Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.055
Filter
1.
Vet Res ; 55(1): 98, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095901

ABSTRACT

The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.


Subject(s)
Deer , Wasting Disease, Chronic , Animals , Deer/genetics , Germany/epidemiology , Denmark , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/epidemiology , Prions/genetics , Genetic Variation , Prion Proteins/genetics , Polymorphism, Genetic , Genotype
2.
J Clin Invest ; 134(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087478

ABSTRACT

Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.


Subject(s)
Disease Models, Animal , Gene Knock-In Techniques , Mice, Transgenic , Prion Diseases , Prion Proteins , Animals , Mice , Prion Diseases/genetics , Prion Diseases/pathology , Prion Diseases/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Brain/metabolism , Brain/pathology , Mutation, Missense , Humans , Arvicolinae/genetics , Arvicolinae/metabolism , Amino Acid Substitution , Prions/genetics , Prions/metabolism , Protein Folding
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1011-1019, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034785

ABSTRACT

Objective: To investigate the effects and possible mechanisms of caffeic acid phenethyl ester (CAPE) on the replication, amplification, and fibre formation of prions (PrPSc). Methods: The CCK8 assay was used to detect the cell viability of the prion-infected cell model SMB-S15 after CAPE treatment for 3 days and 7 days and the maximum safe concentration of CAPE for SMB-S15 was obtained. The cells were treated with a concentration within a safe range, and the content of PrPSc in the cells before and after CAPE treatment was analyzed by western blot. Protein misfolding cycle amplification (PMCA) and western blot were used to assess changes in PrPSc level in amplification products following CAPE treatment. Real-time-quaking induced conversion assay (RT-QuIC) technology was employed to explore the changes in fibril formation before and after CAPE treatment. The binding affinity between CAPE and murine recombinant full-length prion protein was determined using a molecular interaction assay. Results: CCK8 cell viability assay results demonstrated that treatment with 1 µmol/L CAPE for 3 and 7 days did not exhibit statistically significant differences in cell viability compared to the control group (all P<0.05). However, when the concentration of CAPE exceeded 1 µmol/L, a significant reduction in cell viability was observed in cells treated with CAPE for 3 and 7 days, compared to the control group (all P<0.05). Thus, 1 µmol/L was determined as the maximum safe concentration of CAPE treatment for SMB-S15 cells. The western blot results revealed that treatment with CAPE for both 3 and 7 days led to a detectable reduction in the levels of PrPSc in SMB-S15 cells (all P<0.05). The products of PMCA experiments were assessed using western blot. The findings revealed a significant decrease in the levels of PrPSc (relative grey value) in the PMCA amplification products of adapted-strains SMB-S15, 139A, and ME7 following treatment with CAPE, as compared to the control group (all P<0.05). The RT-QuIC experimental results demonstrated a reduction in fibril formation (as indicated by ThT peak values) in CAPE-treated mouse-adapted strains 139A, ME7, and SMB-S15, as well as in SMB-S15 cells infected with prions. Furthermore, CAPE exhibited varying degrees of inhibition towards different seed fibrils formation, with statistically significant differences observed (all P<0.05). Notably, CAPE exhibited a more pronounced inhibitory effect on ME7 seed fibrils. Molecular interaction analyses demonstrated significant binding between CAPE and murine recombinant prion protein, and the association constant was (2.92±0.41)×10-6 mol/L. Conclusions: CAPE inhibits PrPSc replication, amplification, and fibril formation in vitro possibly due to specific interactions with the prion protein at the molecular level.


Subject(s)
Caffeic Acids , Phenylethyl Alcohol , Animals , Caffeic Acids/pharmacology , Mice , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Cell Survival/drug effects , PrPSc Proteins/metabolism , Prions , Cell Line , Prion Proteins/metabolism
4.
PLoS Pathog ; 20(7): e1012370, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976748

ABSTRACT

Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.


Subject(s)
Brain , Deer , PrPSc Proteins , Wasting Disease, Chronic , Animals , Mice , Wasting Disease, Chronic/transmission , Brain/metabolism , Brain/pathology , PrPSc Proteins/metabolism , Protein Conformation , Prions/metabolism , Prions/pathogenicity , Prion Diseases/transmission , Prion Diseases/pathology , Prion Diseases/metabolism , Mice, Transgenic
5.
PLoS Pathog ; 20(7): e1012350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950080

ABSTRACT

Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.


