Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.767
Filter
1.
Vet Microbiol ; 295: 110163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959807

ABSTRACT

Avian influenza virus (AIV) infection and vaccination against live attenuated infectious bronchitis virus (aIBV) are frequent in poultry worldwide. Here, we evaluated the clinical effect of H9N2 subtype AIV and QX genotype aIBV co-infection in specific-pathogen-free (SPF) white leghorn chickens and explored the potential mechanisms underlying the observed effects using by 4D-FastDIA-based proteomics. The results showed that co-infection of H9N2 AIV and QX aIBV increased mortality and suppressed the growth of SPF chickens. In particular, severe lesions in the kidneys and slight respiratory signs similar to the symptoms of virulent QX IBV infection were observed in some co-infected chickens, with no such clinical signs observed in single-infected chickens. The replication of H9N2 AIV was significantly enhanced in both the trachea and kidneys, whereas there was only a slight effect on the replication of the QX aIBV. Proteomics analysis showed that the IL-17 signaling pathway was one of the unique pathways enriched in co-infected chickens compared to single infected-chickens. A series of metabolism and immune response-related pathways linked with co-infection were also significantly enriched. Moreover, co-infection of the two pathogens resulted in the enrichment of the negative regulation of telomerase activity. Collectively, our study supports the synergistic effect of the two pathogens, and pointed out that aIBV vaccines might increased IBV-associated lesions due to pathogenic co-infections. Exacerbation of the pathogenicity and mortality in H9N2 AIV and QX aIBV co-infected chickens possibly occurred because of an increase in H9N2 AIV replication, the regulation of telomerase activity, and the disturbance of cell metabolism and the immune system.


Subject(s)
Chickens , Coinfection , Coronavirus Infections , Infectious bronchitis virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens/virology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/genetics , Infectious bronchitis virus/pathogenicity , Infectious bronchitis virus/genetics , Coinfection/virology , Coinfection/veterinary , Influenza in Birds/virology , Poultry Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Specific Pathogen-Free Organisms , Virus Replication , Vaccines, Attenuated/immunology , Genotype , Virulence , Proteomics , Kidney/virology , Kidney/pathology
2.
Sci Rep ; 14(1): 16021, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992055

ABSTRACT

Environmental conditions profoundly impact the health, welfare, and productivity of laying hens in commercial poultry farming. We investigated the association between microclimate variations, production indices, and histopathological responses to accidental Newcastle disease virus (NDV) infection within a controlled closed-house system. The study was conducted over seven months in a laying hen facility in Cairo, Egypt. Microclimate measurements included temperature, relative humidity (RH%), air velocity (AV), and the temperature humidity index (THI) that were obtained from specific locations on the front and back sides of the facility. Productivity indices, including the egg production percentage (EPP), egg weight (EW), average daily feed intake, and feed conversion ratio, were assessed monthly. During an NDV outbreak, humoral immune responses, gross pathology, and histopathological changes were evaluated. The results demonstrated significant (p < 0.05) variations in EPP and EW between the front and back sides except in April and May. AV had a significant (p = 0.006) positive effect (Beta = 0.346) on EW on the front side. On the back side, AV had a significant (p = 0.001) positive effect (Beta = 0.474) on EW, while it negatively influenced (p = 0.027) EPP (Beta = - 0.281). However, temperature, RH%, and THI had no impact and could not serve as predictors for EPP or EW on either farm side. The humoral immune response to NDV was consistent across microclimates, highlighting the resilience of hens. Histopathological examination revealed characteristic NDV-associated lesions, with no significant differences between the microclimates. This study underscores the significance of optimizing microclimate conditions to enhance laying performance by providing tailored environmental management strategies based on seasonal variations, ensuring consistent airflow, particularly near cooling pads and exhaust fans, and reinforcing the importance of biosecurity measures under field challenges with continuous monitoring and adjustment.


Subject(s)
Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Animals , Newcastle Disease/virology , Chickens/virology , Female , Newcastle disease virus/physiology , Poultry Diseases/virology , Egypt , Microclimate , Temperature
3.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985204

ABSTRACT

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Subject(s)
Chickens , Gold , Metapneumovirus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Paramyxoviridae Infections , Poultry Diseases , Sensitivity and Specificity , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Animals , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/economics , Chickens/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/economics , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Gold/chemistry , Turkeys , Metal Nanoparticles/chemistry , Limit of Detection , Colorimetry/methods , DNA, Viral/genetics
4.
Appl Microbiol Biotechnol ; 108(1): 412, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985354

