Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.907
Filter
1.
Molecules ; 29(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124908

ABSTRACT

In a landmark study, oleocanthal (OLC), a major phenolic in extra virgin olive oil (EVOO), was found to possess anti-inflammatory activity similar to ibuprofen, involving inhibition of cyclooxygenase (COX) enzymes. EVOO is a rich source of bioactive compounds including fatty acids and phenolics; however, the biological activities of only a small subset of compounds associated with Olea europaea have been explored. Here, the OliveNetTM library (consisting of over 600 compounds) was utilized to investigate olive-derived compounds as potential modulators of the arachidonic acid pathway. Our first aim was to perform enzymatic assays to evaluate the inhibitory activity of a selection of phenolic compounds and fatty acids against COX isoforms (COX-1 and COX-2) and 15-lipoxygenase (15-LOX). Olive compounds were found to inhibit COX isoforms, with minimal activity against 15-LOX. Subsequent molecular docking indicated that the olive compounds possess strong binding affinities for the active site of COX isoforms, and molecular dynamics (MD) simulations confirmed the stability of binding. Moreover, olive compounds were predicted to have favorable pharmacokinetic properties, including a readiness to cross biological membranes as highlighted by steered MD simulations and umbrella sampling. Importantly, olive compounds including OLC were identified as non-inhibitors of the human ether-à-go-go-related gene (hERG) channel based on patch clamp assays. Overall, this study extends our understanding of the bioactivity of Olea-europaea-derived compounds, many of which are now known to be, at least in part, accountable for the beneficial health effects of the Mediterranean diet.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase Inhibitors , Molecular Docking Simulation , Olea , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Olea/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Molecular Dynamics Simulation , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 1/chemistry , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/chemistry , Olive Oil/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Cyclopentane Monoterpenes , Computer Simulation , Aldehydes
2.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930898

ABSTRACT

Research over the last 25 years related to structural elucidations and biological investigations of the specialized pro-resolving mediators has spurred great interest in targeting these endogenous products in total synthesis. These lipid mediators govern the resolution of inflammation as potent and stereoselective agonists toward individual G-protein-coupled receptors, resulting in potent anti-inflammatory activities demonstrated in many human disease models. Specialized pro-resolving mediators are oxygenated polyunsaturated products formed in stereoselective and distinct biosynthetic pathways initiated by various lipoxygenase and cyclooxygenase enzymes. In this review, the reported stereoselective total synthesis and biological activities of the specialized pro-resolving mediators biosynthesized from the polyunsaturated fatty acid n-3 docosapentaenoic acid are presented.


Subject(s)
Fatty Acids, Unsaturated , Humans , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/chemical synthesis , Animals , Prostaglandin-Endoperoxide Synthases/metabolism , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Inflammation/drug therapy , Inflammation/metabolism
3.
Prostaglandins Other Lipid Mediat ; 173: 106851, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38740361

ABSTRACT

Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.


Subject(s)
Arachidonic Acid , Cardiomegaly , Menopause , Cardiomegaly/metabolism , Cardiomegaly/pathology , Arachidonic Acid/metabolism , Humans , Animals , Female , Menopause/metabolism , Postmenopause/metabolism , Cytochrome P-450 Enzyme System/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Lipoxygenase/metabolism , Disease Models, Animal
4.
J Appl Physiol (1985) ; 136(5): 1226-1237, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38545661