Subject(s)
Deer , Wasting Disease, Chronic , Animals , Wasting Disease, Chronic/transmission , Wasting Disease, Chronic/metabolism , Mice , Brain/metabolism , Brain/pathology , Prion Proteins/metabolism , Prion Proteins/genetics , Mice, Transgenic , Norway , Gene Targeting , Prions/metabolism , Prions/genetics , Prions/pathogenicity
6.
Dalton Trans ; 53(28): 11995-12006, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38963284

ABSTRACT

The spontaneous aggregation of infectious or misfolded forms of prion protein is known to be responsible for neurotoxicity in brain cells, which ultimately leads to the progression of prion disorders. Bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt-Jakob disease (CJD) in humans are glaring examples in this regard. Square-planar complexes with labile ligands and indole-based compounds are found to be efficiently inhibitory against protein aggregation. Herein, we report the synthesis of an indole-based cyclometallated palladium complex. The ligand and complex were characterized by various spectroscopic techniques such as UV-visible, NMR, IR, and HRMS. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with PrP106-126 was studied using UV-visible spectroscopy, CD spectroscopy, MALDI-TOF MS, and molecular docking. The inhibition effects of the complex on the PrP106-126 aggregation, fibrillization and amyloid formation phenomena were analysed through the ThT assay, CD, TEM and AFM. The effect of the complex on the aggregation process of PrP106-126 was determined kinetically through the ThT assay. The complex presented high binding affinity with the peptide and influenced the peptide's conformation and aggregation in different modes of binding. Furthermore, the MTT assay on neuronal HT-22 cells showed considerable protective properties of the complex against PrP106-126-mediated cytotoxicity. These findings suggest that the compound influences peptide aggregation in different ways, and the anti-aggregation action is primarily associated with the metal's physicochemical properties and the reactivity rather than the ligand. As a result, we propose that this compound be investigated as a potential therapeutic molecule in metallopharmaceutical research to treat prion disease (PD).


Subject(s)
Coordination Complexes , Indoles , Palladium , Protein Aggregates , Palladium/chemistry , Palladium/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Protein Aggregates/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Molecular Docking Simulation , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Prion Proteins/chemistry , Prion Proteins/metabolism , Prion Proteins/antagonists & inhibitors , Prions
7.
PeerJ ; 12: e17552, 2024.
Article in English | MEDLINE | ID: mdl-38948234

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.


Subject(s)
Camelus , Prion Diseases , Animals , Camelus/genetics , Prion Diseases/genetics , Prion Diseases/veterinary , Algeria/epidemiology , Prion Proteins/genetics , Genotype , Phylogeny , Prions/genetics
8.
Proc Natl Acad Sci U S A ; 121(32): e2402726121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39083420

ABSTRACT

Since prion diseases result from infection and neurodegeneration of the central nervous system (CNS), experimental characterizations of prion strain properties customarily rely on the outcomes of intracerebral challenges. However, natural transmission of certain prions, including those causing chronic wasting disease (CWD) in elk and deer, depends on propagation in peripheral host compartments prior to CNS infection. Using gene-targeted GtE and GtQ mice, which accurately control cellular elk or deer PrP expression, we assessed the impact that peripheral or intracerebral exposures play on CWD prion strain propagation and resulting CNS abnormalities. Whereas oral and intraperitoneal transmissions produced identical neuropathological outcomes in GtE and GtQ mice and preserved the naturally convergent conformations of elk and deer CWD prions, intracerebral transmissions generated CNS prion strains with divergent biochemical properties in GtE and GtQ mice that were changed compared to their native counterparts. While CWD replication kinetics remained constant during iterative peripheral transmissions and brain titers reflected those found in native hosts, serial intracerebral transmissions produced 10-fold higher prion titers and accelerated incubation times. Our demonstration that peripherally and intracerebrally challenged Gt mice develop dissimilar CNS diseases which result from the propagation of distinct CWD prion strains points to the involvement of tissue-specific cofactors during strain selection in different host compartments. Since peripheral transmissions preserved the natural features of elk and deer prions, whereas intracerebral propagation produced divergent strains, our findings illustrate the importance of experimental characterizations using hosts that not only abrogate species barriers but also accurately recapitulate natural transmission routes of native strains.