ABSTRACT

The filamentous bacteriophage M13KO7 (M13) is the most used in phage display (PD) technology and, like other phages, has been applied in several areas of medicine, agriculture, and in the food industry. One of the advantages is that they can modulate the immune response in the presence of pathogenic microorganisms, such as bacteria and viruses. This study evaluated the use of phage M13 in the chicken embryos model. We inoculated 13-day-old chicken embryos with Salmonella Pullorum (SP) and then evaluated survival for the presence of phage M13 or E. coli ER2738 (ECR) infected with M13. We found that the ECR bacterium inhibits SP multiplication in 0.32 (M13-infected ECR) or 0.44 log UFC/mL (M13-uninfected ECR) and that the ECR-free phage M13 from the PD library can be used in chicken embryo models. This work provides the use of the chicken embryo as a model to study systemic infection and can be employed as an analysis tool for various peptides that M13 can express from PD selection. KEY POINTS: • SP-infected chicken embryo can be a helpful model of systemic infection for different tests. • Phage M13 does not lead to embryonic mortality or cause serious injury to embryos. • Phage M13 from the PD library can be used in chicken embryo model tests.


Subject(s)
Bacteriophage M13 , Escherichia coli , Animals , Chick Embryo , Escherichia coli/virology , Escherichia coli/genetics , Bacteriophage M13/genetics , Cell Surface Display Techniques/methods , Salmonella , Chickens , Poultry Diseases/virology , Poultry Diseases/microbiology
5.
Sci Rep ; 14(1): 15347, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961138

ABSTRACT

The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.


Subject(s)
Chickens , Genome, Viral , Salmonella Phages , Animals , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Chickens/microbiology , Genomics/methods , Salmonella/virology , Salmonella/genetics , Poultry/microbiology , Salmonella typhimurium/virology , Salmonella typhimurium/genetics , Host Specificity , Food Microbiology , Phenotype , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology
6.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38980150

ABSTRACT

Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.


Subject(s)
Chickens , Ferrets , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Turkeys , Animals , Turkeys/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Virulence , China/epidemiology , Poultry Diseases/virology , Poultry Diseases/transmission , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Virus Shedding , Virus Replication , Zoonoses/virology , Influenza, Human/virology , Influenza, Human/transmission
7.
Arch Virol ; 169(7): 155, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951272

ABSTRACT

Given the high prevalence of avian leukosis virus subgroup K (ALV-K) in chickens in China, the positive rate of ALV-K in local chickens in Henan province was investigated, and the genetic region encoding the glycoprotein gp85 of isolates from positive chickens was analyzed. The positive rate of ALV-K in local chickens in Henan was found to be 87.2% (41/47). Phylogenetic analysis of gp85 sequences revealed six clusters that differed in their host range regions (hr1 and hr2) and variable regions (vr1, vr2, and vr3). Evidence of recombination of hr1, hr2, vr1, vr2, and vr3 was observed between the different clusters. The isolate HN23LS02 appears to have obtained its hr1 and hr2 regions from separate lineages via recombination but without having a significant affect on the replication capacity of the virus.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chickens , Host Specificity , Phylogeny , Poultry Diseases , Recombination, Genetic , Viral Envelope Proteins , Animals , Avian Leukosis Virus/genetics , Avian Leukosis Virus/classification , Avian Leukosis Virus/isolation & purification , Chickens/virology , Avian Leukosis/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Poultry Diseases/virology , China
8.
Vet Microbiol ; 295: 110136, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875877

ABSTRACT

This study aimed to analyze the species and abundance of viruses carried by avian species in live poultry markets. In 2022, we collected 196 bird samples from two representative live poultry markets in Guangdong, China, of which 147 were randomly selected for metatranscriptome sequencing to construct a metatranscriptome library. This analysis yielded 17 viral families. Statistical analysis of the virus abundance of the six libraries showed that Picornaviridae, Retroviridae, Coronaviridae, and Othomyxoviridae were more abundant in the J1, J2, and J3 libraries, and Coronaviridae, Retroviridae, and Faviviridae were more abundant in the Y1, Y2, and E1 libraries. Finally, samples were screened using nested PCR and three viruses were identified. The positive results combined with high-throughput sequencing abundance data showed a positive correlation between virus abundance and the number of positive samples. This study provides scientific data to support the diagnosis and prevention of avian viral diseases.


