hyperthermia-induced heat shock proteins (HSPs) by cancer cells. Therefore, developing PTT strategies with minimizing damage to healthy tissues with improved cellular temperature sensitivity is extremely valuable for clinical application. Herein, we proposed the strategy of disrupting the intracellular redox environment via destroying the ROS-defending systems to promote MPTT. The gold(III) porphyrin-Fe3+-tannic acid nanocomplexes (AuTPP@TA-Fe NPs) were achieved via interfacial cohesion and supramolecular assembly of bioadhesive species, which could trigger the Fenton reaction to produce ·OH radicals and downregulation of reductive TrxR enzyme and mitochondrial chaperone protein Hsp60. The aggravation of oxides and the inactivation of Hsp60 provide favorable pathways for impeding the heat shock-induced self-repair mechanism of cancer cells, which strengthens AuTPP@TA-Fe NPs mediated MPTT.


Subject(s)
Gold , Oxidation-Reduction , Photothermal Therapy , Humans , Gold/chemistry , Porphyrins/chemistry , Porphyrins/radiation effects , Porphyrins/pharmacology , Animals , Chaperonin 60/chemistry , Chaperonin 60/metabolism , Mice , Cell Line, Tumor , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology , Neoplasms/therapy , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
13.
J Nanobiotechnology ; 22(1): 375, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926721

ABSTRACT

As an emerging cancer treatment strategy, reactive oxygen species-based tumor catalytic therapies face enormous challenges due to hypoxia and the overexpression of glutathione (GSH) in the tumor microenvironment. Herein, a self-assembled copper-based nanoplatform, TCCHA, was designed for enzyme-like catalysis-enhanced chemodynamic/photodynamic/antiangiogenic tritherapy against hepatocellular carcinoma. TCCHA was fabricated from Cu2+, 3,3'-dithiobis (propionohydrazide), and photosensitizer chlorine e6 via a facile one-pot self-assembly strategy, after which an aldehyde hyaluronic acid was coated, followed by loading of the antivascular drug AL3818. The obtained TCCHA nanoparticles exhibited pH/GSH dual-responsive drug release behaviors and multienzymatic activities, including Fenton, glutathione peroxidase-, and catalase-like activities. TCCHA, a redox homeostasis disruptor, promotes ⋅OH generation and GSH depletion, thus increasing the efficacy of chemodynamic therapy. TCCHA, which has catalase-like activity, can also reinforce the efficacy of photodynamic therapy by amplifying O2 production. In vivo, TCCHA efficiently inhibited tumor angiogenesis and suppressed tumor growth without apparent systemic toxicity. Overall, this study presents a facile strategy for the preparation of multienzyme-like nanoparticles, and TCCHA nanoparticles display great potential for enzyme catalysis-enhanced chemodynamic/photodynamic/antiangiogenic triple therapy against cancer.


Subject(s)
Carcinoma, Hepatocellular , Copper , Liver Neoplasms , Photochemotherapy , Photosensitizing Agents , Copper/chemistry , Copper/pharmacology , Animals , Carcinoma, Hepatocellular/drug therapy , Photochemotherapy/methods , Liver Neoplasms/drug therapy , Mice , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Chlorophyllides , Glutathione/metabolism , Nanoparticles/chemistry , Catalysis , Metal Nanoparticles/chemistry , Drug Liberation , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
14.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892167

ABSTRACT

New ß-amino-substituted porphyrin derivatives bearing carboxy groups were synthesized and their performance as sensitizers in dye-sensitized solar cells (DSSC) was evaluated. The new compounds were obtained in good yields (63-74%) through nucleophilic aromatic substitution reactions with 3-sulfanyl- and 4-sulfanylbenzoic acids. Although the electrochemical studies indicated suitable HOMO and LUMO energy levels for use in DSSC, the devices fabricated with these compounds revealed a low power conversion efficiency (PCE) that is primarily due to the low open-circuit voltage (Voc) and short-circuit current density (Jsc) values.


Subject(s)
Porphyrins , Solar Energy , Porphyrins/chemistry , Porphyrins/chemical synthesis
15.
Nano Lett ; 24(26): 7868-7878, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912706

ABSTRACT

Wound infections, especially those caused by pathogenic bacteria, present a considerable public health concern due to associated complications and poor therapeutic outcomes. Herein, we developed antibacterial nanoparticles, namely, PGTP, by coordinating guanidine derivatives with a porphyrin-based sonosensitizer. The synthesized PGTP nanoparticles, characterized by their strong positive charge, effectively disrupted the bacterial biosynthesis process through charge interference, demonstrating efficacy against both Gram-negative and Gram-positive bacteria. Additionally, PGTP nanoparticles generated reactive oxygen species under ultrasound stimulation, resulting in the disruption of biofilm integrity and efficient elimination of pathogens. RNA-seq analysis unveiled the detailed mechanism of wound healing, revealing that PGTP nanoparticles, when coupled with ultrasound, impair bacterial metabolism by interfering with the synthesis and transcription of amino acids. This study presents a novel approach to combatting wound infections through ultrasound-driven charge-interfering therapy, facilitated by advanced antibacterial nanomaterials.


Subject(s)
Anti-Bacterial Agents , Biofilms , Nanoparticles , Wound Infection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Wound Infection/drug therapy , Wound Infection/microbiology , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Biofilms/drug effects , Animals , Mice , Ultrasonic Waves , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/therapeutic use , Ultrasonic Therapy/methods , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects
16.
Int J Biol Macromol ; 272(Pt 1): 132893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838883

ABSTRACT

Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.


Subject(s)
Cellulose , Escherichia coli , Porphyrins , Staphylococcus aureus , Cellulose/chemistry , Cellulose/analogs & derivatives , Cellulose/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Light , Food Packaging/methods , Polymers/chemistry , Polymers/pharmacology , Sterilization/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
17.
Mikrochim Acta ; 191(7): 364, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831034

ABSTRACT

CdIn2S4 and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP) were synthesized by hydrothermal method, and an organic dye-sensitized inorganic semiconductor ZnTCPP/CdIn2S4 type II heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode. A sandwich immunostructure for signal-attenuation photoelectrochemical (PEC) detection of cardiac troponin I (cTnI) was constructed using the ZnTCPP/CdIn2S4/FTO photoanode and a horseradish peroxidase (HRP)-ZnFe2O4-Ab2-bovine serum albumin (BSA) immunolabeling complex. The bioenzyme HRP and the HRP-like nanozyme ZnFe2O4 can co-catalyze the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to produce an insoluble precipitate on the photoanode, thus notably reducing the anodic photocurrent for quantitative determination of cTnI. Under the optimal conditions, the photocurrent at 0 V vs. SCE in 0.1 M phosphate buffer solution (pH 7.40) containing 0.1 M ascorbic acid was linear with the logarithm of cTnI concentration from 500 fg mL-1 to 50.0 ng mL-1, and the limit of detection (LOD, S/N = 3) is 0.15 pg mL-1. Spiked recoveries were 95.1% ~ 104% for assay of cTnI in human serum samples.


Subject(s)
Electrochemical Techniques , Limit of Detection , Tin Compounds , Troponin I , Troponin I/blood , Humans , Electrochemical Techniques/methods , Immunoassay/methods , Tin Compounds/chemistry , Catalysis , Horseradish Peroxidase/chemistry , Naphthols/chemistry , Metalloporphyrins/chemistry , Electrodes , Hydrogen Peroxide/chemistry , Serum Albumin, Bovine/chemistry , Photochemical Processes , Animals , Biosensing Techniques/methods , Semiconductors , Cattle , Sulfides/chemistry , Porphyrins/chemistry
18.
World J Microbiol Biotechnol ; 40(8): 248, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904740

ABSTRACT

This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions. Among the tested bacterial strains, 4MeTPyP exhibited the highest efficiency, inhibiting bacterial growth within just 60 min at low concentrations (17.5 µM). The minimal inhibitory concentration of 4MeTPyP increased when reactive oxygen species scavengers were present, indicating the significant involvement of singlet oxygen species in the photooxidation mechanism. Furthermore, the checkerboard assay testing the association of 4MeTPyP showed an indifferent effect. Atomic force microscopy analyses and dynamic simulations were conducted to enhance our understanding of the interaction between this porphyrin and the strain's membrane.


Subject(s)
Biofilms , Listeria monocytogenes , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Photosensitizing Agents , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Biofilms/drug effects , Listeria monocytogenes/drug effects , Food Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microscopy, Atomic Force , Reactive Oxygen Species/metabolism , Light , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry
19.
Bioorg Chem ; 150: 107579, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908128

ABSTRACT

LD4, a novel porphyrin derivative, has attracted much attention for its excellent anti-inflammatory properties. It can promote the healing of colonic mucosa, reduce inflammatory response, regulate oxidative stress, and thus improve ulcerative colitis (UC) symptoms. However, the specific signaling pathways of LD4-PDT involved in UC have not been explored. The present study aimed to elucidate the effects of LD4 on UC and to investigate the underlying mechanisms both in vivo and in vitro. We classified and screened the LD4-PDT proteomic data to obtain key targets. Proteomic data revealed that EPHX2 and STAT3 are key targets of LD4-PDT for UC. Moreover, transcription factor STAT3 positively regulates the expression of EPHX2. Inhibiting EPHX2 can prevent the activation of NF-κB signaling pathway. Next, through pharmacological inhibition experiments, we confirmed that LD4-PDT can reduce intestinal inflammation by inhibiting STAT3-EPHX2 axis. However, by treating normal intestinal epithelial cells and colon cancer cells with TPPU and Stattic, our data confirmed that the STAT3-EPHX2 axis does not exist in colon cancer. In this study, we demonstrated that the transcription factor STAT3 can positively regulate the expression of EPHX2 in normal colon. LD4 can alleviate UC by inhibiting the STAT3-EPHX2 axis, but this axis does not exist in colon cancer. LD4-PDT may become a new and effective method for treating UC.


Subject(s)
Colitis, Ulcerative , Porphyrins , STAT3 Transcription Factor , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Humans , Animals , Mice , Porphyrins/pharmacology , Porphyrins/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Male , Structure-Activity Relationship , Mice, Inbred C57BL
20.
Eur J Pharmacol ; 977: 176747, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880218

ABSTRACT

The transcription factor nuclear factor κB (NF-κB) is activated by proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and Toll-like receptor (TLR) ligands. Screening of NPDepo chemical libraries identified porphyrin derivatives as anti-inflammatory compounds that strongly inhibited the up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression induced by TNF-α, interleukin-1α, the TLR3 ligand, and TLR4 ligand in human umbilical vein endothelial cells. In the present study, the mechanisms of action of porphyrin derivatives were further elucidated using human lung adenocarcinoma A549 cells. Porphyrin derivatives, i.e., dimethyl-2,7,12,18-tetramethyl-3,8-di(1-methoxyethyl)-21H,23H-porphine-13,17-dipropionate (1) and pheophorbide a (2), inhibited TNF-α-induced ICAM-1 expression and decreased the TNF-α-induced transcription of ICAM-1, vascular cell adhesion molecule-1, and E-selectin genes. 1 and 2 reduced the expression of the NF-κB subunit RelA protein for 1 h, which was not rescued by the inhibition of proteasome- and lysosome-dependent protein degradation. In addition, 1 and 2 decreased the expression of multiple components of the TNF receptor 1 complex, and this was accompanied by the appearance of their cross-linked forms. As common components of the NF-κB signaling pathway, 1 and 2 also cross-linked the α, ß, and γ subunits of the inhibitor of NF-κB kinase complex and the NF-κB subunits RelA and p50. Cellular protein synthesis was prevented by 2, but not by 1. Therefore, the present results indicate that porphyrin derivative 1 reduced the expression and increased the cross-linked forms of cellular components required for the NF-κB signaling pathway without affecting global protein synthesis.


Subject(s)
Intercellular Adhesion Molecule-1 , NF-kappa B , Porphyrins , Signal Transduction , Tumor Necrosis Factor-alpha , Humans , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , NF-kappa B/metabolism , Porphyrins/pharmacology , Porphyrins/chemistry , A549 Cells , E-Selectin/metabolism , E-Selectin/genetics , Gene Expression Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL