ABSTRACT
BACKGROUND: Prenatal and postnatal exposure to drugs such as cocaine is a public health problem that causes deficits in brain development and function in humans and animals. One of the main effects of prenatal and postnatal cocaine exposure is increased vulnerability to developing the substance use disorder at an early age. Furthermore, the negative emotional states associated with cocaine withdrawal increase the fragility of patients to relapse into drug abuse. In this sense, prenatal and postnatal cocaine exposure enhanced the cocaine- and nicotine-induced locomotor activity and locomotor sensitization, and rats exposed prenatally to cocaine displayed an increase in anxiety- and depressive-like behaviors in adulthood (PND 60-70). OBJECTIVE: Therefore, the objective of this study was to determine the effect of prenatal and postnatal cocaine exposure on anxiety- and depressive-like behaviors at different ages (30, 60, 90, and 120 days of age) in rats. METHODS: The study was divided into two stages: prenatal and postnatal. In the prenatal stage, a group of pregnant female Wistar rats was administered daily from GD0 to GD21 cocaine (cocaine pre-exposure group), and another group of pregnant female rats was administered daily saline (saline pre-exposure group). In the postnatal stage, during lactation (PND0 to PND21), pregnant rats received administration of cocaine or saline, respectively. Of the litters resulting from the cocaine pre-exposed and saline pre-exposed pregnant female groups, only the male rats were used for the recording of the anxiety- and depressive-like behaviors at different postnatal ages (30, 60, 90, and 120 days), representative of adolescence, adult, adulthood, and old age. RESULTS: The study found that prenatal and postnatal cocaine exposure generated age-dependent enhancement in anxiety- and depressive-like behaviors, being greater in older adult (PND 120) rats than in adolescent (PND 30) or adults (PND 60-90) rats. CONCLUSIONS: This suggests that prenatal and postnatal cocaine exposure increases anxiety- and depressive-like behaviors, which may increase the vulnerability of subjects to different types of drugs in young and adult age.
Subject(s)
Anxiety , Cocaine , Depression , Prenatal Exposure Delayed Effects , Rats, Wistar , Animals , Pregnancy , Cocaine/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Female , Rats , Anxiety/chemically induced , Depression/chemically induced , Male , Motor Activity/drug effects , Age Factors , Animals, Newborn , Behavior, Animal/drug effects , Dopamine Uptake InhibitorsABSTRACT
Pyriproxyfen (PPF) is an insecticide used in agriculture, which is approved for use in drinking water tanks for human consumption. However, some studies indicate that it may act as an endocrine disruptor and affect nontarget organisms. This study aimed to evaluate the effects of PPF on reproduction and general health status in female mice exposed from pre-puberty to adulthood. In the first experiment, females were treated by gavage from postnatal day (PND) 23 to (PND) 75 and were distributed into three experimental groups: control (vehicle), PPF 0.1 mg/kg, and PPF 1 mg/kg. Female mice were assessed for the age of puberty onset, body mass, water and food consumption, and the estrous cycle. On PDN 75, a subgroup was euthanized, when vital and reproductive organs were collected and weighed. The thyroid, ovary, and uterus were evaluated for histomorphometry. The other subgroup was assessed in relation to reproductive performance and fetal parameters. In a second experiment, the uterotrophic assay was performed with juvenile females (PND 18) using doses of 0.01, 0.1, or 1 mg/kg of PPF. PPF treatment reduced thyroid mass and increased liver mass. Furthermore, there was an increase in ovarian interstitial tissue and, in the uterus, a decrease in the thickness of the endometrial stroma with reduced content of collagen fibers. There was also a reduction of 30% in pregnancy rate in the treated groups and an increase in the frequency of fetal death. This study suggests that, based on this experimental model, the insecticide may pose a reproductive risk for females chronically exposed to the substance from the pre-pubertal period until adulthood. These results raise concerns about prolonged exposure of women to the same compound.
Subject(s)
Insecticides , Pyridines , Reproduction , Sexual Maturation , Female , Animals , Mice , Pyridines/toxicity , Pregnancy , Sexual Maturation/drug effects , Insecticides/toxicity , Reproduction/drug effects , Fetal Death , Ovary/drug effects , Ovary/growth & development , Uterus/drug effects , Uterus/growth & development , Prenatal Exposure Delayed Effects/chemically induced , Endocrine Disruptors/toxicity , Thyroid Gland/drug effectsABSTRACT
Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg·kg-1·day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, whereas females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, whereas females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific, long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.NEW & NOTEWORTHY The surge in recreational cannabis use and cannabinoid-based medication prescription among pregnant women has been notable in recent years, fueled by the misconception that natural products are inherently safe. Significant gaps persist regarding the potential risks of maternal consumption of cannabinoids and the long-term effects on the cardiorespiratory system of their offspring, which may be determined by sex. Accordingly, this research aims to diminish this lack of information and raise a note of caution.