Subject(s)
High-Throughput Nucleotide Sequencing , Poultry Diseases , Poultry , Viruses , Animals , High-Throughput Nucleotide Sequencing/veterinary , China/epidemiology , Poultry/virology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Chickens/virology
9.
Poult Sci ; 103(7): 103831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833958

ABSTRACT

The recent emergence of hepatitis-hydropericardium syndrome caused by highly pathogenic fowl adenovirus serotype 4 (FAdV-4) has resulted in significant economic losses to the poultry industry. However, the early innate immune response of immune organs within 24 hpi and the induction of autophagy in vivo after FAdV-4 infection have not been fully elucidated. In this study, 35-day-old specific pathogen-free (SPF) chickens were artificially infected with hypervirulent FAdV-4, which resulted in a mortality rate of up to 90%. The results showed that FAdV-4 infection rapidly triggered the innate immune response in vivo of chickens, with the spleen eliciting a stronger innate immune response than the thymus and bursa. During the early stage of viral infection within 24 hpi, the main receptors TLR3/7/21, MDA5, and cGAS were activated via the NF-κB and TBK1/IRF7-dependent signaling pathways, which up-regulated production of inflammatory cytokines and type I interferons. Additionally, the expression levels of the autophagy-related molecules LC3B, Beclin1, and ATG5 were significantly up-regulated at 24 hpi, while degradation of SQSTM1/p62 was observed, suggesting that FAdV-4 infection elicits a complete autophagy response in the spleen. Besides, the colocalization of Fiber2 and LC3B suggested that FAdV-4 infection induced autophagy which benefits FAdV-4 replication in vivo. This study provides new insights into the immunoregulation signal pathways of the early innate immunity in response to hypervirulent FAdV-4 infection in vivo within 24 hpi and the close relationship between viral replication and autophagy.


Subject(s)
Adenoviridae Infections , Autophagy , Aviadenovirus , Chickens , Immunity, Innate , Poultry Diseases , Spleen , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/immunology , Adenoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Chickens/immunology , Spleen/virology , Spleen/immunology , Aviadenovirus/physiology , Aviadenovirus/immunology , Aviadenovirus/pathogenicity , Specific Pathogen-Free Organisms , Serogroup , Virulence
10.
Avian Dis ; 68(2): 89-98, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885050

ABSTRACT

Outbreaks of infectious bronchitis (IB) continue to occur from novel variants of IB virus (IBV) emerging from selection of vaccine subpopulations and/or naturally occurring recombination events. S1 sequencing of Arkansas (Ark) -type viruses obtained from clinical cases in Alabama broilers and backyard chickens shows both Ark Delmarva Poultry Industry (ArkDPI) vaccine subpopulations as well as Ark vaccine viruses showing recombination with other IB vaccine viruses. IB Ark-type isolates AL5, most similar to an ArkDPI vaccine subpopulation selected in chickens, AL4, showing a cluster of three nonsynonymous changes from ArkDPI subpopulations selected in chickens, and AL9, showing recombination with Massachusetts (Mass) -type IBV, were examined for pathogenicity and ability to break through immunity elicited by vaccination with a commercial ArkDPI vaccine. Analysis of predicted S1 protein structures indicated the changes were in regions previously shown to comprise neutralizing epitopes. Thus, they were expected to contribute to immune escape and possibly virulence. Based on clinical signs, viral load, and histopathology, all three isolates caused disease in naïve chickens, although AL9 and AL5 viral loads in trachea were statistically significantly higher (30- and 40-fold) than AL4. S1 gene sequencing confirmed the stability of the relevant changes in the inoculated viruses in the chickens, although virus in some individual chickens exhibited additional S1 changes. A single amino acid deletion in the S1 NTD was identified in some individual chickens. The location of this deletion in the predicted structure of S1 suggested the possibility that it was a compensatory change for the reduced ability of AL4 to replicate in the trachea of naïve chickens. Chickens vaccinated with a commercial ArkDPI vaccine at day of hatch and challenged at 21 days of age showed that vaccination provided incomplete protection against challenge with these viruses. Moreover, based on viral RNA copy numbers in trachea, differences were detected in the ability of the vaccine to protect against these IBV isolates, with the vaccine protecting the most poorly against AL4. These results provide additional evidence supporting that IBV attenuated vaccines, especially ArkDPI vaccines, contribute to perpetuating the problem of IB in commercial chickens.