ABSTRACT

Cyclooxygenase (COX) products of arachidonic acid metabolism, specifically prostaglandins, play a role in evoking and transmitting the exercise pressor reflex in health and disease. Individuals with type 2 diabetes mellitus (T2DM) have an exaggerated exercise pressor reflex; however, the mechanisms for this exaggerated reflex are not fully understood. We aimed to determine the role played by COX products in the exaggerated exercise pressor reflex in T2DM rats. The exercise pressor reflex was evoked by static muscle contraction in unanesthetized, decerebrate, male, adult University of California Davis (UCD)-T2DM (n = 8) and healthy Sprague-Dawley (n = 8) rats. Changes (Δ) in peak mean arterial pressure (MAP) and heart rate (HR) during muscle contraction were compared before and after intra-arterial injection of indomethacin (1 mg/kg) into the contracting hindlimb. Data are presented as means ± SD. Inhibition of COX activity attenuated the exaggerated peak MAP (Before: Δ32 ± 13 mmHg and After: Δ18 ± 8 mmHg; P = 0.004) and blood pressor index (BPi) (Before: Δ683 ± 324 mmHg·s and After: Δ361 ± 222 mmHg·s; P = 0.006), but not HR (Before: Δ23 ± 8 beats/min and After Δ19 ± 10 beats/min; P = 0.452) responses to muscle contraction in T2DM rats. In healthy rats, COX activity inhibition did not affect MAP, HR, or BPi responses to muscle contraction. Inhibition of COX activity significantly reduced local production of prostaglandin E2 in T2DM and healthy rats. We conclude that peripheral inhibition of COX activity attenuates the pressor response to muscle contraction in T2DM rats, suggesting that COX products partially contribute to the exaggerated exercise pressor reflex in those with T2DM.NEW & NOTEWORTHY We compared the pressor and cardioaccelerator responses to static muscle contraction before and after inhibition of cyclooxygenase (COX) activity within the contracting hindlimb in decerebrate, unanesthetized type 2 diabetic mellitus (T2DM) and healthy rats. The pressor responses to muscle contraction were attenuated after peripheral inhibition of COX activity in T2DM but not in healthy rats. We concluded that COX products partially contribute to the exaggerated pressor reflex in those with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Muscle Contraction , Muscle, Skeletal , Reflex , Animals , Male , Rats , Arterial Pressure/physiology , Blood Pressure/physiology , Blood Pressure/drug effects , Cyclooxygenase Inhibitors/pharmacology , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Heart Rate/physiology , Heart Rate/drug effects , Indomethacin/pharmacology , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Physical Conditioning, Animal/physiology , Prostaglandin-Endoperoxide Synthases/metabolism , Rats, Sprague-Dawley , Reflex/physiology
5.
Pharmacol Ther ; 256: 108612, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369063

ABSTRACT

Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.


Subject(s)
Neoplasms , Oxylipins , Humans , Oxylipins/metabolism , Lipoxygenases , Prostaglandin-Endoperoxide Synthases/metabolism , Fatty Acids, Unsaturated/metabolism , Cytochromes , Neoplasms/drug therapy , Cytochrome P-450 Enzyme System/metabolism
6.
Mar Environ Res ; 196: 106395, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382127

ABSTRACT

Prostaglandins (Pgs) are eicosanoid lipid mediators detected in all vertebrates, in some marine invertebrates, macroalgae and in diatoms, a class of eukaryotic microalgae composing the phytoplankton. The enzymes involved in the Pgs pathway were found to be differentially expressed in two strains of the diatom Skeletonema marinoi, named FE7 and FE60, already known to produce different levels of oxylipins, a class of secondary metabolites involved in the defence of diatoms against copepod predation, with FE7 being higher producer than FE60. In the present study we investigated the response of genes involved in the production of oxylipins and Pgs, evaluating their expression after the exposure to the copepod Temora stylifera. Our results highlighted a grazer feeding preference for FE60, the strain having low oxylipins content and reduced expression of Pgs enzymes, and an impact on the gene expression of the enzymes involved in oxylipins (i.e. lipoxygenase) and Pgs (i.e. cyclooxygenase) biosynthesis, especially in FE7. A time course evaluation of the gene expression over 24 h showed an upregulation of the essential enzyme in the Pgs pathway, the cyclooxygenase, in FE60 after 6 h of exposure to the grazer, differently from FE7 where no upregulation of gene expression in the presence of copepods was revealed. These results provide preliminary indications regarding the existence of a complex involvement of the Pgs pathway in the prey-predator interaction that requires further investigations.