Subject(s)
Cannabinoids , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Male , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Cannabinoids/pharmacology , Cannabinoids/adverse effects , Rats , Behavior, Animal/drug effects , Benzoxazines/pharmacology , Benzoxazines/adverse effects , Rats, Wistar , Naphthalenes/pharmacology , Naphthalenes/toxicity , Naphthalenes/adverse effects , Respiration/drug effects , Morpholines/pharmacologyABSTRACT
Early life phthalates exposure has been associated with adverse respiratory outcomes. However, evidence linking prenatal phthalates exposure and childhood lung function has been inconclusive. Additionally, few studies have examined phthalates exposure as a mixture and explored sexually dimorphic associations. We aimed to investigate sex-specific associations of prenatal phthalates mixtures with childhood lung function using the PROGRESS cohort in Mexico (N = 476). Prenatal phthalate concentrations were measured in maternal urine collected during the 2nd and 3rd trimesters. Children's lung function was evaluated at ages 8-13 years. Individual associations were assessed using multivariable linear regression, and mixture associations were modeled using repeated holdout WQS regression and hierarchical BKMR; data was stratified by sex to explore sex-specific associations. We identified significant interactions between 2nd trimester phthalates mixture and sex on FEV1 and FVC z-scores. Higher 2nd trimester phthalate concentrations were associated with higher FEV1 (ß = 0.054, 95 %CI: 0.005, 0.104) and FVC z-scores (ß = 0.074, 95 % CI: 0.024, 0.124) in females and with lower measures in males (FEV1, ß = -0.017, 95 %CI: -0.066, 0.026; FVC, ß = -0.014, 95 %CI: -0.065, 0.030). This study indicates that prenatal exposure to phthalates is related to childhood lung function in a sex-specific manner.
Subject(s)
Lung , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Phthalic Acids/urine , Phthalic Acids/toxicity , Female , Child , Mexico , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Adolescent , Lung/drug effects , Lung/physiopathology , Maternal Exposure/adverse effects , Environmental Pollutants/urine , Environmental Pollutants/toxicity , Respiratory Function TestsABSTRACT
Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.
Subject(s)
Autism Spectrum Disorder , Lipopolysaccharides , Prenatal Exposure Delayed Effects , Social Behavior , Valproic Acid , Animals , Female , Prenatal Exposure Delayed Effects/chemically induced , Pregnancy , Mice , Valproic Acid/adverse effects , Male , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/etiology , Microglia/drug effects , Microglia/metabolism , Disease Models, Animal , Behavior, Animal/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Mice, Inbred C57BLABSTRACT
A previous study using miRNA sequencing revealed that exposure to a mixture of phthalates during pregnancy and lactation dysregulated rno-miR-184 and rno-miR-141-3p in the ventral prostate (VP) of offspring. Here, rno-miR-184 and rno-miR-141-3 expressions were obtained by RT-qPCR in the VP of F1 males as well as in F2 offspring, aiming to establish a relationship with possible oncogenic targets through in silico analyses with multigenerational approach. Additionally, some targets were measured by western blots to highlight a possible relationship between the deregulated miRNAs and some of their targets. VP samples from rats exposed to a mixture of phthalates maternally during pregnancy and lactation (GD10 to PND21-F1) and VP from offspring (F2) were examined. The phthalate mixture at both concentrations (20 µg and 200 mg/kg/day) increased the expression of both miRNAs in the F1 (PND22 and 120) and F2 (descendants of F1-treated males) prostate. Target prediction analysis revealed that both microRNAs are responsible for modulating the expression and synthesis of 40 common targets. A phthalate target association analysis and the HPA database showed an interesting relationship among these possible miRNAs modulated targets with prostate adenocarcinoma and other oncogenic processes. Western blots showed alteration in P63, P53, WNT5, and STAT3 expression, which are targeted by the miRNAs, in the VP of F1/F2 males. The data draw attention to the epigenetic modulation in the prostate of descendants exposed to phthalates and adds to one of the few currently found in the literature to point to microRNAs signature as biomarkers of exposure to plasticizers.