Protección contra los virus de la bronquitis infecciosa vacunales recombinantes y las subpoblaciones de vacunas seleccionadas en pollos. Los brotes de la bronquitis infecciosa aviar continúan presentándose a partir de nuevas variantes de dicho virus, que surgen de la selección de subpoblaciones de vacunas y/o eventos de recombinación que ocurren naturalmente. La secuenciación del gene S1 de virus tipo Arkansas (Ark) obtenidos de casos clínicos en pollos de engorde y de traspatio de Alabama muestra que tanto las subpoblaciones de la cepa vacunal Arkansas Delmarva Poultry Industry (ArkDPI) así como los virus de la vacuna Arkansas muestran recombinación con otros virus vacunales de la bronquitis infecciosa. Los aislamientos del virus de la bronquitis infecciosa Arkansas tipo "AL5", más similares a una subpoblación de vacuna ArkDPI seleccionada en pollos, "AL4", que muestra un grupo de tres cambios no sinónimos de subpoblaciones de ArkDPI seleccionadas en pollos y el tipo "AL9", que muestra recombinación con el serotipo Massachusetts, se examinaron para determinar su patogenicidad y capacidad para traspasar la inmunidad generada por la vacunación con una vacuna comercial ArkDPI. El análisis de las estructuras predichas de la proteína S1 indicó que los cambios se produjeron en regiones que previamente se había demostrado comprendían epítopos neutralizantes. Por lo tanto, se esperaba que contribuyeran al escape inmunológico y posiblemente a la virulencia. Con base en los signos clínicos, la carga viral y la histopatología, los tres aislados causaron enfermedad en pollos sin exposición previa, aunque las cargas virales de AL9 y AL5 en la tráquea fueron estadísticamente significativamente mayores (30 y 40 veces) en comparación con AL4. La secuenciación del gene S1 confirmó la estabilidad de los cambios relevantes en los virus inoculados en los pollos, aunque el virus en algunos pollos individuales exhibió cambios adicionales en el gene S1. Se identificó una deleción de un solo aminoácido en el dominio terminal N del gene S1 (NTD S1) en algunos pollos individuales. La ubicación de esta eliminación en la estructura predicha del gene S1 sugirió la posibilidad de que se tratara de un cambio compensatorio por la capacidad reducida de AL4 para replicarse en la tráquea de pollos sin exposición previa. Los pollos vacunados con una vacuna comercial ArkDPI el día de la eclosión y desafiados a los 21 días de edad mostraron que la vacunación proporcionó una protección incompleta contra el desafío con estos virus. Además, basándose en el número de copias del ARN viral en la tráquea, se detectaron diferencias en la capacidad de la vacuna para proteger contra estos aislados del virus de la bronquitis infecciosa, siendo la vacuna con la protección más deficiente contra AL4. Estos resultados proporcionan evidencia adicional que respalda que las vacunas atenuadas contra el virus de la bronquitis infecciosa, especialmente las vacunas ArkDPI, contribuyen a perpetuar esta enfermedad en los pollos comerciales.


Subject(s)
Chickens , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Infectious bronchitis virus/immunology , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Poultry Diseases/prevention & control , Poultry Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Viral Vaccines/immunology , Recombination, Genetic
11.
Avian Dis ; 68(2): 99-111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885051

ABSTRACT

The continued circulation of infectious bursal disease virus (IBDV) in Egypt, despite the use of various vaccines, is a serious problem that requires continuous detection of IBDV. In the current study, real-time reverse transcriptase polymerase chain reaction testing of 100 diseased chicken flocks during 2017-2021 revealed the presence of very virulent IBDV (vvIBDV) in 67% of the flocks, non-vvIBDV in 11%, and a mixture of both vvIBDV and non-vvIBDV in 4%. Twenty-nine IBDV isolates were submitted for partial sequencing of the viral protein 2 hypervariable region (VP2-HVR), and 27 isolates were confirmed to be genogroup A3 (vvIBDV) with 96.3%-98.5% similarity to the global A3 (vvIBDV) and 88.9%-97% similarity to genogroup A1 vaccine strains. The remaining two isolates were non-vvIBDV and showed 91.1% and 100% identity with classical genogroup A1 strains, respectively. Furthermore, the sequence and phylogenetic analysis of VP1 (amino acids 33-254) of two selected isolates of A3, 5/2017 and 98/2021, clustered them as B2, vvIBDV-like, strains with high similarity (99.5%) to four Egyptian, 99% to Chinese and European, and 97.7% to Chinese and Polish vvIBDV isolates. Experimental infection of commercial broiler chickens with two vvIBDV-A3B2 isolates (5/2017 and 98/2021) showed no mortality despite typical tissue lesions, clear histopathological changes, and strong ELISA antibody response. Isolate 98/2021 was more pathogenic, as confirmed by histopathology, whereas isolate 5/2017 induced a stronger serological response. In conclusion, vvIBDV (A3B2) strains with two amino acid (aa) substitutions in VP1 as V141I and V234I as well as VP2 as Y220F and G254S are still circulating in Egypt.


