Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.007
Filter
1.
PeerJ ; 12: e17552, 2024.
Article in English | MEDLINE | ID: mdl-38948234

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.


Subject(s)
Camelus , Prion Diseases , Animals , Camelus/genetics , Prion Diseases/genetics , Prion Diseases/veterinary , Algeria/epidemiology , Prion Proteins/genetics , Genotype , Phylogeny , Prions/genetics
2.
Neurology ; 103(2): e209506, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38896810

ABSTRACT

OBJECTIVES: To longitudinally characterize disease-relevant CSF and plasma biomarkers in individuals at risk for genetic prion disease up to disease conversion. METHODS: This single-center longitudinal cohort study has followed known carriers of PRNP pathogenic variants at risk for prion disease, individuals with a close relative who died of genetic prion disease but who have not undergone predictive genetic testing, and controls. All participants were asymptomatic at first visit and returned roughly annually. We determined PRNP genotypes, measured NfL and GFAP in plasma, and RT-QuIC, total PrP, NfL, T-tau, and beta-synuclein in CSF. RESULTS: Among 41 carriers and 21 controls enrolled, 28 (68%) and 15 (71%) were female, and mean ages were 47.5 and 46.1. At baseline, all individuals were asymptomatic. We observed RT-QuIC seeding activity in the CSF of 3 asymptomatic E200K carriers who subsequently converted to symptomatic and died of prion disease. 1 P102L carrier remained RT-QuIC negative through symptom conversion. No other individuals developed symptoms. The prodromal window from detection of RT-QuIC positivity to disease onset was 1 year long in an E200K individual homozygous (V/V) at PRNP codon 129 and 2.5 and 3.1 years in 2 codon 129 heterozygotes (M/V). Changes in neurodegenerative and neuroinflammatory markers were variably observed prior to onset, with increases observed for plasma NfL in 4/4 converters, and plasma GFAP, CSF NfL, CSF T-tau, and CSF beta-synuclein each in 2/4 converters, although values relative to age and fold changes relative to individual baseline were not remarkable for any of these markers. CSF PrP was longitudinally stable with mean coefficient of variation 9.0% across all individuals over up to 6 years, including data from converting individuals at RT-QuIC-positive timepoints. DISCUSSION: CSF prion seeding activity may represent the earliest detectable prodromal sign in E200K carriers. Neuronal damage and neuroinflammation markers show limited sensitivity in the prodromal phase. CSF PrP levels remain stable even in the presence of RT-QuIC seeding activity. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT05124392 posted 2017-12-01, updated 2023-01-27.


Subject(s)
Biomarkers , Prion Diseases , Prion Proteins , Humans , Female , Male , Middle Aged , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Prion Proteins/genetics , Prion Proteins/cerebrospinal fluid , Prion Proteins/blood , Prion Diseases/genetics , Prion Diseases/cerebrospinal fluid , Prion Diseases/blood , Prion Diseases/diagnosis , Longitudinal Studies , Adult , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Heterozygote , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/genetics , Disease Progression , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , alpha-Synuclein/blood
3.
Arch Microbiol ; 206(7): 308, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896139

ABSTRACT

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.


Subject(s)
Fungal Proteins , Fungi , Plants , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Plants/microbiology , Fungi/genetics , Fungi/metabolism , Fungi/pathogenicity , Computer Simulation , Plant Diseases/microbiology , Prion Proteins/metabolism , Prion Proteins/genetics , Prion Proteins/chemistry , Prions/metabolism , Prions/genetics , Prions/chemistry , Virulence , Host-Pathogen Interactions
4.
Science ; 384(6703): ado7082, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38935715

ABSTRACT

Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.


Subject(s)
Brain , DNA Methylation , Dependovirus , Gene Silencing , Histones , Prion Proteins , Animals , Humans , Mice , Brain/metabolism , Dependovirus/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Histones/metabolism , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Transgenes
5.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589873

ABSTRACT

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Mice , Animals , Prion Proteins/genetics , Prion Proteins/metabolism , beta Catenin/metabolism , Glucocorticoids , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Phenotype , Prognosis , Wnt Signaling Pathway , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
7.
PLoS Pathog ; 20(4): e1012087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557815

ABSTRACT

Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Animals , Mice , Prions/metabolism , Prion Diseases/drug therapy , Prion Diseases/genetics , Prion Diseases/metabolism , Creutzfeldt-Jakob Syndrome/drug therapy , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Brain/pathology , Arvicolinae/metabolism
8.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38570188

ABSTRACT

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Subject(s)
Prion Proteins , Prions , Prion Proteins/metabolism , Valosin Containing Protein/metabolism , Adenosine Triphosphatases/metabolism , Proteostasis , Ubiquitin/metabolism , Prions/metabolism
9.
J Mol Biol ; 436(11): 168576, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641239