Subject(s)
MicroRNAs , Phthalic Acids , Prenatal Exposure Delayed Effects , Prostatic Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Animals , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Female , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Maternal Exposure/adverse effects , Prostate/drug effects , Prostate/pathology , Rats, Wistar , Rats , Computer SimulationABSTRACT
Previously, we found that the ultraviolet filter benzophenone-3 (BP3) causes fetal growth restriction in mice when is applied when implantation occurs (first week of gestation). However, whether BP3 can affect gestation and fertility after implantation period is unknown. We aimed to study the effects on reproductive physiology of the offspring caused by perinatal exposure to BP3. C57BL/6 pregnant mice were dermally exposed to 50 mg BP3/kg bw.day or olive oil (vehicle) from gestation day 9 (gd9) to postnatal day 21 (pnd1). We observed no differences in mother's weights, duration of gestation, number of pups per mother, onset of puberty or sex ratio. The weights of the pups exposed to benzophenone-3 were transiently lower than those of the control. Estrous cycle was not affected by perinatal exposure to BP3. Besides, we performed a fertility assessment by continuous breeding protocol: at 10 weeks of age, one F1 female and one F1 male mouse from each group was randomly chosen from each litter and housed together for a period of 6 months. We noticed a reduction in the number of deliveries per mother among dams exposed to BP3 during the perinatal period. To see if this decreased fertility could be associated to an early onset of oocytes depletion, we estimated the ovarian reserve of germ cells. We found reduced number of oocytes and primordial follicles in BP3. In conclusion, perinatal exposure to BP3 leads to a decline in the reproductive capacity of female mice in a continuous breeding protocol linked to oocyte depletion.
Subject(s)
Benzophenones , Mice, Inbred C57BL , Oocytes , Prenatal Exposure Delayed Effects , Animals , Female , Benzophenones/toxicity , Benzophenones/administration & dosage , Pregnancy , Male , Prenatal Exposure Delayed Effects/chemically induced , Oocytes/drug effects , Mice , Fertility/drug effects , Sunscreening Agents/toxicity , Maternal Exposure/adverse effectsABSTRACT
BACKGROUND: Pesticide exposure may affect young children's neurodevelopment, but only few cohort studies have addressed possible effects of non-organophosphate pesticides. OBJECTIVE: We evaluated associations between prenatal current-use pesticide exposure and neurodevelopmental outcomes among 1-year-old children from the Infants' Environmental Health (ISA) birth cohort. METHODS: To determine prenatal pesticide exposure, we measured biomarkers of pyrimethanil, chlorpyrifos, synthetic pyrethroids, and 2,4-D in urine samples among 355 women, 1-3 times during pregnancy. One-year post-partum, we evaluated children's neurodevelopment with the Bayley Scales of Infant and Toddler Development 3rd edition (BSID-III). We assessed associations between exposures and neurodevelopmental outcomes (composite and z-scores) using single-chemical linear regression models adjusted for possible confounders (maternal education, parity, sex, gestational age at birth, child age, HOME-score, location of assessment, biomarkers of mancozeb), and studied effect-modification by sex. We evaluated non-linear associations of multiple pesticide exposures with Bayesian kernel machine regression (BKMR). RESULTS: We found higher prenatal urinary 2,4-D concentrations were associated with lower language (ßper ten-fold increase = -2.0, 95 % confidence interval (CI) = -3.5, -0.5) and motor (ßper ten-fold increase = -2.2, 95 %CI = -4.2, -0.1) composite scores among all children. Also, higher chlorpyrifos exposure [measured as urinary 3,5,6-trichloro-2-pyridinol (TCPy)] was associated with lower cognitive composite scores (ßper ten-fold increase = -1.9, 95 %CI = -4.7, 0.8), and lower motor composite scores among boys (ßper ten-fold increase = -3.8, 95 % CI = -7.7, 0.1) but not girls (ßper ten-fold increase = 2.3, 95 %CI = -1.6, 6.3, pINT = 0.11). Finally, higher pyrimethanil was associated with lower language abilities among girls, but not boys. Pyrethroid metabolite concentrations did not explain variability in BSID-III composite scores. Associations were similar for BSID-III z-scores, and we found no evidence for non-linear associations or mixture effects. DISCUSSION: Prenatal exposure to common-use pesticides may affect children's neurodevelopment at 1-year of age, some effects may be sex-specific.
Subject(s)
Child Development , Pesticides , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Infant , Pesticides/urine , Pesticides/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Male , Child Development/drug effects , Costa Rica , Maternal Exposure/adverse effects , Birth Cohort , Environmental Pollutants/urine , Adult , Cohort Studies , Young AdultABSTRACT
The female prostate, also known as Skene's gland, is present in both humans and rodents. Prenatal exposure to ethinylestradiol (EE2), a synthetic estrogen found in oral contraceptives, induces pormotes neoplasic prostate lesions in gerbils (Meriones unguiculatus). Conversely, pequi oil (Pe), extracted from the Brazilian Cerrado fruit, has antioxidant, anti-inflammatory, and anticancer properties, mitigates risks associated with chronic diseases related to lifestyle and aging. This study evaluates the impact of prenatal exposure to Pe (300 mg/kg) on senile gerbil offspring's male and female prostates under normal conditions and EE2 exposure (15 µg/kg/day). Histological and morphometric analyses revealed that Pe reduced male body weight and prostate epithelial height, along with a thinner muscle layer. In females, EE2 exposure reduced prostatic weight, while Pe exposure lowered epithelial height and the relative stromal compartment volume, increasing the muscle layer. Pequi oil holds potential in mitigating alterations induced by exposure to the endocrine disruptor EE2.
Subject(s)
Ethinyl Estradiol , Gerbillinae , Prenatal Exposure Delayed Effects , Prostate , Animals , Male , Female , Prostate/drug effects , Prostate/pathology , Prenatal Exposure Delayed Effects/chemically induced , Ethinyl Estradiol/toxicity , Pregnancy , Plant Oils , Aging/drug effects , Endocrine Disruptors/toxicity , EricalesABSTRACT
BACKGROUND: The cardiotoxicity of prenatal exposure to mercury has been suggested in populations having regular contaminated seafood intake, though replications in the literature are inconsistent. METHODS: The Timoun Mother-Child Cohort Study was set up in Guadeloupe, an island in the Caribbean Sea where seafood consumption is regular. At seven years of age, 592 children underwent a medical examination, including cardiac function assessment. Blood pressure (BP) was taken using an automated blood pressure monitor, heart rate variability (HRV, 9 parameters) and electrocardiogram (ECG) characteristics (QT, T-wave parameters) were measured using Holter cardiac monitoring during the examination. Total mercury concentrations were measured in cord blood at birth (median = 6.6 µg/L, N = 399) and in the children's blood at age 7 (median = 1.7 µg/L, N = 310). Adjusted linear and non-linear modelling was used to study the association of each cardiac parameter with prenatal and childhood exposures. Sensitivity analyses included co-exposures to lead and cadmium, adjustment for maternal seafood consumption, selenium and polyunsaturated fatty acids (n3-PUFAs), and for sporting activity. RESULTS: Higher prenatal mercury was associated with higher systolic BP at 7 years of age (ßlog2 = 1.02; 95% Confidence Interval (CI) = 0.10, 1.19). In boys, intermediate prenatal exposure was associated with reduced overall HRV and parasympathetic activity, and longer QT was observed with increasing prenatal mercury (ßlog2 = 4.02; CI = 0.48, 7.56). In girls, HRV tended to increase linearly with prenatal exposure, and no association was observed with QT-wave related parameters. Mercury exposure at 7 years was associated with decreased BP in girls (ßlog2 = -1.13; CI = -2.22, -0.004 for diastolic BP). In boys, the low/high-frequency (LF/HF) ratio increased for intermediate levels of exposure. CONCLUSION: Our study suggests sex-specific and non-monotonic modifications in some cardiac health parameters following prenatal exposure to mercury in pre-pubertal children from an insular fish-consuming population.
Subject(s)
Mercury , Prenatal Exposure Delayed Effects , Male , Pregnancy , Infant, Newborn , Female , Animals , Humans , Child , Mercury/analysis , Cohort Studies , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Guadeloupe/epidemiology , West IndiesABSTRACT
This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.
Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Adult , Rats , Pregnancy , Male , Female , Animals , Rats, Wistar , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Reproduction , Testosterone/metabolism , Testis , Diethylhexyl Phthalate/toxicity , Dibutyl Phthalate/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolismSubject(s)
Autism Spectrum Disorder , Autistic Disorder , Pregnancy Complications , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Lithium/adverse effects , Lithium/analysis , Autistic Disorder/chemically induced , Prenatal Exposure Delayed Effects/chemically induced , Environmental Exposure/analysis , Autism Spectrum Disorder/chemically induced , Pregnancy Complications/drug therapyABSTRACT
Toxicological studies have revealed that DEHP exposure during pregnancy may induce developmental disorders, especially in male offspring, leading to morphological and functional alterations in the reproductive system by mechanisms that should be investigated. Thus, the aim of this work was to analyze the testicular toxicity induced by an environmentally relevant DEHP dose during development and its impact on FLNA, a protein that participates in the blood-testis barrier assembly. We used male Wistar rats exposed to DEHP during pregnancy and lactation. The results showed that DEHP exposure during development and lactation increased body weight, decreased gonadal weight and shortened anogenital distance. This phthalate induced morphological changes in the testis, suggestive of hypospermatogenesis. DEHP exposure decreased the number of FLNA positive cells and the expression of FLNA and claudin-1 in prepubertal testes. Furthermore, DEHP inhibited FLNA and claudin-1 protein expression in adult male rats. These results indicated that exposure to DEHP during gestation and lactation perturbed testis development and suggested that FLNA is a target protein of DEHP, possibly contributing to the phthalate-induced damage on BTB.
Subject(s)
Diethylhexyl Phthalate , Prenatal Exposure Delayed Effects , Pregnancy , Female , Rats , Male , Animals , Humans , Testis/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Filamins/metabolism , Claudin-1/metabolism , Rats, Wistar , Lactation , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolismABSTRACT
The chronic use of selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors (SNRIs) may result in human gynecomastia, mammoplasia, galactorrhea, and elevated breast cancer risk. As antidepressants are frequently used for postpartum depression (PPD) treatment, this study investigated the adverse effects of lactational exposure to venlafaxine (VENL, a selective SNRI) on mammary gland development and carcinogenesis in F1 female offspring. Thus, lactating Wistar rats (F0) received VENL by oral gavage at daily doses of 3.85, 7.7, or 15.4 mg/kg (N = 9, each group) from lactational day (LD 1) until the weaning of the offspring (LD 21). F1 female offspring were euthanized for mammary gland, and ovary histological analyses on the post-natal day (PND) 22 and 30 (1 pup/litter/period, N = 9, each group). At PND 22, other females (2 pups/litter, N = 18, each group) received a single dose of carcinogen N-methyl-N-nitrosourea (MNU, 50 mg/kg) intraperitoneally (i.p.) for tumor susceptibility assay until PND 250. Tumor incidence and latency were recorded and representative tumor samples were collected for histopathology. The results indicate that lactational exposure to VENL did not alter the development of the mammary gland (epithelial ductal tree or the mean number of terminal end buds), or the ovary (weight and primary, secondary, tertiary, and Graafian follicles) in prepubertal F1 female offspring. In addition, VENL exposure did not influence tumor incidence or tumor latency in adult female offspring that received MNU. Thus, the findings of this animal study indicated that lactational VENL exposure, a period similar to human PPD, did not exert an adverse effect on the mammary gland development at the prepubertal phase or on chemically induced mammary tumorigenesis in adult F1 female rats.
Subject(s)
Lactation , Prenatal Exposure Delayed Effects , Pregnancy , Female , Male , Humans , Rats , Animals , Venlafaxine Hydrochloride/toxicity , Rats, Wistar , Carcinogenesis , Prenatal Exposure Delayed Effects/chemically inducedABSTRACT
BACKGROUND: Manganese (Mn) is essential to healthy neurodevelopment, but both Mn deficiency and over-exposure have been linked to prefrontal cortex (PFC) impairments, the brain region that regulates cognitive and neurobehavioral processes responsible for spatial memory, learning, motivation, and time perception. These processes facilitated by attention, inhibitory control, working memory, and cognitive flexibility are often sexually dimorphic and complex, driven by multiple interconnected neurologic and cognitive domains. OBJECTIVE: We investigated the role of child sex as an effect modifier of the association between prenatal Mn exposure and performance in an operant testing battery (OTB) that assessed multiple cognitive and behavioral functional domains. METHODS: Children (N = 575) aged 6-8 years completed five OTB tasks. Blood and urinary Mn measurements were collected from mothers in the 2nd and 3rd trimesters. Multiple regression models estimated the association between Mn biomarkers at each trimester with OTB performance while adjusting for socio-demographic covariates. Covariate-adjusted weighted quantile sum (WQS) regression models were used to estimate the association of a Mn multi-media biomarker (MMB) mixture with OTB performance. Interaction terms were used to estimate modification effect by child sex. RESULTS: Higher blood Mn exposure was associated with better response rates (more motivation) on the progressive ratio task and higher overall accuracy on the delayed matching-to-sample task. In the WQS models, the MMB mixture was associated with better response rates (more motivation) on the progressive ratio task. Additionally, for the linear and WQS models, we observed a modification effect by child sex in the progressive ratio and delayed matching-to-sample tasks. Higher prenatal Mn biomarker levels were associated with improved task performance for girls and reduced performance in boys. CONCLUSION: Higher prenatal blood Mn concentrations and the MMB mixture predicted improved performance on two of five operant tasks. Higher prenatal Mn concentrations regulated executive functions in children in a sexually dimorphic manner. Higher prenatal Mn exposure is associated with improved performance on spatial memory and motivation tasks in girls, suggesting that Mn's nutritional role is sexually dimorphic, and should be considered when making dietary and/or environmental intervention recommendations.
Subject(s)
Manganese , Prenatal Exposure Delayed Effects , Male , Child , Female , Pregnancy , Humans , Manganese/toxicity , Brain , Learning , Memory, Short-Term , Biomarkers , Prenatal Exposure Delayed Effects/chemically inducedABSTRACT
Although there are many studies on the health effects of methylmercury (MeHg) toxicity during in utero and early development, little is known about its effects on mineralized tissues present in the oral cavity, such as enamel structure. Therefore, this study evaluated the effects of MeHg exposure on the physico-chemical, ultrastructural and functional properties of mature tooth enamel. Specifically, we studied offspring of mothers exposed to MeHg during the prenatal and postnatal periods which are the developmental stages associated with tooth enamel formation. Female rats were exposed to MeHg at a dose of 40 µg/kg/day for 42 days of pregnancy and lactation. The enamel of offspring was analyzed by (1) Fourier Transform Infrared Spectroscopy and Raman to assess physicochemical composition, (2) Scanning Electron Microscopy for ultrastructural evaluation, (3) Transmitted Polarizing Light Microscopy for analysis of the enamel extracellular matrix, and (4) resistance and hardness were evaluated by microhardness. The results showed that MeHg exposure during this sensitive enamel formation period induced changes in inorganic and organic content and enamel prisms ultrastructure alterations and disturbed the organic extracellular matrix due to a decreased enamel strength. These novel findings establish for the first time that maternal exposure to MeHg pre and postnatal promoted relevant changes in mature enamel of their offspring rats.
Subject(s)
Methylmercury Compounds , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Rats , Animals , Female , Methylmercury Compounds/toxicity , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Oral Health , LactationABSTRACT
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Prenatal Exposure Delayed Effects , Female , Humans , Animals , Pregnancy , Cannabinoids/toxicity , Endocannabinoids/metabolism , Placenta/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Teratogens/pharmacology , Cannabis/adverse effects , Cannabis/metabolism , Cannabinoid Receptor Agonists/pharmacologyABSTRACT
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental condition that impacts social interaction and sensory processing, is rising. Valproic acid (VPA) exposure during pregnancy causes autistic-like traits in offspring. Olanzapine (OLZ), an atypical antipsychotic, is used to treat ASD. We assessed the impact of OLZ on behavior, neuromorphology, and nitric oxide (NO) levels in the hippocampus using prenatal VPA treatment in rats. It is commonly known that ASD patients exhibit sensory abnormalities. As such, we utilized the tail flick test to validate the ASD model. In the novel object recognition test (NORT), VPA exposure reduces the discrimination index (DI) in the first introduction to the novel object. Moreover, OLZ and vehicle-treated rats perform differently in the second exposition to the DI of the novel object, suggesting that OLZ reverses VPA-induced deficits in recognition memory. The latency to find the hidden platform in the Morris water maze test of memory and learning improves in VPA-exposed rats after OLZ administration, indicating that OLZ improves spatial memory in these rats. Administration of prenatal VPA induces neuronal hypotrophy and reduces spine density in pyramidal neurons of the CA1 region of the hippocampus. Treatment with OLZ corrects the neuromorphological changes brought on by VPA. In the CA1 region of the hippocampus, VPA treatment increases the number of neurons, which normalizes with OLZ treatment. OLZ increases the NO levels in the dorsal hippocampus in control rats. In rats exposed to VPA, the second-generation antipsychotic OLZ reduces memory-related and neuroplastic alterations. The current findings support the use of OLZ in this illness and further validate the use of prenatal VPA as a model of ASD.