Análisis de las secuencias genéticas y de la patogenicidad del virus de la enfermedad infecciosa de la bolsa de pollos en Egipto durante los años 2017­2021. La circulación continua del virus de la enfermedad infecciosa de la bolsa (IBDV) en Egipto, a pesar del uso de varias vacunas, continua siendo un problema serio que requiere la detección continua de este virus. En el presente estudio, se realizó una prueba de transcripción reversa y reacción en cadena de la polimerasa en tiempo real de 100 parvadas enfermas de pollos durante los años 2017­2021 y reveló la presencia de virus muy virulentos (vvIBDV) en el 67% de las parvadas, otros tipos diferentes a los muy virulentos en el 11%, y una mezcla de virus muy virulentos y otros tiposen un 4% de las parvadas. Se enviaron veintinueve aislados del virus de la enfermedad infecciosa de la bolsa para la secuenciación parcial de la región hipervariable de la proteína viral 2 (VP2-HVR), y se confirmó que 27 aislados pertenecían al genogrupo A3 (vvIBDV) con una similitud del 96.3% al 98.5% con el genogrupo A3 global (vvIBDV) y de 88.9% a 97% de similitud con las cepas vacunales del genogrupo A1. Los dos aislamientos restantes no resultaron ser muy virulentos y mostraron un 91.1% y un 100% de identidad con las cepas clásicas del genogrupo A1, respectivamente. Además, la secuencia y el análisis filogenético de la proteina VP1 (aminoácidos 33-254) de dos aislados seleccionados de genogrupo A3, 5/2017 y 98/2021, los agruparon como cepas B2, similares a virus muy virulentos, con alta similitud (99.5%) con cuatro aislamientos de Egipto, con similitud de 99% con aislados chinos y europeos, y de 97.7% con aislados muy virulentos chinos y polacos. La infección experimental de pollos de engorde comerciales con dos aislados muy virulentos tipo A3B2 (5/2017 y 98/2021) no mostró mortalidad a pesar de las lesiones tisulares típicas, los cambios histopatológicos claros y la fuerte respuesta de anticuerpos por ELISA. El aislado 98/2021 fue más patógeno, según lo confirmado por histopatología, mientras que el aislado 5/2017 indujo una respuesta serológica más fuerte. En conclusión, las cepas muy virulentas (A3B2) con dos sustituciones de aminoácidos (aa) en la proteina VP1 como V141I y V234I, así como en VP2 tales como Y220F y G254S, todavía circulan en Egipto.


Subject(s)
Birnaviridae Infections , Chickens , Infectious bursal disease virus , Phylogeny , Poultry Diseases , Animals , Infectious bursal disease virus/genetics , Infectious bursal disease virus/pathogenicity , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Birnaviridae Infections/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Egypt/epidemiology , Virulence
12.
Avian Dis ; 68(2): 112-116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885052

ABSTRACT

Infectious laryngotracheitis (ILT) is a very serious worldwide respiratory disease of poultry, with many countries reporting ILT infections over the last decade. However, few reports are available regarding ILT disease prevalence in poultry in Turkey. Accordingly, the present study investigated ILT infection in Turkish broiler flocks between 2018 and 2022. Circulating ILT strains were characterized by sequence and phylogenetic analysis of two fragments of the infected-cell protein 4 gene. ILT virus (ILTV) was confirmed by quantitative PCR in 8 of the 21 flocks examined. As in other diseases, co-infections with other respiratory pathogens in confirmed ILT cases may worsen the symptoms and prolong the disease course. The present study confirmed co-infections with infectious bronchitis virus (13/21 tested flocks and 5/8 ILTV-positive flocks), indicating the importance of these pathogens in the occurrence of ILT infections.


Circulación y caracterización molecular del virus de la laringotraqueítis infecciosa en bandadas de aves de corral con trastornos respiratorios en Turquía, 2018­2022. La laringotraqueítis infecciosa (ILT) es una enfermedad respiratoria muy seria de la industria avícola en todo el mundo y muchos países han notificado infecciones por esta enfermedad durante la última década. Sin embargo, hay pocos informes disponibles sobre la prevalencia de laringotraqueítis infecciosa en la avicultura de Turquía. En consecuencia, el presente estudio investigó la infección por laringotraqueítis infecciosa en parvadas de pollos de engorde en Turquía entre los años 2018 y 2022. Las cepas de laringotraqueítis infecciosa circulantes se caracterizaron mediante análisis de secuencias y filogenéticos de dos fragmentos del gene de la proteína 4 de las células infectadas. El virus ILT (ILTV) se confirmó mediante PCR cuantitativa en ocho de las 21 parvadas examinadas. Como ocurre con otras enfermedades, las coinfecciones con otros patógenos respiratorios en casos confirmados de laringotraqueítis infecciosa pueden complicar los signos clínicos y prolongar el curso de la enfermedad. El presente estudio confirmó coinfecciones con el virus de la bronquitis infecciosa (en 13/21 parvadas analizadas y en 5/8 parvadas positivas para laringotraqueítis infecciosa), lo que indica la importancia de estos patógenos en la aparición de infecciones por la laringotraqueítis infecciosa.


