Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.672
1.
PLoS Biol ; 22(6): e3002641, 2024 Jun.
Article En | MEDLINE | ID: mdl-38833481

In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.


Diet, High-Fat , Fatty Acids , Hypothalamus , MicroRNAs , Obesity, Maternal , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Pregnancy , Hypothalamus/metabolism , Diet, High-Fat/adverse effects , Obesity, Maternal/metabolism , Fatty Acids/metabolism , Mice , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Neurons/metabolism , Obesity/metabolism , Obesity/genetics , Humans , Male
2.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715090

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Brain , Cytokines , Mice, Inbred C57BL , Neurodevelopmental Disorders , Placenta , Prenatal Exposure Delayed Effects , Sex Characteristics , Female , Animals , Pregnancy , Male , Cytokines/metabolism , Cytokines/genetics , Mice , Brain/metabolism , Brain/immunology , Brain/embryology , Placenta/metabolism , Placenta/immunology , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/metabolism , Poly I-C/toxicity , Transcriptome , Disease Models, Animal , Fetus/metabolism
3.
Epigenetics Chromatin ; 17(1): 14, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715099

BACKGROUND: Prenatal nicotine exposure (PNE) has been documented to cause numerous deleterious effects on fetal development. However, the epigenetic changes promoted by nicotine exposure on germ cells are still not well understood. OBJECTIVES: In this study, we focused on elucidating the impact of prenatal nicotine exposure on regulatory epigenetic mechanisms important for germ cell development. METHODS: Sprague-Dawley rats were exposed to nicotine during pregnancy and male progeny was analyzed at 11 weeks of age. Testis morphology was analyzed using frozen testis sections and expression of germ cell markers was examined by RT-qPCR; histone modifications were assessed by Western Blot (WB). DNA methylation analysis was performed by methylation-specific PCR of bisulfite converted DNA. Genome-wide DNA methylation was analyzed using Methylated DNA immunoprecipitation (MeDIP)-seq. We also carried out transcriptomics analysis of pituitary glands by RNA-seq. RESULTS: We show that gestational exposure to nicotine reduces germ cell numbers, perturbs meiosis, affects the expression of germ line reprogramming responsive genes, and impacts the DNA methylation of nervous system genes in the testis. PNE also causes perturbation of gene expression in the pituitary gland of the brain. CONCLUSIONS: Our data demonstrate that PNE leads to perturbation of male spermatogenesis, and the observed effects are associated with changes of peripheral nervous system signaling pathways. Alterations in the expression of genes associated with diverse biological activities such as cell migration, cell adhesion and GABA signaling in the pituitary gland underscore the complexity of the effects of nicotine exposure during pregnancy.


DNA Methylation , Epigenesis, Genetic , Nicotine , Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Testis , Animals , Male , Female , Pregnancy , Rats , Testis/drug effects , Testis/metabolism , Epigenesis, Genetic/drug effects , DNA Methylation/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Signal Transduction/drug effects , Spermatogenesis/drug effects , Spermatogenesis/genetics , Peripheral Nervous System/drug effects , Peripheral Nervous System/metabolism
4.
Brain Behav ; 14(5): e3515, 2024 May.
Article En | MEDLINE | ID: mdl-38702895

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Hippocampus , Melatonin , Memory Disorders , Neuronal Plasticity , Sleep Deprivation , Animals , Melatonin/pharmacology , Melatonin/administration & dosage , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Sleep Deprivation/physiopathology , Mice , Male , Hippocampus/metabolism , Hippocampus/drug effects , Female , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Neuronal Plasticity/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Pregnancy , Maternal Deprivation , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Neuroinflammatory Diseases/drug therapy
5.
Reprod Fertil Dev ; 362024 May.
Article En | MEDLINE | ID: mdl-38739740

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Apoptosis , Cell Proliferation , Diet, High-Fat , Lactation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Testis , Animals , Female , Male , Pregnancy , Apoptosis/physiology , Lactation/physiology , Testis/metabolism , Testis/pathology , Rats , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Spermatogenesis/physiology , Sertoli Cells/metabolism , Sertoli Cells/pathology , Insulin-Like Growth Factor I/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Rats, Wistar
6.
Front Endocrinol (Lausanne) ; 15: 1381180, 2024.
Article En | MEDLINE | ID: mdl-38752179

Background: The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods: To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results: The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1ß, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion: This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.


Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/metabolism , Mice , Male , Prenatal Exposure Delayed Effects/metabolism , Phenotype , Behavior, Animal , Hypothyroidism/metabolism , Thyroxine/blood , Biomarkers/metabolism , Mice, Inbred C57BL , Pregnancy Complications/metabolism , Disease Models, Animal , Inflammation/metabolism , Social Behavior
7.
Nat Commun ; 15(1): 4140, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755138

The goal of this study is to examine the association between in utero drought exposure and epigenetic age acceleration (EAA) in a global climate change hot spot. Calculations of EAA in adults using DNA methylation have been found to accurately predict chronic disease and longevity. However, fewer studies have examined EAA in children, and drought exposure in utero has not been investigated. Additionally, studies of EAA in low-income countries with diverse populations are rare. We assess EAA using epigenetic clocks and two DNAm-based pace-of-aging measurements from whole saliva samples in 104 drought-exposed children and 109 same-sex sibling controls in northern Kenya. We find a positive association between in utero drought exposure and EAA in two epigenetic clocks (Hannum's and GrimAge) and a negative association in the DNAm based telomere length (DNAmTL) clock. The combined impact of drought's multiple deleterious stressors may reduce overall life expectancy through accelerated epigenetic aging.


Climate Change , DNA Methylation , Droughts , Epigenesis, Genetic , Prenatal Exposure Delayed Effects , Humans , Female , Kenya , Male , Child , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Pregnancy , Aging/genetics , Saliva/metabolism , Child, Preschool
8.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777957

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Benzhydryl Compounds , Brain , DNA Methylation , Epigenesis, Genetic , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Epigenesis, Genetic/drug effects , Male , Mice , Brain/metabolism , Brain/drug effects , DNA Methylation/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Mice, Inbred C57BL
9.
Cells ; 13(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38786059

In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS.


Analgesics, Opioid , Astrocytes , Neurons , Prenatal Exposure Delayed Effects , Signal Transduction , Synapses , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Animals , Synapses/metabolism , Synapses/drug effects , Female , Pregnancy , Mice , Analgesics, Opioid/pharmacology , Analgesics, Opioid/adverse effects , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Signal Transduction/drug effects , Buprenorphine/pharmacology , Cells, Cultured , Mice, Inbred C57BL
10.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791468

Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.


Adrenocorticotropic Hormone , Corticosterone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Prediabetic State , Rats, Sprague-Dawley , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Female , Pregnancy , Prediabetic State/metabolism , Rats , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Corticosterone/blood , Corticosterone/metabolism , Male , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Prenatal Exposure Delayed Effects/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance
11.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791492

The review examines the impact of maternal preeclampsia (PE) on the cardiometabolic and cardiovascular health of offspring. PE, a hypertensive disorder of pregnancy, is responsible for 2 to 8% of pregnancy-related complications. It significantly contributes to adverse outcomes for their infants, affecting the time of birth, the birth weight, and cardiometabolic risk factors such as blood pressure, body mass index (BMI), abdominal obesity, lipid profiles, glucose, and insulin. Exposure to PE in utero predisposes offspring to an increased risk of cardiometabolic diseases (CMD) and cardiovascular diseases (CVD) through mechanisms that are not fully understood. The incidence of CMD and CVD is constantly increasing, whereas CVD is the main cause of morbidity and mortality globally. A complex interplay of genes, environment, and developmental programming is a plausible explanation for the development of endothelial dysfunction, which leads to atherosclerosis and CVD. The underlying molecular mechanisms are angiogenic imbalance, inflammation, alterations in the renin-angiotensin-aldosterone system (RAAS), endothelium-derived components, serotonin dysregulation, oxidative stress, and activation of both the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis. Moreover, the potential role of epigenetic factors, such as DNA methylation and microRNAs as mediators of these effects is emphasized, suggesting avenues for future research and therapeutic interventions.


Cardiovascular Diseases , Humans , Female , Pregnancy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Hypertension, Pregnancy-Induced/genetics , Hypertension, Pregnancy-Induced/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Epigenesis, Genetic , Risk Factors , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731818

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Cardiovascular Diseases , Prenatal Exposure Delayed Effects , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Humans , Pregnancy , Animals , Female , Prenatal Exposure Delayed Effects/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/chemically induced , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/etiology , Maternal Exposure/adverse effects , Signal Transduction/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Fetal Development/drug effects , Environmental Pollutants/toxicity , Environmental Pollutants/adverse effects , Metabolic Reprogramming
13.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38753512

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Benzhydryl Compounds , Neurons , Phenols , Sex Differentiation , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Male , Mice , Sex Differentiation/drug effects , Neurons/drug effects , Neurons/metabolism , Pregnancy , Hypothalamus/metabolism , Hypothalamus/drug effects , Neurogenesis/drug effects , Arginine Vasopressin/metabolism , Vasopressins/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Mice, Inbred C57BL , Estrogens/metabolism , Estrogens/pharmacology
14.
Behav Brain Res ; 468: 115025, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38710451