Subject(s)
Antipsychotic Agents , Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Female , Rats , Male , Animals , Humans , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Olanzapine/adverse effects , Autism Spectrum Disorder/chemically induced , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Neurons , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Disease Models, Animal , Prenatal Exposure Delayed Effects/drug therapy , Prenatal Exposure Delayed Effects/chemically induced , Behavior, Animal , Social BehaviorABSTRACT
Paracetamol (PAR) is an over-the-counter analgesic/antipyretic used during pregnancy worldwide. Epidemiological studies have been associating gestational PAR exposure with neurobehavioral alterations in the progeny resembling autism spectrum disorders and attention-deficit hyperactivity disorder symptoms. The endocannabinoid (eCB) dysfunction was previously hypothesized as one of the modes of action by which PAR may harm the developing nervous system. We aimed to evaluate possible effects of gestational exposure to PAR on male and female rat's offspring behavior and if an acute injection of WIN 55,212-2 (WIN, 0.3 mg/kg), a non-specific cannabinoid agonist, prior to behavioral tests, would induce different effects in PAR exposed and non-exposed animals. Pregnant Wistar rats were gavaged with PAR (350 mg/kg/day) or water from gestational day 6 until delivery. Nest-seeking, open field, apomorphine-induced stereotypy, marble burying and three-chamber tests were conducted in 10-, 24-, 25- or 30-days-old rats, respectively. PAR exposure resulted in increased apomorphine-induced stereotyped behavior and time spent in the central area of the open field in exposed female pups. Additionally, it induced hyperactivity in the open field and increased marble burying behavior in both male and female pups. WIN injection modified the behavioral response only in the nest seeking test, and opposite effects were observed in control and PAR-exposed neonate females. Reported alterations are relevant for the neurodevelopmental disorders that have been associated with maternal PAR exposure and suggest that eCB dysfunction may play a role in the action by which PAR may harm the developing brain.
Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Rats , Animals , Male , Female , Cannabinoid Receptor Agonists/adverse effects , Acetaminophen/toxicity , Apomorphine , Rats, Wistar , Endocannabinoids , Autism Spectrum Disorder/chemically induced , Calcium Carbonate/adverse effects , Prenatal Exposure Delayed Effects/chemically inducedABSTRACT
Aims: Exposure to endocrine-disrupting chemicals (EDCs) during critical neurodevelopmental windows has been associated with the risk of autistic traits. This systematic review of epidemiological studies examined the association between maternal exposure to EDCs during pregnancy and the risk of autism spectrum disorder (ASD) in the offspring. Methods: We searched PubMed, Web of Science, Scopus, and Google Scholar from inception to November 17, 2022, for studies investigating the association between prenatal exposure to EDCs and outcomes related to ASD. Two independent reviewers screened studies for eligibility, extracted data, and assessed the risk of bias. The review was registered in PROSPERO (CRD42023389386). Results: We included 27 observational studies assessing prenatal exposure to phthalates (8 studies), polychlorinated biphenyls (8 studies), organophosphate pesticides (8 studies), phenols (7 studies), perfluoroalkyl substances (6 studies), organochlorine pesticides (5 studies), brominated flame retardants (3 studies), dioxins (1 study), and parabens (1 study). The number of examined children ranged from 77 to 1,556, the age at the assessment of autistic traits ranged from 3 to 14 years, and most studies assessed autistic traits using the Social Responsiveness Scale. All but one study was considered to have a low risk of bias. Overall, there was no association between maternal exposure to specific ECDs during pregnancy and the occurrence of autistic traits in offspring. Conclusions: Findings from the epidemiological studies evaluated here do not support an association between prenatal exposure to ECDs and the likelihood of autistic traits in later in life. These findings should not be interpreted as definitive evidence of the absence of neurodevelopment effects of EDCs affecting ASD risk, given the limitations of current studies such as representative exposure assessment, small sample sizes, inadequacy to assess sexually dimorphic effects, or the effects of EDC mixtures. Future studies should carefully address these limitations.