Subject(s)
Chickens , Herpesviridae Infections , Herpesvirus 1, Gallid , Phylogeny , Poultry Diseases , Animals , Poultry Diseases/virology , Poultry Diseases/epidemiology , Herpesvirus 1, Gallid/genetics , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/epidemiology , Turkey/epidemiology , Prevalence
13.
Avian Dis ; 68(2): 117-128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885053

ABSTRACT

Cytokines are co-administrated with vaccines or co-expressed in the vaccine virus genome to improve protective efficacy by stimulating immune responses. Using glycosylphosphatidylinositol (GPI) anchoring by attachment to the target cytokine, we constructed recombinant Marek's disease virus (MDV) vaccine strain 301B/1 (v301B/1-rtg-IL-15) that expresses chicken interleukin-15 (IL-15) as the membrane-bound form at the cell surface. We evaluated the vaccine efficacy of v301B/1-rtg-IL-15 given as a bivalent Marek's disease (MD) vaccine in combination with turkey herpesvirus (HVT) against a very virulent plus MDV strain 648A challenge. The efficacy was compared with that of conventional bivalent MD vaccine, as a mixture with HVT plus parental v301B/1 or v301B/1-IL-15, which expresses a natural form of IL-15. The membrane-bound IL-15 expression did not interfere with the virus growth of recombinant v301B/1-rtg-IL-15. However, the MD incidence in birds vaccinated with v301B/1-rtg-IL-15 was higher than that of birds given the conventional bivalent MD vaccine containing parental v301B/1 virus, although the v301B/1-rtg-IL-15 vaccinated group showed increased natural killer cell activation at day 5 postvaccination, the same day as challenge. Overall, the protection of v301B/1-rtg-IL-15 was not improved from that of v301B/1 against very virulent plus MDV challenge.


Eficacia de una vacuna contra el virus de la enfermedad de Marek cepa 301B/1 recombinante que expresa la interleucina-15 de pollo anclada a la membrana. Las citocinas se administran junto con vacunas o se co-expresan en el genoma del virus de la vacuna para mejorar la eficacia protectora mediante la estimulación de respuestas inmunitarias. Utilizando el anclaje de glicosilfosfatidilinositol (GPI) mediante unión a la citoquina objetivo, se construyó una cepa de vacuna recombinante del virus de la enfermedad de Marek (MDV) 301B/1 (v301B/1-rtg-IL-15) que expresa la interleucina-15 de pollo (IL-15) como la forma unida a la membrana en la superficie celular. Se evaluó la eficacia de la vacuna v301B/1-rtg-IL-15 administrada como vacuna bivalente en combinación con el herpesvirus del pavo (HVT) contra el desafío con un virus muy virulento cepa 648A de la enfermedad de Marek (MD). La eficacia se comparó con la de la vacuna bivalente convencional contra la enfermedad de Marek, como una mezcla con HVT más la cepa v301B/1 parental o con el virus recombinante v301B/1-IL-15, que expresa una forma natural de IL-15. La expresión de IL-15 unida a membrana no interfirió con el crecimiento del virus de v301B/1-rtg-IL-15 recombinante. Sin embargo, la incidencia de la enfermedad de Marek en aves vacunadas con v301B/1-rtg-IL-15 fue mayor que la de las aves que recibieron la vacuna de Marek bivalente convencional que contenía el virus v301B/1 parental, aunque el grupo vacunado con v301B/1-rtg-IL-15 mostró una mayor activación de las células asesinas naturales en el día 5 después de la vacunación, que fue el mismo día del desafío. En general, la protección por la vacuna v301B/1-rtg-IL-15 no mejoró con respecto a la conferida por v301B/1 contra un desafío muy virulento de la enfermedad de Marek.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Interleukin-15 , Marek Disease Vaccines , Marek Disease , Vaccines, Synthetic , Animals , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-15/metabolism , Marek Disease/prevention & control , Marek Disease/immunology , Marek Disease Vaccines/immunology , Marek Disease Vaccines/genetics , Vaccines, Synthetic/immunology , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics , Herpesvirus 1, Meleagrid/metabolism
14.
Viruses ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38932181

ABSTRACT

High pathogenicity avian influenza viruses (HPAIVs) cause high morbidity and mortality in poultry species. HPAIV prevalence means high numbers of infected wild birds could lead to spill over events for farmed poultry. How these pathogens survive in the environment is important for disease maintenance and potential dissemination. We evaluated the temperature-associated survival kinetics for five clade 2.3.4.4 H5Nx HPAIVs (UK field strains between 2014 and 2021) incubated at up to three temperatures for up to ten weeks. The selected temperatures represented northern European winter (4 °C) and summer (20 °C); and a southern European summer temperature (30 °C). For each clade 2.3.4.4 HPAIV, the time in days to reduce the viral infectivity by 90% at temperature T was established (DT), showing that a lower incubation temperature prolonged virus survival (stability), where DT ranged from days to weeks. The fastest loss of viral infectivity was observed at 30 °C. Extrapolation of the graphical DT plots to the x-axis intercept provided the corresponding time to extinction for viral decay. Statistical tests of the difference between the DT values and extinction times of each clade 2.3.4.4 strain at each temperature indicated that the majority displayed different survival kinetics from the other strains at 4 °C and 20 °C.