Subject(s)
Diatoms , Animals , Diatoms/metabolism , Prostaglandins/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Oxylipins/metabolism , Phytoplankton
7.
Anat Histol Embryol ; 53(1): e12980, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37788129

ABSTRACT

Prostaglandins are synthesized from arachidonic acid through the catalytic activities of cyclooxygenase, while the production of different prostaglandin types, prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE), are regulated by specific prostaglandin synthases (PGFS and PGES). Prostaglandin ligands (PGF and PGE) bind to specific high-affinity receptors and initiate biologically distinct signalling pathways. In the ovaries, prostaglandins are known to be important endocrine regulators of female reproduction, in addition to maintaining local function through autocrine and/or paracrine effect. Many research groups in different animal species have already identified a variety of factors and molecular mechanisms that are responsible for the regulation of prostaglandin functions. In addition, prostaglandins stimulate their intrafollicular and intraluteal production via the pathway of prostaglandin self-regulation in the ovary. Therefore, the objective of the review article is to discuss recent findings about local regulation patterns of prostaglandin ligands PGF and PGE during different physiological stages of ovarian function in domestic ruminants, especially in bovine. In conclusion, the discussed local regulation mechanisms of prostaglandins in the ovary may stimulate further research activities in different methodological approaches, especially during final follicle maturation and ovulation, as well as corpus luteum formation and function.


Subject(s)
Ovary , Prostaglandins , Female , Cattle , Animals , Prostaglandins/metabolism , Ovary/physiology , Prostaglandin-Endoperoxide Synthases/metabolism , Ruminants/metabolism , Ovarian Follicle/physiology , Corpus Luteum/metabolism
8.
Purinergic Signal ; 20(2): 145-155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37052777

ABSTRACT

The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating levels of prostaglandin E2 (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between PGE2 and P2Y receptors on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a P2Y-dependent increase in calcium is blunted by PGE2 whereas, under these conditions, macrophages exhibit reduced migratory capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.


Subject(s)
Inflammation , Prostaglandin-Endoperoxide Synthases , Humans , Prostaglandin-Endoperoxide Synthases/metabolism , Inflammation/metabolism , Nucleotides/metabolism , Macrophages/metabolism , Receptors, Purinergic/metabolism
9.
Enzyme Microb Technol ; 169: 110282, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37393814

ABSTRACT

Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.


Subject(s)
Lactobacillus , Prostaglandin-Endoperoxide Synthases , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/biosynthesis , Fermentation , Glutamate Decarboxylase/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Lactobacillus/enzymology , Lipoxygenases/metabolism
10.
Theriogenology ; 206: 40-48, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178673

ABSTRACT

Evidence has shown that microRNA-665 (miR-665) is highly expressed in the mid-luteal phase compared with the early and end-luteal phase of the corpus luteum (CL) life cycle. However, whether miR-665 is a positive regulator of the life span of the CL is still unknown. The objective of this study is to explore the effect of miR-665 on the structural luteolysis in the ovarian CL. In this study, the targeting relationship between miR-665 and hematopoietic prostaglandin synthase (HPGDS) was firstly verified by dual luciferase reporter assay. Then, quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-665 and HPGDS in luteal cells. Following miR-665 overexpression, the apoptosis rate of the luteal cells was determined using flow cytometry; B-cell lymphoma-2 (BCL-2) and caspase-3 mRNA and protein were measured using qRT-PCR and Western blot (WB) analysis. Finally, the DP1 and CRTH2 receptors of PGD2, a synthetic product of HPGDS, were localized using immunofluorescence. Results confirmed that HPGDS was a direct target gene of miR-665, and miR-665 expression was negatively correlated with HPGDS mRNA expression in luteal cells. Meanwhile, after miR-665 was overexpressed, the apoptotic rate of the luteal cells showed a significant decrease (P < 0.05) and this was accompanied by elevated expression levels of anti-apoptotic factor BCL-2 mRNA and protein and decreased expression levels of apoptotic factor caspase-3 mRNA and protein (P < 0.01). Moreover, the immune fluorescence staining results showed that the DP1 receptor was also significantly decreased (P < 0.05), but the CRTH2 receptor was significantly increased (P < 0.05) in luteal cells. Overall, these results indicate that miR-665 reduces the apoptosis of luteal cells via inhibiting caspase-3 expression and promoting BCL-2 expression, and the biological function of miR-665 may be attributed to its target gene HPGDS which regulates the balance of DP1 and CRTH2 receptors expression in luteal cells. As a consequence, this study suggests that miR-665 might be a positive regulator of the life span of the CL rather than destroy the integrity of CL in small ruminants.