ABSTRACT

Prions, the misfolding form of prion proteins, are contagious proteinaceous macromolecules. Recent studies have shown that infectious prion fibrils formed in the brain and non-infectious fibrils formed from recombinant prion protein in a partially denaturing condition have distinct structures. The amyloid core of the in vitro-prepared non-infectious fibrils starts at about residue 160, while that of infectious prion fibrils formed in the brain involves a longer sequence (residues ∼90-230) of structural conversion. The C-terminal truncated prion protein PrP(23-144) can form infectious fibrils under certain conditions and cause disease in animals. In this study, we used cryogenic electron microscopy (cryo-EM) to resolve the structure of hamster sHaPrP(23-144) fibrils prepared at pH 3.7. This 2.88 Å cryo-EM structure has an amyloid core covering residues 94-144. It comprises two protofilaments, each containing five ß-strands arranged as a long hairpin plus an N-terminal ß-strand. This N-terminal ß-strand resides in a positively charged cluster region (named PCC2; sequence 96-111), which interacts with the turn region of the opposite protofilaments' hairpin to stabilize the fibril structure. Interestingly, this sHaPrP(23-144) fibril structure differs from a recently reported structure formed by the human or mouse counterpart at pH 6.5. Moreover, sHaPrP(23-144) fibrils have many structural features in common with infectious prions. Whether this structure is infectious remains to be determined. More importantly, the sHaPrP(23-144) structure is different from the sHaPrP(108-144) fibrils prepared in the same fibrillization buffer, indicating that the N-terminal disordered region, possibly the positively charged cluster, influences the misfolding pathway of the prion protein.


Subject(s)
Amyloid , Prion Proteins , Protein Folding , Animals , Cricetinae , Amyloid/chemistry , Cryoelectron Microscopy/methods , Models, Molecular , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Conformation
10.
Prion ; 18(1): 40-53, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38627365

ABSTRACT

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome , Gerstmann-Straussler-Scheinker Disease , Neurodegenerative Diseases , Prion Diseases , Prions , Humans , Prion Proteins , PrPSc Proteins/metabolism , Paraffin Embedding , Prion Diseases/diagnosis , Prion Diseases/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Prions/metabolism , Gerstmann-Straussler-Scheinker Disease/metabolism , Endopeptidase K , Antibodies , Formaldehyde
11.
PLoS Pathog ; 20(4): e1012175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640117

ABSTRACT

Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.


Subject(s)
Prion Proteins , alpha-Synuclein , tau Proteins , tau Proteins/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Humans , Prion Proteins/metabolism , Animals , Mice , Brain/metabolism , Brain/pathology , Prions/metabolism , Lewy Body Disease/metabolism
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653354

ABSTRACT

Clinical relevance of miRNAs as biomarkers is growing due to their stability and detection in biofluids. In this, diagnosis at asymptomatic stages of Alzheimer's disease (AD) remains a challenge since it can only be made at autopsy according to Braak NFT staging. Achieving the objective of detecting AD at early stages would allow possible therapies to be addressed before the onset of cognitive impairment. Many studies have determined that the expression pattern of some miRNAs is dysregulated in AD patients, but to date, none has been correlated with downregulated expression of cellular prion protein (PrPC) during disease progression. That is why, by means of cross studies of miRNAs up-regulated in AD with in silico identification of potential miRNAs-binding to 3'UTR of human PRNP gene, we selected miR-519a-3p for our study. Then, in vitro experiments were carried out in two ways. First, we validated miR-519a-3p target on 3'UTR-PRNP, and second, we analyzed the levels of PrPC expression after using of mimic technology on cell culture. In addition, RT-qPCR was performed to analyzed miR-519a-3p expression in human cerebral samples of AD at different stages of disease evolution. Additionally, samples of other neurodegenerative diseases such as other non-AD tauopathies and several synucleinopathies were included in the study. Our results showed that miR-519a-3p overlaps with PRNP 3'UTR in vitro and promotes downregulation of PrPC. Moreover, miR-519a-3p was found to be up-regulated exclusively in AD samples from stage I to VI, suggesting its potential use as a novel label of preclinical stages of the disease.


Subject(s)
3' Untranslated Regions , Alzheimer Disease , Biomarkers , MicroRNAs , Prion Proteins , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnosis , Prion Proteins/genetics , Prion Proteins/metabolism , Biomarkers/metabolism , 3' Untranslated Regions/genetics , Female , Aged , Male , Aged, 80 and over , PrPC Proteins/metabolism , PrPC Proteins/genetics
13.
J Biol Chem ; 300(6): 107310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657863

ABSTRACT

Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.


Subject(s)
Copper , Histidine , Prion Proteins , Protein Domains , Animals , Copper/metabolism , Copper/chemistry , Histidine/metabolism , Histidine/chemistry , Mice , Prion Proteins/metabolism , Prion Proteins/chemistry , Prion Proteins/genetics , Amino Acid Motifs , Humans , Phase Separation
14.
Curr Opin Neurobiol ; 86: 102857, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489865

ABSTRACT

The concept of 'prion-like' behavior has emerged in the study of diseases involving protein misfolding where fibrillar structures, called amyloids, self-propagate and induce disease in a fashion similar to prions. From a biological standpoint, in order to be considered 'prion-like,' a protein must traverse cells and tissues and further propagate via a templated conformational change. Since 2017, cryo-electron microscopy structures from patient-derived 'prion-like' amyloids, in particular tau, have been presented and revealed structural similarities shared across amyloids. Since 2021, cryo-EM structures from prions of known infectivity have been added to the ex vivo amyloid structure family. In this review, we discuss current proposals for the 'prion-like' mechanisms of spread for tau and prion protein as well as discuss different influencers on structures of aggregates from tauopathies and prion diseases. Lastly, we discuss some of the current hypotheses for what may distinguish structures that are 'prion-like' from transmissible prion structures.


Subject(s)
Prion Proteins , tau Proteins , Humans , tau Proteins/metabolism , tau Proteins/chemistry , Animals , Prion Proteins/metabolism , Prion Proteins/chemistry , Prion Diseases/metabolism , Prion Diseases/pathology , Tauopathies/metabolism , Tauopathies/pathology , Prions/metabolism , Prions/chemistry , Amyloid/metabolism , Amyloid/chemistry
16.
Stem Cell Res ; 76: 103361, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437769

ABSTRACT

We generated a human induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells isolated from a 59-year-old male patient with Alzheimer's disease (AD). The iPSC line was meticulously characterized to confirm its pluripotency, absence of transgenes, and normal karyotype. The unexpected discovery of the M232R variant in PRNP makes this cell line a valuable resource for investigating AD pathogenesis.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Male , Humans , Middle Aged , Induced Pluripotent Stem Cells/metabolism , Alzheimer Disease/pathology , Leukocytes, Mononuclear/metabolism , Cell Line , Cell Differentiation , Prion Proteins/metabolism
17.
Top Companion Anim Med ; 59: 100859, 2024.
Article in English | MEDLINE | ID: mdl-38508487

ABSTRACT

Prion diseases are fatal neurodegenerative diseases affecting humans and animals. A relationship between variations in the prion gene of some species and susceptibility to prion diseases has been detected. However, variations in the prion protein of cats that have close contact with humans and their effect on prion protein are not well-known. Therefore, this study aimed to investigate the variations of prion protein-encoding gene (PRNP gene) in stray cats and to evaluate variants detected in terms of genetic factors associated with susceptibility or resistance to feline spongiform encephalopathy using bioinformatics tools. For this, cat DNA samples were amplified by a PCR targeting PRNP gene and then sequenced to reveal the variations. Finally, the effects of variants on prion protein were predicted by bioinformatics tools. According to the obtained results, a novel 108 bp deletion and nine SNPs were detected. Among SNPs, five (c314A>G, c.454T>A, c.579G>C, c.642G>C and c.672G>C) were detected for the first time in this study. Bioinformatics findings showed that c.579G>C (Q193H), c.454T>A (Y152N) and c.457G>A (E153K) variants have deleterious effects on prion protein and c.579G>C (Q193H) has high amyloid propensities. This study demonstrates prion protein variants of stray cats and their deleterious effects on prion protein for the first time.


Subject(s)
Brain Diseases , Cat Diseases , Prion Diseases , Prions , Animals , Cats/genetics , Humans , Brain Diseases/veterinary , Cat Diseases/genetics , Polymorphism, Single Nucleotide , Prion Diseases/genetics , Prion Diseases/veterinary , Prion Proteins/genetics , Prions/genetics
18.
Sci Rep ; 14(1): 6294, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491063

ABSTRACT

Real-time quaking-induced conversion assay (RT-QuIC) exploits templating activity of pathogenic prion protein for ultrasensitive detection of prions. We have utilized second generation RT-QuIC assay to analyze matching post-mortem cerebrospinal fluid and skin samples of 38 prion disease patients and of 30 deceased neurological controls. The analysis of cerebrospinal fluid samples led to 100% sensitivity and 100% specificity, but some samples had to be diluted before the analysis to alleviate the effect of present RT-QuIC inhibitors. The analysis of the corresponding skin samples provided 89.5% sensitivity and 100% specificity. The median seeding dose present in the skin was one order of magnitude higher than in the cerebrospinal fluid, despite the overall fluorescent signal of the skin samples was comparatively lower. Our data support the use of post-mortem cerebrospinal fluid for confirmation of prion disease diagnosis and encourage further studies of the potential of skin biopsy samples for intra-vitam prion diseases´ diagnostics.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prions/metabolism , Prion Diseases/diagnosis , Skin/metabolism , Prion Proteins , Biological Assay , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid
19.
Cell Rep ; 43(3): 113969, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483901

ABSTRACT

In this interview with Zhentao Zhang, we discuss his research focusing on the molecular mechanisms underlying the aggregation of prion-like proteins in neurodegenerative diseases and spotlight his recent work in Cell Reports that shows that a yeast prion protein interacts with tau and facilitates its aggregation.


Subject(s)
Neurodegenerative Diseases , Prions , Humans , Prions/metabolism , Prion Proteins , Neurodegenerative Diseases/metabolism , Saccharomyces cerevisiae/metabolism , Fungal Proteins/metabolism , tau Proteins/metabolism
20.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468258

ABSTRACT

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prions/metabolism , Prion Proteins , Prion Diseases/diagnosis , Prion Diseases/metabolism , Brain/metabolism , Plasma/metabolism , Creutzfeldt-Jakob Syndrome/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...