Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.127
Filter
1.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39253941

ABSTRACT

Reproductive function in mammals depends on the ability of progesterone (P4) to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic-negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for P4-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing kisspeptin, neurokinin B, and dynorphin (KNDy cells), mediate P4-negative feedback. To achieve this, we used female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons coexpressing PGR messenger RNA (mRNA) (11% in KPRKO mice vs 86% in wild-type [WT] mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous P4 to blunt a postcastration increase in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to WT controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not affect negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.


Subject(s)
Arcuate Nucleus of Hypothalamus , Feedback, Physiological , Gonadotropin-Releasing Hormone , Kisspeptins , Luteinizing Hormone , Mice, Knockout , Progesterone , Receptors, Progesterone , Animals , Female , Kisspeptins/metabolism , Kisspeptins/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Luteinizing Hormone/metabolism , Mice , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Arcuate Nucleus of Hypothalamus/metabolism , Progesterone/metabolism , Dynorphins/metabolism , Dynorphins/genetics , Neurons/metabolism , Neurokinin B/genetics , Neurokinin B/metabolism
2.
Horm Behav ; 165: 105632, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39244874

ABSTRACT

Female fertility signals are found across taxa, and the precision of such signals may be influenced by the relative strength of different sexual selection mechanisms. Among primates, more precise signals may be found in species with stronger direct male-male competition and indirect female mate choice, and less precise signals in species with stronger indirect male-male competition (e.g. sperm competition) and direct female mate choice. We tested this hypothesis in a wild population of Kinda baboons in Zambia, combining data on female signals with reproductive hormones (estrogen and progesterone metabolites) and intra- and inter-cycle fertility. We predicted that Kinda baboons will exhibit less precise fertility signals than other baboon species, as they experience weaker direct and stronger indirect male-male competition. The frequency of copulation calls and proceptive behavior did not vary with hormones or intra- or inter-cycle fertility in almost all models. Sexual swelling size was predicted by the ratio of estrogen to progesterone metabolites, and was largest in the fertile phase, but differences in size across days were small. Additionally, there was variability in the timing of ovulation relative to the day of sexual swelling detumescence across cycles and swelling size did not vary with inter-cycle fertility. Our results suggest that female Kinda baboon sexual swellings are less precise indicators of fertility compared to other baboon species, while signals in other modalities do not reflect variation in intra- and inter-cycle fertility. Female Kinda baboon sexual signals may have evolved as a strategy to reduce male monopolizability, allowing for more female control over reproduction by direct mate choice.


Subject(s)
Fertility , Progesterone , Sexual Behavior, Animal , Animals , Female , Fertility/physiology , Male , Sexual Behavior, Animal/physiology , Progesterone/metabolism , Progesterone/blood , Estrogens/metabolism , Copulation/physiology , Ovulation/physiology , Animal Communication
3.
PLoS One ; 19(9): e0310389, 2024.
Article in English | MEDLINE | ID: mdl-39292698

ABSTRACT

Visfatin is an adipokine involved in energy metabolism, insulin resistance, inflammation, and female reproduction. Due to limited data about its action in the human placenta, the aims of our studies included the analysis of visfatin expression and immunolocalization in trophoblast cell lines JEG-3 and BeWo as well as in human placentas from normal and pathological pregnancies. Moreover, we also checked the hormonal regulation of visfatin levels and the molecular mechanism of observed changes in JEG-3 cells. Cell culture and placental fragments collection along with statistical analysis were performed using standard laboratory procedures also described in our previous papers. We demonstrated an increased gene and protein expression of visfatin in JEG-3, BeWo cells, while variable expression in maternal and fetal parts of normal/ pathological pregnancy placentas. In addition, the immunolocalization of visfatin was observed in the cytoplasm of both cell lines, the capillary epithelium of the maternal part and syncytiotrophoblasts of the placental fetal part; in all tested pathologies, the signal was also detected in decidual cells. Furthermore, we demonstrated that hormones: progesterone, estradiol, human chorionic gonadotropin, and insulin increased the visfatin levels in JEG-3 cells with the involvement of specific signaling pathways. Taken together, differences in the expression and localization of visfatin between normal and pathological placentas suggested that visfatin may be a potential marker for the diagnosis of pregnancy disorders. In addition, we found that placental levels of visfatin can be regulated by hormones known to modulate the function of placental cells.


Subject(s)
Nicotinamide Phosphoribosyltransferase , Placenta , Trophoblasts , Humans , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Female , Pregnancy , Trophoblasts/metabolism , Placenta/metabolism , Progesterone/metabolism , Cell Line , Cytokines/metabolism , Chorionic Gonadotropin/metabolism , Insulin/metabolism , Estradiol/metabolism , Adult
4.
Mol Cell Endocrinol ; 592: 112347, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39181310

ABSTRACT

Progesterone (P4) is predicted to act as a negative regulatory hormone for oocyte maturation events; however, its local effects during follicular development remain poorly understood in bovine. The complex process of oocyte meiosis progression is dependent on cellular communication among follicular cells. Besides, the breakdown of this communication, mainly between cumulus cells (CC) and oocyte, through the retraction of cumulus projections connecting these cells can impact oocyte maturation. In our study, we observed that follicles from the ovary ipsilateral to the corpus luteum (CL) containing high intrafollicular P4 concentrations enhance the abundance of proteins detected in follicular-derived small extracellular vesicles (sEVs) predicted to be involved in the retraction of membrane projections based on actin filaments, such as transzonal projections (TZPs). Conversely, we found that follicles from the ovary contralateral to the CL, which contained low intrafollicular P4 concentrations, had a high detection of proteins predicted to regulate the maintenance of TZPs. We also performed RNAseq analysis which demonstrated that 177 genes were differentially expressed in CC under the different P4 environments. Bioinformatic analysis points to changes associated to cell metabolism in cells from follicles ipsilateral to the CL in comparison to genes involved in cell communication in CC from follicles contralateral to the CL. Our functional analysis experiment confirmed that supplementation of cumulus-oocyte complexes during in vitro maturation with P4 at concentration similar to ipsilateral follicles reduces the number of TZPs. In summary, our study underscores a direct association between P4 concentration and cumulus-oocyte interaction, with potential consequences for the acquisition of oocyte competence.


Subject(s)
Corpus Luteum , Cumulus Cells , Extracellular Vesicles , Ovarian Follicle , Progesterone , Animals , Female , Cumulus Cells/metabolism , Cumulus Cells/cytology , Cattle , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Corpus Luteum/metabolism , Corpus Luteum/cytology , Progesterone/metabolism , Ovarian Follicle/metabolism , Ovarian Follicle/cytology , Oocytes/metabolism , Cell Communication
5.
BMC Endocr Disord ; 24(1): 135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090659

ABSTRACT

BACKGROUND: Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration. METHODS: Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17ß-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses. RESULTS: A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17ß-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17ß-estradiol and for APOA5 after testosterone treatment. CONCLUSIONS: Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.


Subject(s)
Gonadal Steroid Hormones , Hepatocytes , Lipid Metabolism , Humans , Male , Female , Hepatocytes/metabolism , Hepatocytes/drug effects , Lipid Metabolism/genetics , Lipid Metabolism/drug effects , Gonadal Steroid Hormones/pharmacology , Gonadal Steroid Hormones/metabolism , Cells, Cultured , Middle Aged , Testosterone/pharmacology , Testosterone/metabolism , Estradiol/pharmacology , Adult , Progesterone/pharmacology , Progesterone/metabolism , Sex Factors
6.
PLoS One ; 19(8): e0308168, 2024.
Article in English | MEDLINE | ID: mdl-39110703