Subject(s)
Luteal Cells , MicroRNAs , Female , Animals , Luteal Cells/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Corpus Luteum/physiology , Apoptosis/physiology , Ruminants , RNA, Messenger/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , MicroRNAs/metabolism
11.
J Pharm Pharmacol ; 75(2): 264-275, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36477570

ABSTRACT

OBJECTIVE: Gut fibrosis occurs under chronic inflammation. This study examined the effects of different cyclooxygenase (COX) inhibitors on fibrosis in the inflamed colon. METHODS: Colitis was induced by 2,4-dinitrobenzenesulfonic acid (DNBS) in albino male Sprague-Dawley rats. After 6, 12 and 18 days, macroscopic and microscopic damage, collagen and elastic fibre content were examined. At day 6, pro-fibrotic factors (collagen I and III, hydroxyproline, fibronectin, matrix metalloproteinase-2 and -9), transforming growth factor-beta (TGF-ß) signalling [TGF-ß, Ras homolog gene family member A (RhoA), phosphorylated small mother against decapentaplegic (pSMAD)-2 and -6] and peristalsis were assessed, and the effects of indomethacin, SC-560 or celecoxib were tested. KEY FINDINGS: Six days after DNBS administration, significant histopathological signs of fibrotic remodelling were observed in rats. At day 6, pro-fibrotic factors were up-regulated and colonic peristalsis was altered. COX inhibitors reversed the histochemical, molecular and functional changes in the fibrotic colon. COX inhibition reduced TGF-ß expression, SMAD2 phosphorylation and RhoA, and increased SMAD6 expression. CONCLUSIONS: Colonic fibrosis is associated with altered bowel motility and induction of profibrotic factors driven by TGF-ß signalling. COX-1 and COX-2 inhibition counteracts this fibrotic remodelling by the modulation of TGF-ß/SMAD signalling, mainly via SMAD6 induction and reduction in SMAD2 phosphorylation.


Subject(s)
Colitis , Matrix Metalloproteinase 2 , Animals , Rats , Colitis/pathology , Collagen/metabolism , Disease Models, Animal , Fibrosis , Matrix Metalloproteinase 2/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Rats, Sprague-Dawley , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Male
12.
Methods Mol Biol ; 2576: 307-316, 2023.
Article in English | MEDLINE | ID: mdl-36152198

ABSTRACT

The endocannabinoids anandamide and 2-arachidonoylglycerol are not only metabolized by serine hydrolases, such as fatty acid amide hydrolase, monoacylglycerol lipase, and α,ß-hydrolases 6 and 12, but they also serve as substrates for cyclooxygenases, cytochrome P450s, and lipoxygenases. These enzymes oxygenate the 1Z,4Z-pentadiene system of the arachidonic acid backbone of endocannabinoids, thereby giving rise to an entirely new array of bioactive lipids. Hereby, a protocol is provided for the enzymatic synthesis, purification, and characterization of various oxygenated metabolites of anandamide generated by lipoxygenases, which enables the biological study and detection of these metabolites.


Subject(s)
Alkadienes , Endocannabinoids , Arachidonic Acid , Arachidonic Acids , Cytochromes , Endocannabinoids/metabolism , Lipoxygenases , Monoacylglycerol Lipases , Polyunsaturated Alkamides , Prostaglandin-Endoperoxide Synthases/metabolism , Serine
13.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557886

ABSTRACT

Mentha suaveolens (MS), Conyza canadensis (CC), Teucrium polium (TP) and Salvia verbenaca (SV) are used in Morocco to treat hypertension. Our aim was to characterize the composition and vasoreactivity of extracts of MS, CC, TP and SV. The chemical compositions of aqueous extracts of MS, SV and TP, and of a hydromethanolic extract of CC, were identified by HPLC-DAD. The vasoreactive effect was tested in rings of the thoracic aorta of female Wistar rats (8-14 weeks-old) pre-contracted with 10 µM noradrenaline, in the absence or presence of L-NAME 100 µM, indomethacin 10 µM or atropine 6 µM, to inhibit nitric oxide synthase, cyclooxygenase or muscarinic receptors, respectively. L-NAME and atropine decreased the vasorelaxant effect caused by low concentrations of MS. Atropine and indomethacin decreased the vasorelaxant effect of low concentrations of SV. High concentrations of MS or SV and the effect of SV and TP were not altered by any antagonist. The activation of muscarinic receptors and NO or the cyclooxygenase pathway underlie the vasorelaxant effect of MS and SV, respectively. Neither of those mechanisms underlines the vasorelaxant effect of CC and TP. These vasorelaxant effect might support the use of herbal teas from these plants as anti-hypertensives in folk medicine.