Prenatal stress (PS), in both humans and animals, presents a potential risk to the mother and her fetus throughout gestation. PS is always associated with physiological changes that alter embryonic development and predispose the individual to lifelong health problems, including susceptibility to mental illness. This study aims to identify the harmful effects of prenatal restraint stress (PRS), commonly employed to induce stress painlessly and without any lasting debilitation during gestation. This stress is applied to pregnant Swiss albino mice from E7.5 to delivery for three hours daily. Our results show that PS affects dams' weight gain during the gestational period; moreover, the PS dams prefer passive nursing, exhibit a lower percentage of licking and grooming, and impair other maternal behaviors, including nesting and pup retrieval. Concerning the offspring, this stress induces neurobehavioral impairments, including a significant increase in the time of recovery of the young stressed pups in the surface righting reflex, the latency to avoid the cliff in the cliff avoidance test, longer latencies to accomplish the task in negative geotaxis, and a lower score in swimming development. These alterations were accompanied by increased Malondialdehyde activity (MDA) at PND17 and 21 and downregulation of AchE activity in the whole brain of pups on postnatal days 7 and 9. These findings demonstrated that PS causes deleterious neurodevelopmental impairments that can alter various behaviors later in life.


Maternal Behavior , Oxidative Stress , Prenatal Exposure Delayed Effects , Restraint, Physical , Stress, Psychological , Animals , Pregnancy , Female , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Mice , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Oxidative Stress/physiology , Maternal Behavior/physiology , Malondialdehyde/metabolism , Animals, Newborn , Brain/metabolism , Male , Acetylcholinesterase/metabolism , Behavior, Animal/physiology , Reflex, Righting/physiology , Avoidance Learning/physiology
15.
Physiol Behav ; 281: 114580, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38714271

Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.


Diet, High-Fat , Hippocampus , Leptin , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Signal Transduction , Spatial Learning , Animals , Female , Male , Hippocampus/metabolism , Leptin/metabolism , Diet, High-Fat/adverse effects , Mice , Spatial Learning/physiology , Prenatal Exposure Delayed Effects/metabolism , Pregnancy , Signal Transduction/physiology , Sex Characteristics , Neurons/metabolism , Histones/metabolism , Receptors, Leptin/metabolism , Receptors, Leptin/genetics
16.
Endocrinology ; 165(7)2024 May 27.
Article En | MEDLINE | ID: mdl-38788194

Androgen excess is a hallmark feature of polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Clinical and preclinical evidence links developmental or chronic exposure to hyperandrogenism with programming and evoking the reproductive and metabolic traits of PCOS. While critical androgen targets remain to be determined, central GABAergic neurons are postulated to be involved. Here, we tested the hypothesis that androgen signaling in GABAergic neurons is critical in PCOS pathogenesis in 2 well-characterized hyperandrogenic mouse models of PCOS. Using cre-lox transgenics, GABA-specific androgen receptor knockout (GABARKO) mice were generated and exposed to either acute prenatal androgen excess (PNA) or chronic peripubertal androgen excess (PPA). Females were phenotyped for reproductive and metabolic features associated with each model and brains of PNA mice were assessed for elevated GABAergic input to gonadotropin-releasing hormone (GnRH) neurons. Reproductive and metabolic dysfunction induced by PPA, including acyclicity, absence of corpora lutea, obesity, adipocyte hypertrophy, and impaired glucose homeostasis, was not different between GABARKO and wild-type (WT) mice. In PNA mice, acyclicity remained in GABARKO mice while ovarian morphology and luteinizing hormone secretion was not significantly impacted by PNA or genotype. However, PNA predictably increased the density of putative GABAergic synapses to GnRH neurons in adult WT mice, and this PNA-induced plasticity was absent in GABARKO mice. Together, these findings suggest that while direct androgen signaling in GABA neurons is largely not required for the development of PCOS-like traits in androgenized models of PCOS, developmental programming of GnRH neuron innervation is dependent upon androgen signaling in GABA neurons.


Disease Models, Animal , GABAergic Neurons , Hyperandrogenism , Mice, Knockout , Polycystic Ovary Syndrome , Receptors, Androgen , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , GABAergic Neurons/metabolism , Hyperandrogenism/metabolism , Hyperandrogenism/genetics , Ovary/metabolism , Androgens/metabolism , Pregnancy , Gonadotropin-Releasing Hormone/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics
17.
J Neurodev Disord ; 16(1): 20, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643092

The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.


Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Fetal Alcohol Spectrum Disorders/epidemiology , Prenatal Exposure Delayed Effects/metabolism , Ethanol/adverse effects , Alcohol Drinking/adverse effects , Neurons/metabolism
18.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673723

Recent studies have shown that maternal vitamin D deficiency (VDD) causes long-term metabolic changes in offspring. However, little is known about the impact of maternal VDD on offspring endocrine pancreas development and insulin secretion in the adult life of male and female animals. Female rats (Wistar Hannover) were fed either control (1000 IU Vitamin D3/kg), VDD (0 IU Vitamin D3/kg), or a Ca2+-enriched VDD diet (0 IU Vitamin D3/kg + Ca2+ and P/kg) for 6 weeks and during gestation and lactation. At weaning, VDD status was confirmed based on low serum calcidiol levels in dams and pups. Next, male and female offspring were randomly separated and fed a standard diet for up to 90 days. At this age, serum calcidiol levels were restored to normal levels in all groups, but serum insulin levels were decreased in VDD males without affecting glucagon levels, glycemia, or glucose tolerance. Islets isolated from VDD males showed lower insulin secretion in response to different glucose concentrations, but this effect was not observed in VDD females. Furthermore, VDD males, but not females, showed a smaller total pancreatic islet area and lower ß cell mass, an effect that was accompanied by reduced gene expression of Ins1, Ins2, Pdx1, and SLC2A2. The decrease in Pdx1 expression was not related to the methylation profile of the promoter region of this gene. Most of these effects were observed in the male VDD+Ca2+ group, indicating that the effects were not due to alterations in Ca2+ metabolism. These data show that maternal VDD selectively impairs the morphology and function of ß cells in adult male offspring rats and that female offspring are fully protected from these deleterious effects.


Insulin-Secreting Cells , Insulin , Rats, Wistar , Vitamin D Deficiency , Animals , Female , Insulin-Secreting Cells/metabolism , Male , Vitamin D Deficiency/metabolism , Rats , Pregnancy , Insulin/blood , Insulin/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/etiology , Sex Factors , Insulin Secretion
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167189, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648899

OBJECTIVES: Gamete and embryo-foetal origins of adult diseases hypothesis proposes that adulthood chronic disorders are associated with adverse foetal and early life traits. Our study aimed to characterise developmental changes and underlying mechanisms of metabolic disorders in offspring of pre-eclampsia (PE) programmed pregnancy. METHODS: Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME) induced pre-eclampsia-like C57BL/6J mouse model was used. Lipid profiling, histological morphology, indirect calorimetry, mRNA sequencing, and pyrosequencing were performed on PE offspring of both young and elderly ages. RESULTS: PE offspring exhibited increased postnatal weight gain, hepatic lipid accumulation, enlarged adipocytes, and impaired energy balance that continued to adulthood. Integrated RNA sequencing of foetal and 52-week-old livers revealed that the differentially expressed genes were mainly enriched in lipid metabolism, including glycerol-3-phosphate acyl-transferase 3 (Gpat3), a key enzyme for de novo synthesis of triglycerides (TG), and carnitine palmitoyltransferase-1a (Cpt1a), a key transmembrane enzyme that mediates fatty acid degradation. Pyrosequencing of livers from PE offspring identified hypomethylated and hypermethylated regions in Gpat3 and Cpt1a promoters, which were associated with upregulated and downregulated expressions of Gpat3 and Cpt1a, respectively. These epigenetic alterations are persistent and consistent from the foetal stage to adulthood in PE offspring. CONCLUSION: These findings suggest a methylation-mediated epigenetic mechanism for PE-induced intergenerational lipid accumulation, impaired energy balance and obesity in offspring, and indicate the potential benefits of early interventions in offspring exposed to maternal PE to reduce their susceptibility to metabolic disorder in their later life.


DNA Methylation , Fetal Development , Mice, Inbred C57BL , Pre-Eclampsia , Animals , Pregnancy , Female , Mice , Fetal Development/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Lipid Metabolism/genetics , Liver/metabolism , Liver/pathology , Male , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/pathology , Disease Models, Animal
20.
Horm Behav ; 162: 105548, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636205

Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.


Anxiety , Congenital Hypothyroidism , Excitatory Amino Acid Transporter 2 , Hippocampus , Rats, Wistar , Animals , Male , Hippocampus/metabolism , Anxiety/metabolism , Anxiety/etiology , Rats , Female , Congenital Hypothyroidism/metabolism , Pregnancy , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Thyroid Hormones/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 3/metabolism , Excitatory Amino Acid Transporter 3/genetics , Behavior, Animal/physiology , Propylthiouracil , Amino Acid Transport System X-AG/metabolism , Amino Acid Transport System X-AG/genetics , Prenatal Exposure Delayed Effects/metabolism
...