ABSTRACT

The ovarian KGN granulosa-like tumour cell line is commonly used as a model for human granulosa cells, especially since it produces steroid hormones. To explore this further, we identified genes that were differentially expressed by KGN cells compared to primary human granulosa cells using three public RNA sequence datasets. Of significance, we identified that the expression of the antioxidant gene TXNRD1 (thioredoxin reductase 1) was extremely high in KGN cells. This is ominous since cytochrome P450 enzymes leak electrons and produce reactive oxygen species during the biosynthesis of steroid hormones. Gene Ontology (GO) analysis identified steroid biosynthetic and cholesterol metabolic processes were more active in primary granulosa cells, whilst in KGN cells, DNA processing, chromosome segregation and kinetochore pathways were more prominent. Expression of cytochrome P450 cholesterol side-chain cleavage (CYP11A1) and cytochrome P450 aromatase (CYP19A1), which are important for the biosynthesis of the steroid hormones progesterone and oestrogen, plus their electron transport chain members (FDXR, FDX1, POR) were measured in cultured KGN cells. KGN cells were treated with 1 mM dibutyryl cAMP (dbcAMP) or 10 µM forskolin, with or without siRNA knockdown of TXNRD1. We also examined expression of antioxidant genes, H2O2 production by Amplex Red assay and DNA damage by γH2Ax staining. Significant increases in CYP11A1 and CYP19A1 were observed by either dbcAMP or forskolin treatments. However, no significant changes in H2O2 levels or DNA damage were found. Knockdown of expression of TXNRD1 by siRNA blocked the stimulation of expression of CYP11A1 and CYP19A1 by dbcAMP. Thus, with TXNRD1 playing such a pivotal role in steroidogenesis in the KGN cells and it being so highly overexpressed, we conclude that KGN cells might not be the most appropriate model of primary granulosa cells for studying the interplay between ovarian steroidogenesis, reactive oxygen species and antioxidants.


Subject(s)
Antioxidants , Aromatase , Cholesterol Side-Chain Cleavage Enzyme , Granulosa Cells , Humans , Female , Antioxidants/metabolism , Aromatase/genetics , Aromatase/metabolism , Cell Line, Tumor , Granulosa Cells/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Thioredoxin Reductase 1/metabolism , Thioredoxin Reductase 1/genetics , Gene Expression Regulation, Neoplastic , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/metabolism , Granulosa Cell Tumor/pathology , Steroids/biosynthesis , Progesterone/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology
7.
Cells ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39120268

ABSTRACT

The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.


Subject(s)
Endometrium , Estrogens , Progesterone , Signal Transduction , Humans , Female , Endometrium/metabolism , Progesterone/metabolism , Estrogens/metabolism , Animals , Receptors, Progesterone/metabolism
8.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090270

ABSTRACT

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Subject(s)
Decidua , Fetal Growth Retardation , Leptin , Placenta , Signal Transduction , Animals , Female , Mice , Pregnancy , Decidua/metabolism , Decidua/pathology , Diet, High-Fat/adverse effects , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Leptin/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/pathology , Placenta/metabolism , Progesterone/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics
9.
J Inorg Biochem ; 260: 112701, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39173495

ABSTRACT

Human cytochrome P450 CYP17A1 catalyzes the hydroxylation of pregnenolone and progesterone at the C17 position, with subsequent C17-C20 bond scission, to form dehydroepiandrosterone and androstenedione respectively. The first hydroxylation reaction is faster in H2O than in D2O, while the second carbon­carbon bond scission event demonstrates an inverse solvent isotope effect, which is more pronounced for 17-hydroxy pregnenolone. In order to better understand the cause of this difference, we compared the optical absorption spectra of oxygenated CYP17A1 with the four substrates (pregnenolone, progesterone, 17-hydroxy pregnenolone and 17-hydroxy progesterone) in both H2O and D2O. We also studied the temperature-dependent decay of the peroxo-ferric and hydroperoxo-ferric intermediates generated by cryoradiolysis of the corresponding oxygenated heme proteins at 77 K. For both pregnenolone and 17-hydroxypregnenolone, annealing of the peroxo-intermediates was observed at lower temperatures in H2O than in D2O. In contrast, no solvent isotope effect was detected when progesterone or 17-hydroxyprogesterone were used as substrates. These differences are attributed to their different positioning in the P450 active site with respect to the heme bound peroxo (Fe-OO-) moiety, which is in agreement with earlier structural and spectroscopic investigations. Analysis of the samples run in both H2O and in D2O, where 17-hydroxyprogesterone is the substrate, demonstrated significant (∼25%) yield of androstenedione product relative to the oxygenated starting material.


Subject(s)
Pregnenolone , Steroid 17-alpha-Hydroxylase , Steroid 17-alpha-Hydroxylase/metabolism , Steroid 17-alpha-Hydroxylase/chemistry , Humans , Pregnenolone/chemistry , Pregnenolone/metabolism , Progesterone/chemistry , Progesterone/metabolism , Deuterium Oxide/chemistry , Hydroxylation
10.
Maturitas ; 188: 108087, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111089

ABSTRACT

The menopause transition is an important period in a woman's life, during which she is at an increased risk of mood disorders. Estrogen and progesterone fluctuations during the menopausal transition and very low levels of estradiol after menopause have a profound effect on the central nervous system (CNS), causing an imbalance between excitatory and inhibitory inputs. Changes in neurotransmission and neuronal interactions that occur with estradiol withdrawal disrupt the normal neurological balance and may be associated with menopausal symptoms. Hot flushes, depressed mood and anxiety are all symptoms of menopause that are a consequence of the complex changes that occur in the CNS, involving many signaling pathways and neurotransmitters (i.e. γ-aminobutyric acid, serotonin, dopamine), neurosteroids (i.e. allopregnanolone), and neuropeptides (i.e. kisspeptin, neurokinin B). All these pathways are closely linked, and the complex interactions that exist are not yet fully understood. This review summarizes the neuroendocrine changes in the CNS during the menopausal transition, with particular emphasis on those that underlie mood changes.


Subject(s)
Menopause , Mood Disorders , Neurosecretory Systems , Humans , Female , Mood Disorders/etiology , Menopause/physiology , Menopause/psychology , Neurosecretory Systems/physiopathology , Central Nervous System , Hot Flashes , Estrogens/metabolism , Estradiol , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Progesterone/metabolism
11.
Reprod Biol ; 24(3): 100926, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106594

ABSTRACT

The aim of the present study was to determine whether adipokines monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) can affect the functions of ovarian cells in cats. The addition of either MCP-1 or PAI-1 increased viability; promoted the accumulation of proliferation markers and progesterone and estradiol release; and decreased the accumulation of apoptosis markers in cultured feline granulosa cells. The present observations suggest that MCP-1 or PAI-1 can be physiological stimulators of ovarian granulosa cell functions.


Subject(s)
Chemokine CCL2 , Granulosa Cells , Plasminogen Activator Inhibitor 1 , Animals , Cats , Female , Plasminogen Activator Inhibitor 1/metabolism , Granulosa Cells/metabolism , Granulosa Cells/physiology , Granulosa Cells/drug effects , Chemokine CCL2/metabolism , Cells, Cultured , Cell Proliferation/physiology , Estradiol/metabolism , Estradiol/pharmacology , Progesterone/metabolism , Progesterone/pharmacology , Apoptosis , Cell Survival
12.
J Reprod Immunol ; 165: 104289, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972147

ABSTRACT

One of the initial causes of cystic ovarian disease (COD) is a failure in the normal ovulation mechanism. This study aimed to characterize the populations of immune cells (T-lymphocytes, B-lymphocytes, monocytes-macrophages and granulocytes) present in the ovary of cows with COD and induced follicular persistence, and evaluate their relation with follicular persistence and cyst formation. The follicular persistence model was developed using a progesterone (P4) slow-release intravaginal device, to obtain subluteal concentrations of P4. Results evidenced that T-lymphocytes, B-lymphocytes and monocytes-macrophages in the cortex, medulla, and theca externa and interna of dominant follicles were higher in the control group than in the COD and all persistence groups. Granulocytes in the medulla and theca externa of dominant follicles were lower in the control group than in the COD group, and those in the cortex and medulla were lower in the control group than in the persistence groups. The presence of T-lymphocytes, B-lymphocytes and granulocytes in the follicular fluid was abundant, especially that of granulocytes, without differences between control and COD cows. These results suggest that the immune system potentially plays a role in the local mechanisms of COD pathogenesis in dairy cows. In spontaneous COD and in our follicular persistence model, the distribution of the cells studied was different from that in the control group. However, to our knowledge, this is the first report describing the presence of immune cells in bovine follicular fluid samples and the expression of steroid hormone receptors in infiltrating immune cells in the bovine ovary.


Subject(s)
Ovarian Cysts , Ovarian Follicle , Progesterone , Animals , Female , Cattle , Ovarian Cysts/pathology , Ovarian Cysts/immunology , Ovarian Follicle/immunology , Ovarian Follicle/pathology , Ovarian Follicle/metabolism , Progesterone/metabolism , Cattle Diseases/immunology , Cattle Diseases/pathology , Leukocytes/immunology , Leukocytes/pathology , Leukocytes/metabolism , Ovary/immunology , Ovary/pathology , B-Lymphocytes/immunology , Follicular Fluid/immunology , Follicular Fluid/metabolism , T-Lymphocytes/immunology
13.
J Reprod Immunol ; 165: 104295, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053203

ABSTRACT

During pregnancy, a unique immune milieu is established systemically and locally at the maternal-fetal interface. While preparing for embryonic implantation, endometrial effectors significantly change their proportions and function, which are synchronized with hormonal changes. During assisted reproductive technology cycles, various cytokines, chemokines, and immune factors dynamically change with the altered receptor expressions on the immune effectors. Thus, the hormonal regulation of immune effectors is critical to maintaining the immune milieu. In this review, hormonal effects on T cell subsets are reviewed. Sex hormones affect T cell ontogeny and development, consequently affecting their functions. Like other T cell subsets, CD4+ T helper (Th) cells are modulated by estrogen, where low estrogen concentration promotes Th1-driven cell-mediated immunity in the uterus and in vitro by enhancing IFN-γ production, while a high estrogen level decreases it. The abundance and differentiation of T regulatory (Treg) cells are controlled by estrogen, inducing Treg expansion. Conversely, progesterone maintains immune homeostasis by balancing Th1/Th2 and Th17/Treg immunity, leading to maternal-fetal tolerance. Therefore, the understanding of the hormonal impact on various T cell subsets during the reproductive cycles is critical to improving reproductive outcomes in women with recurrent pregnancy losses, repeated implantation failures, and undergoing assisted reproductive cycles.


Subject(s)
Reproductive Techniques, Assisted , Humans , Female , Pregnancy , Animals , T-Lymphocytes, Regulatory/immunology , Estrogens/metabolism , Estrogens/immunology , Embryo Implantation/immunology , Immune Tolerance , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Gonadal Steroid Hormones/metabolism , Gonadal Steroid Hormones/immunology , Progesterone/metabolism
14.
Cell Mol Life Sci ; 81(1): 324, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080028

ABSTRACT

Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.


Subject(s)
AMP-Activated Protein Kinases , Endometrium , Polycystic Ovary Syndrome , Sirtuin 1 , Stromal Cells , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Stromal Cells/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , Endometrium/metabolism , Endometrium/pathology , Endometrium/drug effects , AMP-Activated Protein Kinases/metabolism , Adult , Hyperandrogenism/metabolism , Hyperandrogenism/pathology , Decidua/metabolism , Decidua/pathology , Testosterone/metabolism , Testosterone/pharmacology , Androgens/pharmacology , Androgens/metabolism , Progesterone/metabolism , Progesterone/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Signal Transduction/drug effects
15.
J Steroid Biochem Mol Biol ; 244: 106592, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39053703

ABSTRACT

20-hydroxyprogesterone (20-DHP) is a natural metabolite of progesterone which occurs with two diastereoisomers: 20α-DHP and 20ß-DHP. They have drawn attention for their progesterone-like activity since the middle of the 20th century. However, the literature from that era bears witness to a lack of consensus regarding their specific effects. Considered that their stereoisomerism differences, it is essential to investigate their biological activities in vivo separately. In this study, we presented a chemical synthesis technique that yielded highly pure samples of 20α-DHP and 20ß-DHP, and performed simultaneous content analysis. Subsequently, we examined and contrasted the progesterone-like properties of 20α-DHP, 20ß-DHP, and a 1:1 mixture of 20α-DHP and 20ß-DHP. The Morphological observations of the endometrium were conducted via Haematoxylin-eosin staining. Serum hormone levels were measured using enzyme-linked immunosorbent assays. Furthermore, real-time fluorescence quantitative polymerase chain reaction and immunohistochemistry were employed to analyse the relevant mRNA and protein expression, respectively. Our comparison revealed that 20α-DHP and P4 share identical progesterone-like actions, while 20ß-DHP exhibits partial similarity. The progesterone activity varied when the two were combined in a 1:1 ratio.


Subject(s)
Progesterone , Female , Animals , Progesterone/metabolism , Progesterone/blood , Endometrium/metabolism , Stereoisomerism , 20-alpha-Dihydroprogesterone/metabolism , 20-alpha-Dihydroprogesterone/chemistry , Humans
16.
Brain Behav Immun ; 121: 13-25, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39025414

ABSTRACT

Alterations in steroid hormone regulation have been implicated in the etiology and progression of autism spectrum disorders (ASD), with the enzyme cytochrome P450 family 11 subfamily A member 1 (CYP11A1)-a key catalyst in cholesterol side-chain cleavage, prominently expressed in the adrenal glands, ovaries, testes, and placenta-standing at the forefront of these investigations. The potential link between aberrations in placental Cyp11a1 expression and the resultant neurodevelopmental disorders, along with the mechanisms underpinning such associations, remains inadequately delineated. In this study, we employed a placental trophoblast-specific Cyp11a1 Hipp11 (H11) knock-in murine model to dissect the phenotypic manifestations within the placenta and progeny, thereby elucidating the underlying mechanistic pathways. Behavioral analyses revealed a diminution in social interaction capabilities alongside an augmented anxiety phenotype, as evidenced by open field and elevated plus maze assessments; both phenotypes were ameliorated after vitamin D3 supplementation. Electrophysiological assays underscored the augmented inhibition of paired-pulse facilitation, indicating impaired neuroplasticity in Cyp11a1 H11-modified mice. An elevation in progesterone concentrations was noted, alongside a significant upregulation of Th1-related cytokines (IL-6 and TNFα) across the plasma, placental, and frontal cortex-a pathological state mitigable through vitamin D3 intervention. Western blotting revealed a vitamin D-mediated rectification of vitamin D receptor and PGC-1α expression dysregulations. Immunofluorescence assays revealed microglial activation in the knock-in model, which was reversible upon vitamin D3 treatment. In conclusion, Cyp11a1 overexpression in the placenta recapitulated an autism-like phenotype in murine models, and vitamin D3 administration effectively ameliorated the resultant neurobehavioral and neuroinflammatory derangements. This study substantiates the application of Cyp11a1 as a biomarker in prenatal diagnostics and posits that prenatal vitamin D3 supplementation is a viable prophylactic measure against perturbations in steroid hormone metabolism associated with ASD pathogenesis.


Subject(s)
Autism Spectrum Disorder , Brain , Cholesterol Side-Chain Cleavage Enzyme , Disease Models, Animal , Placenta , Animals , Female , Pregnancy , Placenta/metabolism , Mice , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Brain/metabolism , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Vitamin D/metabolism , Male , Autistic Disorder/metabolism , Autistic Disorder/genetics , Prenatal Exposure Delayed Effects/metabolism , Progesterone/metabolism , Gene Knock-In Techniques
17.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38982717

ABSTRACT

Steroidogenesis is associated with circadian clock genes. However, the regulation of steroid hormone production in sow granulosal cells by Per2, a crucial circadian regulator, remains unexplored. In this study, we have identified the presence of Per2 in ovarian granulosa cells and have observed its circadian expression pattern. Employing siRNA to interfere with Per2 expression, our investigation revealed that Per2 knockdown notably elevated progesterone (P4) levels along with increasing the expression of StAR but interference of Per2 did not alter the rhythm of clock-related gene (Bmal1, Clock, Per1, and Cry1) in granulosa cells. Subsequent mechanistic analysis showed that Per2 formed complexes with PPARγ and interference with Per2 promoted the formation of the PPARγ:RXRα heterodimer. Importantly, we uncovered that PPARγ:RXRα heterodimer could control the expression of StAR via direct peroxisome proliferator response element binding to its promoter to regulate its activity, and knockdown of Per2 promoted the transcription of StAR via increasing the binding of PPARγ:RXRα ligands. Altogether, these findings indicated a noncanonical role of Per2 in controlling PPARγ:RXRα binding to regulate transcription of StAR and progesterone synthesis, thus revealing potential avenues of pharmacological and therapeutic intervention.


The circadian clock can regulate ovarian function, and disruption of the circadian clock caused by environmental factors can seriously affect the reproductive capacity of female animals, leading to ovarian diseases. Therefore, it is necessary to investigate the relationship between clock genes and ovarian function. In this study, Per2, a key gene for the circadian clock, was expressed in ovarian granulosa cells according to a rhythmic pattern, but knocking out Per2 did not alter the circadian rhythm in granulosa cells. Interference of Per2 notably elevated progesterone (P4) levels along with increasing the expression of StAR (a key gene for P4 synthesis) in granulosa cells. Subsequent mechanistic analysis showed that knockdown of Per2 enhanced transcription of StAR by promoting the formation of the PPARγ:RXRα heterodimer. These results indicated a noncanonical role of Per2 in regulating PPARγ:RXRα binding to control transcription of StAR and P4 production.


Subject(s)
Gene Expression Regulation , Granulosa Cells , Period Circadian Proteins , Phosphoproteins , Progesterone , Animals , Granulosa Cells/metabolism , Female , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Swine , Progesterone/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
18.
Reprod Fertil ; 5(3)2024 07 01.
Article in English | MEDLINE | ID: mdl-38990713

ABSTRACT

Abstract: Reactive oxygen species (ROS) are a by-product of the activity of cytochrome P450 steroidogenic enzymes. Antioxidant enzymes protect against ROS damage. To identify if any particular antioxidant enzyme is used to protect against ROS produced by granulosa cells as follicles enlarge and produce oestradiol, we measured in the bovine granulosa cells the expression of two steroidogenic enzymes (CYP11A1, CYP19A1), important for progesterone and oestradiol production. We also measured the expression of the members (FDXR, FDX1, POR) of their electron transport chains (ETC). We measured antioxidant enzymes (GPXs 1-8, CAT, SODs 1 and 2, PRDXs 1-6, GSR, TXN, TXNRDs 1-3). Since selenium is an active component of GPXs, the selenium-uptake receptors (LRPs 2 and 8) were measured. Only the selenium-dependent GPX1 showed the same increase in expression as the steroidogenic enzymes did with increasing follicle size. GPX4 and PRDX2/6 decreased with follicle size, whereas SOD1/2, CAT, GSR, and TXNRD3 were lowest at the intermediate sizes. The other antioxidant enzymes were unchanged or expressed at low levels. The expression of the selenium-uptake receptor LRP8 also increased significantly with follicle size. Correlation analysis revealed statistically significant and strongly positive correlations of the steroidogenic enzymes and their ETCs with both GPX1 and LRP8. These results demonstrate a relationship between the expression of genes involved in steroidogenesis and selenium-containing antioxidant defence mechanisms. They suggest that during the late stages of folliculogenesis, granulosa cells are dependent on sufficient expression of GPX1 and the selenium transporter LRP8 to counteract increasing ROS levels caused by the production of steroid hormones. Lay summary: In the ovary, eggs are housed in follicles which contain the cells that produce oestrogen in the days leading up to ovulation of the egg. Oestrogen is produced by the action of enzymes. However, some of these enzymes also produce by-products called reactive oxygen species (ROS). These are harmful to eggs. Fortunately, cells have protective antioxidant enzymes that can neutralise ROS. This study was interested in which particular antioxidant enzyme(s) might be involved in neutralising the ROS in follicle cells. It was found that only one antioxidant enzyme, GPX1, appeared to be co-regulated with the enzymes that produce oestrogen and progesterone in the follicular cells. GPX1 contains the essential mineral selenium. In summary, this study has identified which antioxidant appears to be involved in neutralising ROS in the days leading to ovulation. It highlights the importance of selenium in the diet.


Subject(s)
Glutathione Peroxidase GPX1 , Glutathione Peroxidase , Granulosa Cells , Female , Granulosa Cells/metabolism , Animals , Cattle , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Selenium/metabolism , Antioxidants/metabolism , Aromatase/metabolism , Aromatase/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Progesterone/metabolism , Reactive Oxygen Species/metabolism , Estradiol/metabolism , Ovarian Follicle/metabolism
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 596-604, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948288

ABSTRACT

Objective: This study aims to analyze the relationship between reproductive tract microecological changes, metabolic differences, and pregnancy outcomes at different time points in the frozen-thawed embryo transfer cycle while patients are undergoing hormone replacement therapy, which will be a breakthrough point for improving outcomes. Methods: A total of 20 women undergoing frozen-thawed single blastocyst transfer for the first time at the Reproductive Medicine Center of Fujian Maternal and Child Health Hospital between July 2022 and January 2023 were recruited for this study. Their vaginal and cervical secretions were collected for 16S rRNA sequencing and non-targeted metabolomics analysis on days 2-5 of menstruation, day 7 after estrogen replacement therapy started, the day when progesterone was added, and the day of transplantation. The subjects were divided into different groups according to their clinical pregnancy status and the sequencing results were analyzed using bioinformatics methods. Results: 1) The alpha-diversity index of the vaginal and cervical microbiota was higher on days 2-5 of menstruation (P<0.01), but did not differ significantly on day 7 after oral estrogen replacement therapy started, the day of progesterone administration, and the day of transplantation (P≥0.1). 2) Both the pregnant group and the non-pregnant group showed a variety of microorganisms and metabolites with significant differences in the lower reproductive tract at different time points. 3) Microbial analysis at different time points showed that there were significant differences in vaginal flora, including Peptoniphilus, Enterocloster, Finegoldia, Klebsiella, Anaerobutyricum, Agathobaculum, Sporanaerobacter, Bilophila, Prevotella, and Anaerococcus in the pregnant group (P<0.05). 4) Metabolite analysis at different time points showed that there were significant differences in 3-hydroxybenzoic acid, linatine, (R)-amphetamine, hydroxychloroquine, and L-altarate in the vaginal secretions of the pregnant group (P<0.05), and that there were significant differences in isocitric acid, quassin, citrinin, and 12(R)-HETE in the cervical secretions (P<0.05). 5) Metabolite analysis at different time points showed that, in the non-pregnant group, there were significant differences in linatine, decanoyl-L-carnitine, aspartame, sphingosine, and hydroxychloroquine in the vaginal secretions (P<0.05), and the isocitric acid, quassin, ctrinin, and 12(R)-HETE in the cervical secretions (P<0.05). 6) Combined microbiome and metabolomics analysis showed that certain metabolites were significantly associated with microbial communities, especially Klebsiella. Conclusions: Significant differences in the microbiota genera and metabolites at different time points were found during the frozen-embryo transfer cycle of hormone replacement therapy, which may be used as potential biomarkers to predict pregnancy outcomes of embryo transfer.


Subject(s)
Embryo Transfer , Microbiota , Pregnancy Outcome , Progesterone , Vagina , Humans , Female , Pregnancy , Embryo Transfer/methods , Vagina/microbiology , Progesterone/metabolism , Adult , Cryopreservation , RNA, Ribosomal, 16S/genetics , Cervix Uteri/metabolism
20.
J Pineal Res ; 76(2): e12936, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39041348

ABSTRACT

Women typically sleep and wake earlier than men and have been shown to have earlier circadian timing relative to the light/dark cycle that synchronizes the clock. A potential mechanism for earlier timing in women is an altered response of the circadian system to evening light. We characterized individual-level dose-response curves for light-induced melatonin suppression using a within-subjects protocol. Fifty-six participants (29 women, 27 men; aged 18-30 years) were exposed to a range of light illuminances (10, 30, 50, 100, 200, 400, and 2000 lux) using melatonin suppression relative to a dim control (<1 lux) as a marker of light sensitivity. Women were free from hormonal contraception. To examine the potential influence of sex hormones, estradiol and progesterone was examined in women and testosterone was examined in a subset of men. Menstrual phase was monitored using self-reports and estradiol and progesterone levels. Women exhibited significantly greater melatonin suppression than men under the 400-lux and 2000-lux conditions, but not under lower light conditions (10-200 lux). Light sensitivity did not differ by menstrual phase, nor was it associated with levels of estradiol, progesterone, or testosterone, suggesting the sex differences in light sensitivity were not acutely driven by circulating levels of sex hormones. These results suggest that sex differences in circadian timing are not due to differences in the response to dim/moderate light exposures typically experienced in the evening. The finding of increased bright light sensitivity in women suggests that sex differences in circadian timing could plausibly instead be driven by a greater sensitivity to phase-advancing effects of bright morning light.


Subject(s)
Circadian Rhythm , Light , Melatonin , Humans , Female , Adult , Circadian Rhythm/physiology , Adolescent , Young Adult , Male , Melatonin/metabolism , Estradiol/blood , Progesterone/blood , Progesterone/metabolism , Testosterone/blood , Menstrual Cycle/physiology
SELECTION OF CITATIONS
SEARCH DETAIL