Subject(s)
Conyza , Mentha , Salvia , Teucrium , Rats , Animals , Vasodilator Agents/pharmacology , Rats, Wistar , Mentha/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Salvia/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Vasodilation , Aorta/metabolism , Aorta, Thoracic , Receptors, Muscarinic/metabolism , Atropine Derivatives/metabolism , Atropine Derivatives/pharmacology
14.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36233111

ABSTRACT

As a result of SARS-CoV-2 infection, inflammation develops, which promotes oxidative stress, leading to modification of phospholipid metabolism. Therefore, the aim of this study is to compare the effects of COVID-19 on the levels of phospholipid and free polyunsaturated fatty acids (PUFAs) and their metabolites produced in response to reactions with reactive oxygen species (ROS) and enzymes (cyclooxygenases-(COXs) and lipoxygenase-(LOX)) in the plasma of patients who either recovered or passed away within a week of hospitalization. In the plasma of COVID-19 patients, especially of the survivors, the actions of ROS and phospholipase A2 (PLA2) cause a decrease in phospholipid fatty acids level and an increase in free fatty acids (especially arachidonic acid) despite increased COXs and LOX activity. This is accompanied by an increased level in lipid peroxidation products (malondialdehyde and 8-isoprostaglandin F2α) and lipid mediators generated by enzymes. There is also an increase in eicosanoids, both pro-inflammatory as follows: thromboxane B2 and prostaglandin E2, and anti-inflammatory as follows: 15-deoxy-Δ-12,14-prostaglandin J2 and 12-hydroxyeicosatetraenoic acid, as well as endocannabinoids (anandamide-(AEA) and 2-arachidonylglycerol-(2-AG)) observed in the plasma of patients who recovered. Moreover, the expression of tumor necrosis factor α and interleukins (IL-6 and IL-10) is increased in patients who recovered. However, in the group of patients who died, elevated levels of N-oleoylethanolamine and N-palmitoylethanolamine are found. Since lipid mediators may have different functions depending on the onset of pathophysiological processes, a stronger pro-inflammatory response in patients who have recovered may be the result of the defensive response to SARS-CoV-2 in survivors associated with specific changes in the phospholipid metabolism, which could also be considered a prognostic factor.


Subject(s)
COVID-19 , Endocannabinoids , Arachidonic Acids/metabolism , Dinoprostone/metabolism , Eicosanoids/metabolism , Endocannabinoids/metabolism , Fatty Acids, Nonesterified , Hospitalization , Hospitals , Humans , Hydroxyeicosatetraenoic Acids , Interleukin-10/metabolism , Interleukin-6/metabolism , Lipid Peroxidation , Lipoxygenase/metabolism , Malondialdehyde , Phospholipases A2/metabolism , Phospholipids/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Survivors , Thromboxane B2 , Tumor Necrosis Factor-alpha/metabolism
15.
Int J Mol Sci ; 23(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233215

ABSTRACT

The phenolic drug molecules can be metabolized, among others, by the small intestine's enterocytes. The conjugation reactions (glucuronidation and sulfation) show great importance in these transformations, although the oxidation reactions can be significant. These processes are dependent on the substituents of the phenolic compounds or the reacting functional groups (hydroxyl or carboxyl). Pathologic conditions, e.g., permanent hyperglycemia and diabetes, can alter the activities of the conjugative and possibly the oxidative enzymes, thus forming a change in the metabolic pattern and eventually provoking oxidative stress. A rat intestinal perfusion model was used to investigate the way in which experimental hyperglycemia affects the paracetamol's intestinal elimination and metabolism. Hyperglycemia was induced by the administration of streptozotocin. Two hundred and fifty µM paracetamol was used in the intestinal perfusion solution. For the quantitation of the paracetamol and its major metabolites in the intestinal perfusate, an isocratic high-performance liquid chromatography method with UV-Vis detection was developed. The results revealed that quantities of all of the measured metabolites (glucuronide, sulfate, cysteine, and mercapturic acid conjugates) increased as the effect of the streptozotocin-induced hyperglycemia also did. In the small intestine's homogenate, the glutathione levels showed that there was a decrease in the hyperglycemia levels after the paracetamol administration. In contrast, the tissue levels of the cysteine were lower in the streptozotocin-induced hyperglycemia and increased after the administration of the paracetamol. The changes in the activity of the intestinal CYP 3A4, CYP 2E1, and cyclooxygenase (COX) enzymes were determined in the control and the hyperglycemic cases. Still, there was a significant observable enzyme activity elevation in the intestinal COX enzymes, but there was a decrease in the amount of activity of the intestinal CYP3A4 enzymes, and the CYP2E1 enzyme activity was practically changeless. The results on the cysteine levels in the intestinal homogenate, at least partly, can be explained by the regulation function of the cysteine during the occurrence of oxidative stress.


Subject(s)
Acetaminophen , Hyperglycemia , Acetaminophen/pharmacology , Acetylcysteine/metabolism , Animals , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/metabolism , Glucuronides , Glutathione/metabolism , Intestinal Absorption , Prostaglandin-Endoperoxide Synthases/metabolism , Rats , Streptozocin , Sulfates
16.
Can Respir J ; 2022: 8698825, 2022.
Article in English | MEDLINE | ID: mdl-36199292

ABSTRACT

Two and a half years after COVID-19 was first reported in China, thousands of people are still dying from the disease every day around the world. The condition is forcing physicians to adopt new treatment strategies while emphasizing continuation of vaccination programs. The renin-angiotensin system plays an important role in the development and progression of COVID-19 patients. Nonetheless, administration of recombinant angiotensin-converting enzyme 2 has been proposed for the treatment of the disease. The catalytic activity of cellular ACE2 (cACE2) and soluble ACE2 (sACE2) prevents angiotensin II and Des-Arg-bradykinin from accumulating in the body. On the other hand, SARS-CoV-2 mainly enters cells via cACE2. Thus, inhibition of ACE2 can prevent viral entry and reduce viral replication in host cells. The benefits of bradykinin inhibitors (BKs) have been reported in some COVID-19 clinical trials. Furthermore, the effects of cyclooxygenase (COX) inhibitors on ACE2 cleavage and prevention of viral entry into host cells have been reported in COVID-19 patients. However, the administration of COX inhibitors can reduce innate immune responses and have the opposite effect. A few studies suggest benefits of low-dose radiation therapy (LDR) in treating acute respiratory distress syndrome in COVID-19 patients. Nonetheless, radiation therapy can stimulate inflammatory pathways, resulting in adverse effects on lung injury in these patients. Overall, progress is being made in treating COVID-19 patients, but questions remain about which drugs will work and when. This review summarizes studies on the effects of a recombinant ACE2, BK and COX inhibitor, and LDR in patients with COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin II/metabolism , Angiotensin II/pharmacology , Bradykinin/metabolism , Bradykinin/pharmacology , Bradykinin/therapeutic use , Humans , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/therapeutic use , Prostaglandin-Endoperoxide Synthases/metabolism , Prostaglandin-Endoperoxide Synthases/pharmacology , Renin-Angiotensin System/physiology , SARS-CoV-2
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(2): 204-214, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-36161299

ABSTRACT

OBJECTIVE: To investigate the effect of obesity induced by high fat diet on decidual reaction of endometrium in mice, and the effect of high fat treatment on decidual reaction of endometrial stromal cells. METHODS: Twelve 4-week-old healthy C57BL/6J female mice were randomly divided into high fat diet group and control group with 6 mice in each group. They were fed with high fat diet (22 kJ/g) or normal diet (16 kJ/g) for 12 weeks, respectively. The body weight of mice was measured every week. After feeding for 12 weeks, the body length and width of mice were measured, and the levels of fasting serum triglyceride and total cholesterol were determined. Then the mice were mated with healthy C57BL/6J male mice, and the uterine tissues were collected on the seventh day of pregnancy. The decidual cells and collagen fibers in mouse endometrium was observed by HE staining and Masson staining respectively. The expression of decidual reaction related proteins in mouse endometrium were detected by immunohistochemistry and Western blotting. Mouse endometrial stromal cells (mESCs) were isolated and treated with the oleic acid and palmitic acid in vitro, and the decidual reaction was induced with estradiol and progesterone. The accumulation of lipid droplets in mESCs was observed by oil red O and Bodipy staining. The cytoskeleton of mESCs was observed by phalloidin staining. The levels of decidual reaction related genes and proteins were detected by real-time fluorescence quantitative PCR and Western blotting. RESULTS: After feeding for 12 weeks, the body weight of mice in the high fat group was significantly higher than that in the control group ( P<0.01), and there was no significant difference in body length between two groups ( P>0.05), but the body width of mice in the high fat group was significantly larger than that in the control group ( P<0.01), and the levels of serum triglyceride and total cholesterol were significantly higher than those in the control group (Both P<0.05). The number of embryo implantation in the high fat group was significantly less than that in the control group ( P<0.01). The differentiation of mESCs to decidual cells in high fat group was slow and abnormal. The expression levels of decidual reaction markers bone morphogenetic protein (BMP)2 and homeobox A10 (HOXA10) were lower than those in the control group, and there was significant difference in the expression level of HOXA10 ( P<0.01). The results of oil red O and Bodipy staining in mESCs showed that after high fat treatment, the accumulation of lipid droplets increased significantly, phalloidin staining showed abnormal cytoskeleton morphology. The expression levels of decidual reaction related genes dtprp, HOXA10 and proteins BMP2, HOXA10 and cyclooxygenase (COX)2 were significantly lower than those in the control group ( P<0.05). CONCLUSION: Obesity induced by high fat diet and high fat treatment can impair the decidual reaction of endometrium and endometrial stromal cells in mice.


Subject(s)
Diet, High-Fat , Palmitic Acid , Animals , Azo Compounds , Body Weight , Bone Morphogenetic Proteins/metabolism , Boron Compounds , Cholesterol/metabolism , Collagen/metabolism , Diet, High-Fat/adverse effects , Endometrium , Estradiol/metabolism , Female , Homeobox A10 Proteins , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Oleic Acid/metabolism , Palmitic Acid/metabolism , Phalloidine/metabolism , Pregnancy , Progesterone/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Triglycerides/metabolism
18.
Life Sci ; 309: 120994, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36155180

ABSTRACT

AIMS: Obesity can lead to the loss of the anticontractile properties of perivascular adipose tissue (PVAT). Given that cafeteria (CAF) diet reflects the variety of highly calorie and easily accessible foods in Western societies, contributing to obesity and metabolic disorders, we sought to investigate the impact of CAF diet on PVAT vasoactive profile and the involvement of renin-angiotensin system, oxidative stress, and cyclooxygenase pathway. MAIN METHODS: Male Balb/c mice received standard or CAF diet for 4 weeks. Oral glucose tolerance and insulin sensitivity tests were performed, and fasting serum glucose, cholesterol and triglyceride parameters were determined. Vascular reactivity, fluorescence and immunofluorescence analyzes were carried out in intact thoracic aorta in the presence or absence of PVAT. KEY FINDINGS: CAF diet was effective in inducing obesity and metabolic disorders, as demonstrated by increased body weight gain and adiposity index, hyperlipidemia, hyperglycemia, glucose intolerance and insulin insensitivity. Importantly, CAF diet led to a significant decrease in aortic contractility which was restored in the presence of PVAT, exhibiting therefore a contractile profile. The contractile effect of PVAT was associated with the activation of AT1 receptor, reactive oxygen species, cyclooxygenase-1, thromboxane A2 and prostaglandin E2 receptors. SIGNIFICANCE: These findings suggest that the contractile profile of PVAT involving the renin-angiotensin system activation, reactive oxygen species and cyclooxygenase-1 metabolites may be a protective compensatory adaptive response during early stage of CAF diet-induced obesity as an attempt to restore the impaired vascular contraction observed in the absence of PVAT, contributing to the maintenance of vascular tone.