Subject(s)
Influenza A virus , Influenza in Birds , Temperature , Animals , Influenza in Birds/virology , Influenza in Birds/mortality , Influenza A virus/pathogenicity , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/physiology , Kinetics , Poultry/virology , Animals, Wild/virology , Birds/virology , Poultry Diseases/virology , Poultry Diseases/mortality
15.
Viruses ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38932222

ABSTRACT

Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious disease in chickens and seriously endangers the poultry industry. The emergence and co-circulation of diverse IBV serotypes and genotypes with distinct pathogenicity worldwide pose a serious challenge to the development of effective intervention measures. In this study, we report the epidemic trends of IBV in China from 2019 to 2023 and a comparative analysis on the antigenic characteristics and pathogenicity of isolates among major prevalent lineages. Phylogenetic and recombination analyses based on the nucleotide sequences of the spike (S) 1 gene clustered a total of 205 isolates into twelve distinct lineages, with GI-19 as a predominant lineage (61.77 ± 4.56%) exhibiting an overall increasing trend over the past five years, and demonstrated that a majority of the variants were derived from gene recombination events. Further characterization of the growth and pathogenic properties of six representative isolates from different lineages classified four out of the six isolates as nephropathogenic types with mortality rates in one-day-old SPF chickens varying from 20-60%, one as a respiratory type with weak virulence, and one as a naturally occurring avirulent strain. Taken together, our findings illuminate the epidemic trends, prevalence, recombination, and pathogenicity of current IBV strains in China, providing key information for further strengthening the surveillance and pathogenicity studies of IBV.


Subject(s)
Chickens , Coronavirus Infections , Genetic Variation , Genotype , Infectious bronchitis virus , Phylogeny , Poultry Diseases , Animals , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Infectious bronchitis virus/classification , Infectious bronchitis virus/isolation & purification , China/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Prevalence , Virulence , Recombination, Genetic , Serogroup
16.
Poult Sci ; 103(7): 103848, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843610

ABSTRACT

Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/µL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Columbidae , Real-Time Polymerase Chain Reaction , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/diagnosis , Adenoviridae Infections/virology , Adenoviridae Infections/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , China/epidemiology , Aviadenovirus/isolation & purification , Aviadenovirus/genetics , Bird Diseases/virology , Bird Diseases/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis
17.
Vet Immunol Immunopathol ; 273: 110791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824909

ABSTRACT

Infectious bronchitis virus (IBV) strains of the Delmarva (DMV)/1639 genotype have been causing false layer syndrome (FLS) in the Eastern Canadian layer operations since the end of 2015. FLS is characterized by the development of cystic oviducts in layer pullets infected at an early age. Currently, there are no homologous vaccines for the control of this IBV genotype. Our previous research showed that a heterologous vaccination regimen incorporating Massachusetts (Mass) and Connecticut (Conn) IBV types protects layers against DMV/1639 genotype IBV. The aim of this study was to investigate the role of maternal antibodies conferred by breeders received the same vaccination regimen in the protection against the development of DMV/1639-induced FLS in pullets. Maternal antibody-positive (MA+) and maternal antibody-negative (MA-) female progeny chicks were challenged at 1 day of age and kept under observation for 16 weeks. Oviductal cystic formations were observed in 3 of 14 birds (21.4 %) in the MA- pullets, while the lesions were notably absent in the MA+ pullets. Milder histopathological lesions were observed in the examined tissues of the MA+ pullets. However, the maternal derived immunity failed to demonstrate protection against the damage to the tracheal ciliary activity, viral shedding, and viral tissue distribution. Overall, this study underscores the limitations of maternal derived immunity in preventing certain aspects of viral pathogenesis, emphasizing the need for comprehensive strategies to address different aspects of IBV infection.


Subject(s)
Antibodies, Viral , Chickens , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/virology , Chickens/immunology , Chickens/virology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunity, Maternally-Acquired , Trachea/immunology , Trachea/virology , Oviducts/immunology , Oviducts/pathology , Oviducts/virology
18.
Virulence ; 15(1): 2366874, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38869140

ABSTRACT

Recombinant Muscovy duck parvovirus (rMDPV) is a product of genetic recombination between classical Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV). The recombination event took place within a 1.1-kb DNA segment located in the middle of the VP3 gene, and a 187-bp sequence extending from the P9 promoter to the 5' initiation region of the Rep1 ORF. This resulted in the alteration of five amino acids within VP3. Despite these genetic changes, the precise influence of recombination and amino acid mutations on the pathogenicity of rMDPV remains ambiguous. In this study, based on the rMDPV strain ZW and the classical MDPV strain YY, three chimeric viruses (rZW-mP9, rZW-mPR187, and rYY-rVP3) and the five amino acid mutations-introduced mutants (rZW-g5aa and rYY-5aa(ZW)) were generated using reverse genetic technology. When compared to the parental virus rZW, rZW-g5aa exhibited a prolonged mean death time (MDT) and a decreased median lethal dose (ELD50) in embryonated duck eggs. In contrast, rYY-5aa(ZW) did not display significant differences in MDT and ELD50 compared to rYY. In 2-day-old Muscovy ducklings, infection with rZW-g5aa and rYY-5aa(ZW) resulted in mortality rates of only 20% and 10%, respectively, while infections with the three chimeric viruses (rZW-mP9, rZW-mPR187, rYY-rVP3) and rZW still led to 100% mortality. Notably, rYY-rVP3, containing the VP3 region from strain ZW, exhibited 50% mortality in 6-day-old Muscovy ducklings and demonstrated significant horizontal transmission. Collectively, our findings indicate that recombination and consequent amino acid changes in VP3 have a synergistic impact on the heightened virulence of rMDPV in Muscovy ducklings.


Subject(s)
Capsid Proteins , Ducks , Parvoviridae Infections , Point Mutation , Poultry Diseases , Recombination, Genetic , Animals , Virulence , Parvoviridae Infections/virology , Parvoviridae Infections/veterinary , Poultry Diseases/virology , Capsid Proteins/genetics , Parvovirinae/genetics , Parvovirinae/pathogenicity
19.
Arch Virol ; 169(7): 146, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864914

ABSTRACT

Adenoviruses are a diverse group of viruses that can cause a variety of diseases in poultry, including respiratory and gastrointestinal infections. In turkeys (Meleagris gallopavo), adenoviruses commonly cause hemorrhagic enteritis and, rarely, inclusion body hepatitis. In this study, we investigated fowl adenoviruses (FAdVs) circulating in turkeys in Egypt. Following clinical examination of 500 birds, a portion of the hexon gene was amplified from four out of 50 samples from diseased birds (8%), and one amplicon that produced a strong band was selected for sequencing. Molecular and phylogenetic analysis revealed that the virus in that sample belonged to serotype FAdV-8b. Histopathological and immunohistochemical examinations of prepared tissue sections were performed to confirm the pathological findings. Diseased birds exhibited ruffled feathers, low body weight, a crouching posture, and diarrhea. Gross examination revealed petechial hemorrhage on the spleen, swollen pale liver, and congested intestine. Microscopic examination revealed the presence of eosinophilic and basophilic intranuclear inclusion bodies, nuclear pyknosis, and apoptotic bodies in the liver, congestion, hemorrhage, and fibrosis in the lungs, and desquamation of enterocytes. The presence of viral antigens in the liver, lungs, and intestine was confirmed by immunohistochemistry. To our knowledge, this is the first report of the characterization of an outbreak of inclusion body hepatitis in turkeys (hybrid converter breeds) due to FAdV-8b in Egypt. This finding raises an epidemiological alarm, necessitating further studies, including full-genome sequencing, to trace the virus's origin and genetic diversity.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Turkeys , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/pathology , Aviadenovirus/genetics , Aviadenovirus/classification , Aviadenovirus/isolation & purification , Capsid Proteins/genetics , Egypt , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/pathology , Inclusion Bodies, Viral/virology , Liver/virology , Liver/pathology , Phylogeny , Poultry Diseases/virology , Poultry Diseases/pathology , Turkeys/virology
20.
Vet Microbiol ; 295: 110126, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896939

ABSTRACT

The co-infection of Newcastle disease virus (NDV) and Mycoplasma gallisepticum (MG) has a detrimental effect on chicken production performance, exerts a deleterious impact on poultry production performance, resulting in substantial economic losses. However, the exact impact and underlying mechanisms remain ambiguous. In this study, co-infection models were established both in vivo and in vitro. Through these models, it was found that the co-infection facilitated the replication of MG and NDV, as well as MG induced pathogenesis. The administration of lentogenic NDV resulted in the suppression of the innate immune response in vivo. At cellular level, co-infection promoted MG induced apoptosis through caspase-dependent mitochondrial endogenous pathway and suppressed the inflammatory secretion. This research contributes novel insights in co-infection.


Subject(s)
Chickens , Coinfection , Mycoplasma Infections , Mycoplasma gallisepticum , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Mycoplasma gallisepticum/pathogenicity , Animals , Newcastle disease virus/pathogenicity , Newcastle disease virus/physiology , Coinfection/microbiology , Coinfection/veterinary , Coinfection/virology , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/virology , Newcastle Disease/virology , Apoptosis , Immunity, Innate , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...