Subject(s)
Brain , Deer , Prions , Wasting Disease, Chronic , Animals , Wasting Disease, Chronic/transmission , Mice , Brain/metabolism , Brain/pathology , Prions/metabolism , Prions/genetics , Prions/pathogenicity , Mice, Transgenic
9.
Vet Res ; 55(1): 94, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075607

ABSTRACT

Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species. In vitro and laboratory animal studies of the Norwegian CWD strains suggest that these strains are different from the NA strains. In this work, we describe the intracerebral transmission of reindeer CWD to six scrapie-susceptible sheep. Detection methods included immunohistochemistry (IHC), western blot (WB), enzyme-linked immunosorbent assay (ELISA), real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). In the brain, grey matter vacuolation was limited, while all sheep exhibited vacuolation of the white matter. IHC and WB conventional detection techniques failed to detect prions; however, positive seeding activity with the RT-QuIC and PMCA amplification techniques was observed in the central nervous system of all but one sheep. Prions were robustly amplified in the lymph nodes of all animals, mainly by RT-QuIC. Additionally, two lymph nodes were positive by WB, and one was positive by ELISA. These findings suggest that sheep can propagate reindeer CWD prions after intracerebral inoculation, resulting in an unusual disease phenotype and prion distribution with a low amount of detectable prions.


Subject(s)
Prions , Reindeer , Wasting Disease, Chronic , Animals , Wasting Disease, Chronic/transmission , Sheep , Prions/metabolism , Norway , Brain/metabolism , Phenotype , Sheep Diseases/transmission
10.
J Infect Dis ; 230(1): 161-171, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052723

ABSTRACT

BACKGROUND: Atypical/Nor98 scrapie (AS) is an idiopathic infectious prion disease affecting sheep and goats. Recent findings suggest that zoonotic prions from classical bovine spongiform encephalopathy (C-BSE) may copropagate with atypical/Nor98 prions in AS sheep brains. Investigating the risk AS poses to humans is crucial. METHODS: To assess the risk of sheep/goat-to-human transmission of AS, we serially inoculated brain tissue from field and laboratory isolates into transgenic mice overexpressing human prion protein (Met129 allele). We studied clinical outcomes as well as presence of prions in brains and spleens. RESULTS: No transmission occurred on the primary passage, with no clinical disease or pathological prion protein in brains and spleens. On subsequent passages, 1 isolate gradually adapted, manifesting as prions with a phenotype resembling those causing MM1-type sporadic Creutzfeldt-Jakob disease in humans. However, further characterization using in vivo and in vitro techniques confirmed both prion agents as different strains, revealing a case of phenotypic convergence. Importantly, no C-BSE prions emerged in these mice, especially in the spleen, which is more permissive than the brain for C-BSE cross-species transmission. CONCLUSIONS: The results obtained suggest a low zoonotic potential for AS. Rare adaptation may allow the emergence of prions phenotypically resembling those spontaneously forming in humans.


Subject(s)
Brain , Creutzfeldt-Jakob Syndrome , Goats , Mice, Transgenic , Prions , Scrapie , Zoonoses , Animals , Creutzfeldt-Jakob Syndrome/transmission , Creutzfeldt-Jakob Syndrome/pathology , Creutzfeldt-Jakob Syndrome/metabolism , Humans , Scrapie/transmission , Scrapie/pathology , Mice , Zoonoses/transmission , Brain/pathology , Brain/metabolism , Sheep , Cattle , Prions/metabolism , Phenotype , Spleen/pathology , Encephalopathy, Bovine Spongiform/transmission , Encephalopathy, Bovine Spongiform/pathology , Encephalopathy, Bovine Spongiform/metabolism , Goat Diseases/transmission , Goat Diseases/pathology , Disease Models, Animal
11.
Methods Mol Biol ; 2812: 367-377, 2024.
Article in English | MEDLINE | ID: mdl-39068373

ABSTRACT

A protein, which can attain a prion state, differs from standard proteins in terms of structural conformation and aggregation propensity. High-throughput sequencing technology provides an opportunity to gain insight into the prion disease condition when coupled with single-cell RNA-Seq analysis to reveal transcriptional changes during prion-based pathogenicity. In this chapter, we present a protocol for RNA-Seq analysis of mammalian prion disease using a single-cell RNA sequencing dataset procured from the NCBI GEO database. This protocol is a tool that can assist researchers in characterizing mammalian prion disease in a reproducible and reusable manner. Further, the resulting output has the potential to provide transcript biomarkers for mammalian prion diseases, which can be employed for diagnostic and prognostic purposes.


Subject(s)
Prion Diseases , Animals , Prion Diseases/genetics , Humans , RNA-Seq/methods , High-Throughput Nucleotide Sequencing/methods , Mammals/genetics , Single-Cell Analysis/methods , Prions/genetics , Prions/metabolism , Sequence Analysis, RNA/methods
12.
FASEB J ; 38(14): e23843, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39072789

ABSTRACT

Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.


Subject(s)
PrPSc Proteins , Protein Folding , Animals , Protein Folding/drug effects , PrPSc Proteins/metabolism , PrPSc Proteins/chemistry , Mice , Prion Diseases/drug therapy , Prion Diseases/metabolism , Prions/metabolism
13.
Arch Microbiol ; 206(7): 308, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896139

ABSTRACT

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.


Subject(s)
Fungal Proteins , Fungi , Plants , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Plants/microbiology , Fungi/genetics , Fungi/metabolism , Fungi/pathogenicity , Computer Simulation , Plant Diseases/microbiology , Prion Proteins/metabolism , Prion Proteins/genetics , Prion Proteins/chemistry , Prions/metabolism , Prions/genetics , Prions/chemistry , Virulence , Host-Pathogen Interactions
15.
Bull Math Biol ; 86(7): 82, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837083

ABSTRACT

Many neurodegenerative diseases (NDs) are characterized by the slow spatial spread of toxic protein species in the brain. The toxic proteins can induce neuronal stress, triggering the Unfolded Protein Response (UPR), which slows or stops protein translation and can indirectly reduce the toxic load. However, the UPR may also trigger processes leading to apoptotic cell death and the UPR is implicated in the progression of several NDs. In this paper, we develop a novel mathematical model to describe the spatiotemporal dynamics of the UPR mechanism for prion diseases. Our model is centered around a single neuron, with representative proteins P (healthy) and S (toxic) interacting with heterodimer dynamics (S interacts with P to form two S's). The model takes the form of a coupled system of nonlinear reaction-diffusion equations with a delayed, nonlinear flux for P (delay from the UPR). Through the delay, we find parameter regimes that exhibit oscillations in the P- and S-protein levels. We find that oscillations are more pronounced when the S-clearance rate and S-diffusivity are small in comparison to the P-clearance rate and P-diffusivity, respectively. The oscillations become more pronounced as delays in initiating the UPR increase. We also consider quasi-realistic clinical parameters to understand how possible drug therapies can alter the course of a prion disease. We find that decreasing the production of P, decreasing the recruitment rate, increasing the diffusivity of S, increasing the UPR S-threshold, and increasing the S clearance rate appear to be the most powerful modifications to reduce the mean UPR intensity and potentially moderate the disease progression.


Subject(s)
Mathematical Concepts , Models, Neurological , Neurons , Prion Diseases , Unfolded Protein Response , Unfolded Protein Response/physiology , Prion Diseases/metabolism , Prion Diseases/pathology , Prion Diseases/physiopathology , Neurons/metabolism , Humans , Animals , Nonlinear Dynamics , Computer Simulation , Prions/metabolism , Spatio-Temporal Analysis , Apoptosis
16.
PLoS Pathog ; 20(6): e1012253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38870093
18.
PLoS One ; 19(6): e0303037, 2024.
Article in English | MEDLINE | ID: mdl-38870153

ABSTRACT

Chronic wasting disease (CWD) is a fatal prion disease of cervids spreading across North America. More effective mitigation efforts may require expansion of the available toolkit to include new methods that provide earlier antemortem detection, higher throughput, and less expense than current immunohistochemistry (IHC) methods. The rectal mucosa near the rectoanal junction is a site of early accumulation of CWD prions and is safely sampled in living animals by pinch biopsy. A fluorescence-based, 96-well format, protein-aggregation assay-the real-time quaking-induced conversion (RT-QuIC) assay-is capable of ultra-sensitive detection of CWD prions. Notably, the recombinant protein substrate is crucial to the assay's performance and is now commercially available. In this blinded independent study, the preclinical diagnostic performance of a standardized RT-QuIC protocol using a commercially sourced substrate (MNPROtein) and a laboratory-produced substrate was studied using mock biopsy samples of the rectal mucosa from 284 white-tailed deer (Odocoileus virginianus). The samples were from a frozen archive of intact rectoanal junctions collected at depopulations of farmed herds positive for CWD in the United States. All deer were pre-clinical at the time of depopulation and infection status was established from the regulatory record, which evaluated the medial retropharyngeal lymph nodes (MRPLNs) and obex by CWD-IHC. A pre-analytic sample precipitation step was found to enhance the protocol's detection limit. Performance metrics were influenced by the choice of RT-QuIC diagnostic cut points (minimum number of positive wells and assay time) and by deer attributes (preclinical infection stage and prion protein genotype). The peak overall diagnostic sensitivities of the protocol were similar for both substrates (MNPROtein, 76.8%; laboratory-produced, 73.2%), though each was achieved at different cut points. Preclinical infection stage and prion protein genotype at codon 96 (G = glycine, S = serine) were primary predictors of sensitivity. The diagnostic sensitivities in late preclinical infections (CWD-IHC positive MPRLNs and obex) were similar, ranging from 96% in GG96 deer to 80% in xS96 deer (x = G or S). In early preclinical infections (CWD-IHC positive MRPLNs only), the diagnostic sensitivity was 64-71% in GG96 deer but only 25% in xS96 deer. These results demonstrate that this standardized RT-QuIC protocol for rectal biopsy samples using a commercial source of substrate produced stratified diagnostic sensitivities similar to or greater than those reported for CWD-IHC but in less than 30 hours of assay time and in a 96-well format. Notably, the RT-QuIC protocol used herein represents a standardization of protocols from several previous studies. Alignment of the sensitivities across these studies suggests the diagnostic performance of the assay is robust given quality reagents, optimized diagnostic criteria, and experienced staff.


Subject(s)
Deer , Intestinal Mucosa , Rectum , Wasting Disease, Chronic , Animals , Wasting Disease, Chronic/diagnosis , Rectum/pathology , Rectum/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Prions/metabolism , Prions/analysis , Sensitivity and Specificity
19.
PLoS One ; 19(6): e0304603, 2024.
Article in English | MEDLINE | ID: mdl-38870196

ABSTRACT

Iatrogenic transmission of prions, the infectious agents of fatal Creutzfeldt-Jakob disease, through inefficiently decontaminated medical instruments remains a critical issue. Harsh chemical treatments are effective, but not suited for routine reprocessing of reusable surgical instruments in medical cleaning and disinfection processes due to material incompatibilities. The identification of mild detergents with activity against prions is therefore of high interest but laborious due to the low throughput of traditional assays measuring prion infectivity. Here, we report the establishment of TESSA (sTainlESs steel-bead Seed Amplification assay), a modified real-time quaking induced cyclic amplification (RT-QuIC) assay that explores the propagation activity of prions with stainless steel beads. TESSA was applied for the screening of about 70 different commercially available and novel formulations and conditions for their prion inactivation efficacy. One hypochlorite-based formulation, two commercially available alkaline formulations and a manual alkaline pre-cleaner were found to be highly effective in inactivating prions under conditions simulating automated washer-disinfector cleaning processes. The efficacy of these formulations was confirmed in vivo in a murine prion infectivity bioassay, yielding a reduction of the prion titer for bead surface adsorbed prions below detectability. Our data suggest that TESSA represents an effective method for a rapid screening of prion-inactivating detergents, and that alkaline and oxidative formulations are promising in reducing the risk of potential iatrogenic prion transmission through insufficiently decontaminated instrument surfaces.


Subject(s)
Prions , Stainless Steel , Surgical Instruments , Animals , Mice , Stainless Steel/chemistry , Decontamination/methods , Creutzfeldt-Jakob Syndrome/transmission , Creutzfeldt-Jakob Syndrome/prevention & control , Disinfection/methods , Detergents/chemistry , Detergents/pharmacology , Humans , Disinfectants/pharmacology , Oxidation-Reduction
20.
Environ Sci Technol ; 58(25): 10932-10940, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865602

ABSTRACT

Chronic wasting disease (CWD) is a contagious prion disease that affects cervids in North America, Northern Europe, and South Korea. CWD is spread through direct and indirect horizontal transmission, with both clinical and preclinical animals shedding CWD prions in saliva, urine, and feces. CWD particles can persist in the environment for years, and soils may pose a risk for transmission to susceptible animals. Our study presents a sensitive method for detecting prions in the environmental samples of prairie soils. Soils were collected from CWD-endemic regions with high (Saskatchewan, Canada) and low (North Dakota, USA) CWD prevalence. Heat extraction with SDS-buffer, a serial protein misfolding cyclic amplification assay coupled with a real-time quaking-induced conversion assay was used to detect the presence of CWD prions in soils. In the prairie area of South Saskatchewan where the CWD prevalence rate in male mule deer is greater than 70%, 75% of the soil samples tested were positive, while in the low-prevalence prairie region of North Dakota (11% prevalence in male mule deer), none of the soils contained prion seeding activity. Soil-bound CWD prion detection has the potential to improve our understanding of the environmental spread of CWD, benefiting both surveillance and mitigation approaches.


Subject(s)
Deer , Prions , Soil , Wasting Disease, Chronic , Wasting Disease, Chronic/epidemiology , Animals , Soil/chemistry , North Dakota/epidemiology , Saskatchewan/epidemiology , Male , Endemic Diseases
SELECTION OF CITATIONS
SEARCH DETAIL