Subject(s)
Insulins , Prostaglandins , Animals , Mice , Male , Reactive Oxygen Species/metabolism , Prostaglandins/metabolism , Cyclooxygenase 1/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Adipose Tissue/metabolism , Obesity/etiology , Obesity/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred BALB C , Glucose/metabolism , Thromboxanes/metabolism , Triglycerides/metabolism , Insulins/metabolism
19.
Pharmacol Rep ; 74(5): 890-908, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36129673

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is considered the most common cause of dementia among the elderly. One of the modifiable causes of AD is neuroinflammation. The current study aimed to investigate the influence of new tricyclic 1,2-thiazine derivatives on in vitro model of neuroinflammation and their ability to cross the blood-brain barrier (BBB). METHODS: The potential anti-inflammatory effect of new tricyclic 1,2-thiazine derivatives (TP1, TP4, TP5, TP6, TP7, TP8, TP9, TP10) was assessed in SH-SY5Y cells differentiated to the neuron-like phenotype incubated with bacterial lipopolysaccharide (5 or 50 µg/ml) or THP-1 microglial cell culture supernatant using MTT, DCF-DA, Griess, and fast halo (FHA) assays. Additionally, for cultures preincubated with 50 µg/ml lipopolysaccharide (LPS), a cyclooxygenase (COX) activity assay was performed. Finally, the potential ability of tested compounds to cross the BBB was evaluated by computational studies. Molecular docking was performed with the TLR4/MD-2 complex to assess the possibility of binding the tested compounds in the LPS binding pocket. Prediction of ADMET parameters (absorption, distribution, metabolism, excretion and toxicity) was also conducted. RESULTS: The unfavorable effect of LPS and co-culture with THP-1 cells on neuronal cell viability was counteracted with TP1 and TP4 in all tested concentrations. Tested compounds reduced the oxidative and nitrosative stress induced by both LPS and microglia activation and also reduced DNA damage. Furthermore, new derivatives inhibited total COX activity. Additionally, new compounds would cross the BBB with high probability and reach concentrations in the brain not lower than in the serum. The binding affinity at the TLR4/MD-2 complex binding site of TP4 and TP8 compounds is similar to that of the drug donepezil used in Alzheimer's disease. The ADMET analysis showed that the tested compounds should not be toxic and should show high intestinal absorption. CONCLUSIONS: New tricyclic 1,2-thiazine derivatives exert a neuroregenerative effect in the neuroinflammation model, presumably via their inhibitory influence on COX activity and reduction of oxidative and nitrosative stress.


Subject(s)
Alzheimer Disease , Neuroblastoma , Thiazines , Humans , Lipopolysaccharides/toxicity , Microglia , Toll-Like Receptor 4/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Molecular Docking Simulation , Coculture Techniques , Neuroinflammatory Diseases , Donepezil/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Neuroblastoma/metabolism , Anti-Inflammatory Agents/pharmacology , Thiazines/adverse effects , Thiazines/metabolism
20.
Mar Pollut Bull ; 184: 114104, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126481

ABSTRACT

This work assessed the impact of polycyclic aromatic hydrocarbons (PAHs) on the polychaeta Marphysa sanguinea in Tunis Lagoon. Highest PAHs concentrations were accumulated at station E with maximum Σ PAH of 6028,87 ng/g DW. Changes in animal physiology were clearly related to bioaccumulated PAH. In fact, high levels of immune biomarkers (cyclooxygenase [COX] and lysozyme activity with maximum of 44631,10 FU/mn/mg protein and 0,017 lysozyme activity/mn/mg protein, respectively) were recorded at stations B and E. Triacylglycerol (TAG), the energy source, was lowest at the most polluted stations (E and B), while phospholipids (PL) were highest at the control station. Statistical analysis revealed a probable effect of both low and high molecular weight PAHs on variations in energy storage lipids (TAG and sterol and wax esters [SE/WE]) and membrane lipids, particularly PL. Our results encourage the use of M. sanguinea to assess pollution levels in coastal ecosystems.


Subject(s)
Polychaeta , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Polychaeta/metabolism , Bioaccumulation , Ecosystem , Prostaglandin-Endoperoxide Synthases/metabolism , Muramidase/metabolism , Biomarkers/metabolism , DNA Damage , Phospholipids , Triglycerides , Membrane Lipids , Sterols/analysis , Esters , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL