Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.471
Filter
1.
Nano Lett ; 24(26): 7868-7878, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912706

ABSTRACT

Wound infections, especially those caused by pathogenic bacteria, present a considerable public health concern due to associated complications and poor therapeutic outcomes. Herein, we developed antibacterial nanoparticles, namely, PGTP, by coordinating guanidine derivatives with a porphyrin-based sonosensitizer. The synthesized PGTP nanoparticles, characterized by their strong positive charge, effectively disrupted the bacterial biosynthesis process through charge interference, demonstrating efficacy against both Gram-negative and Gram-positive bacteria. Additionally, PGTP nanoparticles generated reactive oxygen species under ultrasound stimulation, resulting in the disruption of biofilm integrity and efficient elimination of pathogens. RNA-seq analysis unveiled the detailed mechanism of wound healing, revealing that PGTP nanoparticles, when coupled with ultrasound, impair bacterial metabolism by interfering with the synthesis and transcription of amino acids. This study presents a novel approach to combatting wound infections through ultrasound-driven charge-interfering therapy, facilitated by advanced antibacterial nanomaterials.


Subject(s)
Anti-Bacterial Agents , Biofilms , Nanoparticles , Wound Infection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Wound Infection/drug therapy , Wound Infection/microbiology , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Biofilms/drug effects , Animals , Mice , Ultrasonic Waves , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/therapeutic use , Ultrasonic Therapy/methods , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects
2.
ACS Appl Mater Interfaces ; 16(24): 30810-30818, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38850233

ABSTRACT

Photothermal therapy (PTT) is a promising clinical antitumor strategy. However, local hyperthermia inevitably induces heat damage to adjacent normal tissues, while alternative mild-temperature therapy (MPTT, T < 45 °C) is also inefficient due to the overexpressed hyperthermia-induced heat shock proteins (HSPs) by cancer cells. Therefore, developing PTT strategies with minimizing damage to healthy tissues with improved cellular temperature sensitivity is extremely valuable for clinical application. Herein, we proposed the strategy of disrupting the intracellular redox environment via destroying the ROS-defending systems to promote MPTT. The gold(III) porphyrin-Fe3+-tannic acid nanocomplexes (AuTPP@TA-Fe NPs) were achieved via interfacial cohesion and supramolecular assembly of bioadhesive species, which could trigger the Fenton reaction to produce ·OH radicals and downregulation of reductive TrxR enzyme and mitochondrial chaperone protein Hsp60. The aggravation of oxides and the inactivation of Hsp60 provide favorable pathways for impeding the heat shock-induced self-repair mechanism of cancer cells, which strengthens AuTPP@TA-Fe NPs mediated MPTT.


Subject(s)
Gold , Oxidation-Reduction , Photothermal Therapy , Humans , Gold/chemistry , Porphyrins/chemistry , Porphyrins/radiation effects , Porphyrins/pharmacology , Animals , Chaperonin 60/chemistry , Chaperonin 60/metabolism , Mice , Cell Line, Tumor , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology , Neoplasms/therapy , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
3.
Bioorg Med Chem ; 109: 117810, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906069

ABSTRACT

The antimicrobial activity of new acid-functionalized porphyrins, with or without ultra-high irradiance, was investigated. Antibacterial efficacy was evaluated against Staphylococcus aureus (methicillin-resistant or methicillin-sensitive strains) and antifungal efficacy was evaluated against the yeast Candida albicans and the filamentous fungi Aspergillus fumigatus. Overall, the porphyrins tested are more effective against S. aureus. The best results were obtained with zinc diacid porphyrins 4 and 5 after only 3 min of ultra-high irradiation (500 mW/cm2, 405 nm), demonstrating that acid-functionalized porphyrins are promising as novel antimicrobial drugs for surface disinfection.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Candida albicans , Microbial Sensitivity Tests , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Porphyrins/chemical synthesis , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Positive Bacteria/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Fungi/drug effects
4.
Int J Biol Macromol ; 272(Pt 1): 132893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838883

ABSTRACT

Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.


Subject(s)
Cellulose , Escherichia coli , Porphyrins , Staphylococcus aureus , Cellulose/chemistry , Cellulose/analogs & derivatives , Cellulose/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Light , Food Packaging/methods , Polymers/chemistry , Polymers/pharmacology , Sterilization/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
5.
Lasers Med Sci ; 39(1): 151, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839711

ABSTRACT

The aim of this study was to compare two types of light irradiation devices for antimicrobial photodynamic therapy (aPDT). A 660-nm light-emitting diode (LED) and a 665-nm laser diode (LD) were used for light irradiation, and 0.1 mg/L TONS 504, a cationic chlorin derivative, was used as the photosensitizer. We evaluated the light attenuation along the vertical and horizontal directions, temperature rise following light irradiation, and aPDT efficacy against Staphylococcus aureus under different conditions: TONS 504 only, light irradiation only, and TONS 504 with either LED (30 J/cm2) or LD light irradiation (continuous: 30 J/cm2; pulsed: 20 J/cm2 at 2/3 duty cycle, 10 J/cm2 at 1/3 duty cycle). Both LED and LD light intensities were inversely proportional to the square of the vertical distance from the irradiated area. Along the horizontal distance from the nadir of the light source, the LED light intensity attenuated according to the cosine quadrature law, while the LD light intensity did not attenuate within the measurable range. Following light irradiation, the temperature rise increased as the TONS 504 concentration increased in the order of pulsed LD < continuous LD < LED irradiation. aPDT with light irradiation only or TONS 504 only had no antimicrobial effect, while aPDT with TONS 504 under continuous or pulsed LD light irradiation provided approximately 3 log reduction at 30 J/cm2 and 20 J/cm2 and approximately 2 log reduction at 10 J/cm2. TONS 504-aPDT under pulsed LD light irradiation provided anti-microbial effect without significant temperature rise.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Staphylococcus aureus , Photochemotherapy/methods , Staphylococcus aureus/drug effects , Staphylococcus aureus/radiation effects , Photosensitizing Agents/pharmacology , Humans , Lasers, Semiconductor/therapeutic use , Porphyrins/pharmacology , Temperature
6.
Eur J Pharmacol ; 977: 176747, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880218

ABSTRACT

The transcription factor nuclear factor κB (NF-κB) is activated by proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and Toll-like receptor (TLR) ligands. Screening of NPDepo chemical libraries identified porphyrin derivatives as anti-inflammatory compounds that strongly inhibited the up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression induced by TNF-α, interleukin-1α, the TLR3 ligand, and TLR4 ligand in human umbilical vein endothelial cells. In the present study, the mechanisms of action of porphyrin derivatives were further elucidated using human lung adenocarcinoma A549 cells. Porphyrin derivatives, i.e., dimethyl-2,7,12,18-tetramethyl-3,8-di(1-methoxyethyl)-21H,23H-porphine-13,17-dipropionate (1) and pheophorbide a (2), inhibited TNF-α-induced ICAM-1 expression and decreased the TNF-α-induced transcription of ICAM-1, vascular cell adhesion molecule-1, and E-selectin genes. 1 and 2 reduced the expression of the NF-κB subunit RelA protein for 1 h, which was not rescued by the inhibition of proteasome- and lysosome-dependent protein degradation. In addition, 1 and 2 decreased the expression of multiple components of the TNF receptor 1 complex, and this was accompanied by the appearance of their cross-linked forms. As common components of the NF-κB signaling pathway, 1 and 2 also cross-linked the α, ß, and γ subunits of the inhibitor of NF-κB kinase complex and the NF-κB subunits RelA and p50. Cellular protein synthesis was prevented by 2, but not by 1. Therefore, the present results indicate that porphyrin derivative 1 reduced the expression and increased the cross-linked forms of cellular components required for the NF-κB signaling pathway without affecting global protein synthesis.


Subject(s)
Intercellular Adhesion Molecule-1 , NF-kappa B , Porphyrins , Signal Transduction , Tumor Necrosis Factor-alpha , Humans , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , NF-kappa B/metabolism , Porphyrins/pharmacology , Porphyrins/chemistry , A549 Cells , E-Selectin/metabolism , E-Selectin/genetics , Gene Expression Regulation/drug effects
7.
World J Microbiol Biotechnol ; 40(8): 248, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904740

ABSTRACT

This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions. Among the tested bacterial strains, 4MeTPyP exhibited the highest efficiency, inhibiting bacterial growth within just 60 min at low concentrations (17.5 µM). The minimal inhibitory concentration of 4MeTPyP increased when reactive oxygen species scavengers were present, indicating the significant involvement of singlet oxygen species in the photooxidation mechanism. Furthermore, the checkerboard assay testing the association of 4MeTPyP showed an indifferent effect. Atomic force microscopy analyses and dynamic simulations were conducted to enhance our understanding of the interaction between this porphyrin and the strain's membrane.


Subject(s)
Biofilms , Listeria monocytogenes , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Photosensitizing Agents , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Biofilms/drug effects , Listeria monocytogenes/drug effects , Food Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microscopy, Atomic Force , Reactive Oxygen Species/metabolism , Light , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry
8.
J Nanobiotechnology ; 22(1): 375, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926721

ABSTRACT

As an emerging cancer treatment strategy, reactive oxygen species-based tumor catalytic therapies face enormous challenges due to hypoxia and the overexpression of glutathione (GSH) in the tumor microenvironment. Herein, a self-assembled copper-based nanoplatform, TCCHA, was designed for enzyme-like catalysis-enhanced chemodynamic/photodynamic/antiangiogenic tritherapy against hepatocellular carcinoma. TCCHA was fabricated from Cu2+, 3,3'-dithiobis (propionohydrazide), and photosensitizer chlorine e6 via a facile one-pot self-assembly strategy, after which an aldehyde hyaluronic acid was coated, followed by loading of the antivascular drug AL3818. The obtained TCCHA nanoparticles exhibited pH/GSH dual-responsive drug release behaviors and multienzymatic activities, including Fenton, glutathione peroxidase-, and catalase-like activities. TCCHA, a redox homeostasis disruptor, promotes ⋅OH generation and GSH depletion, thus increasing the efficacy of chemodynamic therapy. TCCHA, which has catalase-like activity, can also reinforce the efficacy of photodynamic therapy by amplifying O2 production. In vivo, TCCHA efficiently inhibited tumor angiogenesis and suppressed tumor growth without apparent systemic toxicity. Overall, this study presents a facile strategy for the preparation of multienzyme-like nanoparticles, and TCCHA nanoparticles display great potential for enzyme catalysis-enhanced chemodynamic/photodynamic/antiangiogenic triple therapy against cancer.


Subject(s)
Carcinoma, Hepatocellular , Copper , Liver Neoplasms , Photochemotherapy , Photosensitizing Agents , Copper/chemistry , Copper/pharmacology , Animals , Carcinoma, Hepatocellular/drug therapy , Photochemotherapy/methods , Liver Neoplasms/drug therapy , Mice , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Chlorophyllides , Glutathione/metabolism , Nanoparticles/chemistry , Catalysis , Metal Nanoparticles/chemistry , Drug Liberation , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
9.
Biomed Mater ; 19(4)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870927

ABSTRACT

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Subject(s)
Chlorophyllides , Cytokine-Induced Killer Cells , Gold , Lung Neoplasms , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Gold/chemistry , Photochemotherapy/methods , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Humans , Animals , Porphyrins/chemistry , Porphyrins/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Metal Nanoparticles/chemistry , Mice , Immunotherapy/methods , Cell Line, Tumor , Drug Delivery Systems , Polyethylene Glycols/chemistry , A549 Cells , Optical Imaging/methods , Mice, Nude
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124529, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824758

ABSTRACT

Considering the increasing number of pathogens resistant to commonly used antibiotics as well as antiseptics, there is an urgent need for antimicrobial approaches that can effectively inactivate pathogens without the risk of establishing resistance. An alternative approach in this context is antibacterial photodynamic therapy (APDT). APDT is a process that involves bacterial cell death using appropriate wavelength light energy and photosensitizer and causes the production of reactive oxygen species inside or outside the microbial cell depending on the penetration of light energy. In our study, a new porphyrin compound 4,4'-methylenebis(2-((E)-((4-(10,15,20-triphenylporphyrin-5-yl)phenyl)imino)methyl)phenol) (SP) was designed and synthesized as photosensitizer and its structure was clarified by NMR (13C and 1H) and mass determination method. Photophysical and photochemical properties were examined in detail using different methods. Singlet oxygen quantum yields were obtained as 0.48 and 0.59 by direct and indirect methods, respectively. Antibacterial activity studies have been conducted within the scope of biological activity and promising results have been obtained under LED light (500-700 nm, 265 V, 1500 LM), contributing to the antibacterial photodynamic therapy literature.


Subject(s)
Anti-Bacterial Agents , Photochemotherapy , Photosensitizing Agents , Porphyrins , Singlet Oxygen , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Microbial Sensitivity Tests , Light , Bacteria/drug effects , Drug Design
11.
Photochem Photobiol Sci ; 23(7): 1323-1339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806860

ABSTRACT

Mucormycosis is an extremely aggressive fungal disease with a high mortality rate, especially in people with compromised immune systems. Most cases of mucormycosis are caused by the fungus Rhizopus oryzae. The treatments used are based on high doses of antifungals, associated with surgical resections, when it is possible. However, even with this aggressive treatment, the estimated attributable mortality rate is high. There is therefore a need to develop adjuvant treatments. Photodynamic Inactivation (PDI) may be an auxiliary therapeutic option for mucormycosis. Due to the lack of reports in the literature on the morphology and photodynamic inactivation of R. oryzae, characterization of the fungus using Confocal Microscopy and Transmission Electron Microscopy, and different protocols using Photodithazine® (PDZ), a chlorin e6 compound, as a photosensitizer, were performed. The fungus growth rate under different concentrations and incubation times of the photosensitizer and its association with the surfactant Sodium Dodecyl Sulphate (SDS) was evaluated. For the hyphae, both in the light and dark phases, in the protocols using only PDZ, no effective photodynamic response was observed. Meanwhile with the combination of SDS 0.05% and PDZ, inhibition growth rates of 98% and 72% were achieved for the white and black phase, respectively. In the conidia phase, only a 1.7 log10 reduction of the infective spores was observed. High concentration of melanin and the complex and resistant structures, especially at the black phase, results in a high limitation of the PDI inactivation response. The combined use of the SDS resulted in an improved response, when compared to the one obtained with the amphotericin B treatment.


Subject(s)
Photosensitizing Agents , Rhizopus oryzae , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Rhizopus oryzae/drug effects , Porphyrins/pharmacology , Porphyrins/chemistry , Photochemotherapy , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Sodium Dodecyl Sulfate/pharmacology , Sodium Dodecyl Sulfate/chemistry , Light , Microbial Sensitivity Tests
12.
Sci Rep ; 14(1): 10006, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693160

ABSTRACT

A series of 4-carboxyphenyl/4-hydroxyphenyl meso-substituted porphyrins were synthesized, purified, and characterized. The compounds exhibited anti-HIV-1 activities, in vitro, under both non-photodynamic (non-PDT) and photodynamic (PDT) conditions. Specifically, the porphyrins inhibited HIV-1 virus entry, with c-PB2(OH)2 and PB(OH)3 showing significant anti-HIV-1 activity. All of the porphyrins inhibited HIV-1 subtype B and C virus entry under PDT conditions. Our study demonstrated that the compounds bearing combinations of 4-carboxyphenyl/4-hydroxyphenyl moieties were not toxic even at higher concentrations, as compared to the reference porphyrins 5,10,15,20-tetra-(4-carboxyphenyl)porphyrin (TCPP) and 5,10,15,20-tetra-(4-hydroxyphenyl)porphyrin (THPP), under PDT conditions. This study underscores the promising potential of these compounds as HIV entry inhibitors in both non-PDT and PDT scenarios.


Subject(s)
Anti-HIV Agents , HIV-1 , Porphyrins , Porphyrins/chemistry , Porphyrins/pharmacology , HIV-1/drug effects , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Humans , Virus Internalization/drug effects , HIV Infections/drug therapy , HIV Infections/virology , Photochemotherapy/methods
13.
Nanoscale ; 16(25): 12095-12106, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38819371

ABSTRACT

Triple-negative breast cancer (TNBC) is known for its strong invasiveness, high recurrence rates, and poor prognosis. Heme oxygenase-1 (HO-1) is closely related to tumor invasion, metastasis, recurrence and formation of tumor immunosuppression. The expression of HO-1 is high in TNBC and low in normal tissues. In this study, AgPPIX was synthesized as a heme oxygenase-1 (HO-1) inhibitor and a photosensitizer for TNBC therapy. PDA nanoparticles were synthesized and modified with anti-CD24 and p-toluenesulfonamide (PTSC) on their both sides to obtain PTSC@AgPPIX/PDA@anti-CD24 Janus nanoparticles (PAPC) for AgPPIX-targeted delivery. Anti-CD24 is targeted to CD24 on tumor cells and the PTSC moiety is targeted to endoplasmic reticulum (ER), where HO-1 is located. The results indicated that PAPC Janus nanoparticles exhibited higher cytotoxicity in 4T1 cells than that of the mono-modified nanoparticles. PAPC not only inhibited the expression of HO-1 and VEGF but also reduced TrxR activity significantly. Furthermore, PAPC not only promoted intracellular ROS production under laser irradiation for tumor photodynamic therapy (PDT) but also polarized TAMs from M2-type to M1 for tumor immunotherapy. In vivo experiments confirmed that PAPC could remodel the tumor immune microenvironment and almost completely inhibit the tumor growth in mouse models. Therefore, PAPC Janus nanoparticles are a promising nanoplatform with a dual-targeting capacity for TNBC immune/PDT synergistic therapy.


Subject(s)
Endoplasmic Reticulum , Immunotherapy , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Mice , Female , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Nanoparticles/chemistry , Endoplasmic Reticulum/metabolism , Humans , Heme Oxygenase-1/metabolism , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Silver/chemistry , Silver/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology
14.
Biomed Pharmacother ; 176: 116768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795638

ABSTRACT

Antiviral medicines to treat COVID-19 are still scarce. Porphyrins and porphyrin derivatives (PDs) usually present broad-spectrum antiviral activity with low risk of resistance development. In fact, some PDs are clinically approved to be used in anti-cancer photodynamic therapy and repurposing clinically approved PDs might be an alternative to treat COVID-19. Here, we characterize the ability of temoporfin, verteporfin, talaporfin and redaporfin to inactivate SARS-CoV-2 infectious particles. PDs light-dependent and -independent effect on SARS-CoV-2 infectivity were evaluated. PDs photoactivation successfully inactivated SARS-CoV-2 with very low concentrations and light dose. However, only temoporfin and verteporfin inactivated SARS-CoV-2 in the dark, being verteporfin the most effective. PDs treatment reduced viral load in infected Caco-2 cells, while not inducing cytotoxicity. Furthermore, light-independent treatment with temoporfin and verteporfin act on early stages of viral infection. Using lipid vehicles as membrane models, we characterized PDs interaction to the viral envelope. Verteporfin presented the lowest IC50 for viral inactivation and the highest partition coefficients (Kp) towards lipid bilayers. Curiously, although temoporfin and redaporfin presented similar Kps, redaporfin did not present light-independent antiviral activity, and only temoporfin and verteporfin caused lipid membrane disorder. In fact, redaporfin is located closer to the bilayer surface, while temoporfin and verteporfin are located closer to the centre. Our results suggest that viral envelope affinity, with penetration and destabilization of the lipid bilayer, seems critical to mediate PDs antiviral activity. Altogether, these findings open new avenues for the off-label application of temoporfin and verteporfin in the systemic treatment of COVID-19.


Subject(s)
Antiviral Agents , Drug Repositioning , Porphyrins , SARS-CoV-2 , Humans , Porphyrins/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Caco-2 Cells , COVID-19 Drug Treatment , Antineoplastic Agents/pharmacology , Viral Envelope/drug effects , Animals , Chlorocebus aethiops , Vero Cells , COVID-19/virology
15.
Chemosphere ; 361: 142421, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797202

ABSTRACT

Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.


Subject(s)
Daphnia , Disinfection , Methylene Blue , Photosensitizing Agents , Wastewater , Wastewater/chemistry , Disinfection/methods , Daphnia/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Animals , Methylene Blue/pharmacology , Methylene Blue/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Bacteriophages/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods , Ecotoxicology
16.
Angew Chem Int Ed Engl ; 63(28): e202319908, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38693057

ABSTRACT

Upon pathogenic stimulation, activated neutrophils release nuclear DNA into the extracellular environment, forming web-like DNA structures known as neutrophil extracellular traps (NETs), which capture and kill bacteria, fungi, and cancer cells. This phenomenon is commonly referred to as NETosis. Inspired by this, we introduce a cell surface-constrained web-like framework nucleic acids traps (FNATs) with programmable extracellular recognition capability and cellular behavior modulation. This approach facilitates dynamic key chemical signaling molecule recognition such as adenosine triphosphate (ATP), which is elevated in the extracellular microenvironment, and triggers FNA self-assembly. This, in turn, leads to in situ tightly interwoven FNAs formation on the cell surface, thereby inhibiting target cell migration. Furthermore, it activates a photosensitizer-capturing switch, chlorin e6 (Ce6), and induces cell self-destruction. This cascade platform provides new potential tools for visualizing dynamic extracellular activities and manipulating cellular behaviors using programmable in situ self-assembling DNA molecular devices.


Subject(s)
Extracellular Traps , Porphyrins , Extracellular Traps/metabolism , Extracellular Traps/chemistry , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , DNA/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Nucleic Acids/chemistry , Chlorophyllides , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Neutrophils/metabolism , Cell Movement/drug effects
17.
Photochem Photobiol Sci ; 23(6): 1195-1208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703274

ABSTRACT

The effect of photodynamic inactivation (PDI) sensitized by 5,10,15,20-tetra(4-N,N,N-trimethylammoniophenyl)porphyrin (TMAP4+) on different components of mono- and dual-species biofilms of Staphylococcus aureus and Escherichia coli was determined by different methods. First, the plate count technique showed that TMAP4+-PDI was more effective on S. aureus than E. coli biofilm. However, crystal violet staining revealed no significant differences between before and after PDI biofilms of both bacteria. On the other hand, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method indicated a reduction in viable cells as the light exposure time increases in both, mono- and dual-species biofilms. Furthermore, it was determined that as the irradiation time increases, the amount of extracellular polymeric substances present in the biofilms decreased. This effect was presented in both strains and in the mixed biofilm, being more evident in S. aureus mono-specie biofilm. Finally, scanning electron microscopy analysis showed a decrease in the number of cells forming the biofilm after photosensitization treatments. This information makes it possible to determine whether the photodynamic action is based on damage to metabolic activity, extracellular matrix and/or biomass, which may be useful in establishing a fully effective PDI protocol for the treatment of microorganisms growing as biofilms.


Subject(s)
Biofilms , Escherichia coli , Photosensitizing Agents , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Escherichia coli/drug effects , Escherichia coli/physiology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Light , Microscopy, Electron, Scanning
18.
Photochem Photobiol Sci ; 23(6): 1129-1142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734995

ABSTRACT

Bacterial infections are a global health concern, particularly due to the increasing resistance of bacteria to antibiotics. Multi-drug resistance (MDR) is a considerable challenge, and novel approaches are needed to treat bacterial infections. Photodynamic inactivation (PDI) of microorganisms is increasingly recognized as an effective method to inactivate a broad spectrum of bacteria and overcome resistance mechanisms. This study presents the synthesis of a new cationic 5,15-di-imidazolyl porphyrin derivative and the impact of n-octanol/water partition coefficient (logP) values of this class of photosensitizers on PDI efficacy of Escherichia coli. The derivative with logP = -0.5, IP-H-OH2+, achieved a remarkable 3 log CFU reduction of E. coli at 100 nM with only 1.36 J/cm2 light dose at 415 nm, twice as effective as the second-best porphyrin IP-H-Me2+, of logP = -1.35. We relate the rapid uptake of IP-H-OH2+ by E. coli to improved PDI and the very low uptake of a fluorinated derivative, IP-H-CF32+, logP ≈ 1, to its poor performance. Combination of PDI with cinnamaldehyde, a major component of the cinnamon plant known to alter bacteria cell membranes, offered synergic inactivation of E. coli (7 log CFU reduction), using 50 nM of IP-H-OH2+ and just 1.36 J/cm2 light dose. The success of combining PDI with this natural compound broadens the scope of therapies for MDR infections that do not add drug resistance. In vivo studies on a mouse model of wound infection showed the potential of cationic 5,15-di-imidazolyl porphyrins to treat clinically relevant infected wounds.


Subject(s)
Acrolein , Anti-Bacterial Agents , Escherichia coli , Imidazoles , Photosensitizing Agents , Porphyrins , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Porphyrins/pharmacology , Porphyrins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Cations/chemistry , Cations/pharmacology , Microbial Sensitivity Tests , Animals , Mice , Drug Synergism , Photochemotherapy
19.
BMC Cancer ; 24(1): 587, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741073

ABSTRACT

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Hippo Signaling Pathway , Organoplatinum Compounds , Oxaliplatin , Protein Serine-Threonine Kinases , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Suppressor Protein p53 , Humans , Oxaliplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Verteporfin/pharmacology , Verteporfin/therapeutic use , Cell Line, Tumor , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , YAP-Signaling Proteins/metabolism , Porphyrins/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects
20.
Biomacromolecules ; 25(6): 3671-3684, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38720431

ABSTRACT

Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.


Subject(s)
Hyaluronic Acid , Metal-Organic Frameworks , Porphyrins , Wound Healing , Wound Healing/drug effects , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , Mice , Reactive Oxygen Species/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Skin/drug effects , Humans , Wound Infection/drug therapy , Wound Infection/microbiology , Iron/chemistry , Photochemotherapy/methods , Hyaluronoglucosaminidase
SELECTION OF CITATIONS
SEARCH DETAIL
...