Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.420
Filter
1.
Sci Rep ; 14(1): 14924, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942824

ABSTRACT

Oxyberberine (OBB) is a significant natural compound, with excellent hepatoprotective properties. However, the poor water solubility of OBB hinders its release and absorption thus resulting in low bioavailability. To overcome these drawbacks of OBB, amorphous spray-dried powders (ASDs) of OBB were formulated. The dissolution, characterizations, and pharmacokinetics of OBB-ASDs formulation were investigated, and its hepatoprotective action was disquisitive in the D-GalN/LPS-induced acute liver injury (ALI) mouse model. The characterizations of OBB-ASDs indicated that the crystalline form of OBB active pharmaceutical ingredients (API) was changed into an amorphous form in OBB-ASDs. More importantly, OBB-ASDs showed a higher bioavailability than OBB API. In addition, OBB-ASDs treatment restored abnormal histopathological changes, improved liver functions, and relieved hepatic inflammatory mediators and oxidative stress in ALI mice. The spray drying techniques produced an amorphous form of OBB, which could significantly enhance the bioavailability and exhibit excellent hepatoprotective effects, indicating that the OBB-ASDs can exhibit further potential in hepatoprotective drug delivery systems. Our results provide guidance for improving the bioavailability and pharmacological activities of other compounds, especially insoluble natural compounds. Meanwhile, the successful development of OBB-ASDs could shed new light on the research process of poorly soluble medicine.


Subject(s)
Berberine , Biological Availability , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Mice , Berberine/pharmacology , Berberine/chemistry , Berberine/therapeutic use , Male , Solubility , Liver/metabolism , Liver/drug effects , Liver/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Disease Models, Animal , Oxidative Stress/drug effects , Protective Agents/pharmacology , Protective Agents/chemistry , Lipopolysaccharides , Powders , Drug Delivery Systems
2.
Mar Drugs ; 22(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921566

ABSTRACT

Recently, there has been a growing interest in collagen peptides derived from marine sources for their notable ability to protect skin cells against apoptosis induced by oxidants. Therefore, the current study aimed to investigate the fundamental properties of collagen peptides, including their physicochemical, thermal, structural, stem-cell-regenerative, and skin-cell-protective effects, in comparison to commercial collagen peptides. The acid-soluble (ASC) and pepsin-soluble (PSC) collagens exhibited three distinct bands on SDS-PAGE, namely α (α1 and α2), ß, and γ chains, confirming a type I pattern. The thermal profiles obtained from TG and DSC analyses confirmed the denaturation of PSC and ASC at temperatures ranging from 51.94 to 56.4 °C and from 52.07 to 56.53 °C, respectively. The purified collagen peptides were analyzed using SDS-PAGE and MALDI-TOF mass spectrometry, revealing a mass range of 900-15,000 Da. Furthermore, the de novo peptide sequence analysis confirmed the presence of the Gly-X-Y repeating sequence in collagen peptides. Collagen peptide treatments significantly enhanced HFF-1 cell proliferation and migration compared to the control group. ELISA results confirmed the potential interactions between collagen peptides and HFF-1 cells through α2ß1, α10ß1, and α11ß1 integrin receptors. Notably, collagen peptide treatment effectively restored the proliferation of HFF-1 cells damaged by H2O2. Consequently, the advantageous characteristics of squid skin collagen peptides highlight their promising role in regenerative medicine.


Subject(s)
Collagen , Decapodiformes , Fibroblasts , Hydrogen Peroxide , Peptides , Skin , Animals , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Collagen/metabolism , Fibroblasts/drug effects , Decapodiformes/chemistry , Skin/drug effects , Skin/metabolism , Humans , Peptides/pharmacology , Peptides/chemistry , Peptides/isolation & purification , Cell Proliferation/drug effects , Stem Cells/drug effects , Cell Line , Protective Agents/pharmacology , Protective Agents/chemistry , Cell Movement/drug effects
3.
Int J Biol Macromol ; 273(Pt 2): 132909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848832

ABSTRACT

The pathological changes in inflammatory bowel disease (IBD) include the disruption of intestinal barrier function and the infiltration of pathogenic microbes. The application of an artificial protective barrier at the site of inflammation can prevent bacterial infiltration, promote epithelial cell migration, and accelerate wound healing. In this study, dopamine-modified hyaluronic acid (HA-DA) was developed as a bioadhesive self-cross-linkable hydrogel, which acted as an enteroprotective agent to promote the healing of inflamed intestinal tissue. The adhesion strength HA-DA to mouse colon was 3.81-fold higher than HA. Moreover, HA-DA promoted Caco-2 cell proliferation and migration as well as had a strong physical barrier effect after gelation. After oral administration, the HA-DA reduced weight loss and attenuated impaired goblet cell function in mice with dextran sodium sulfate-induced IBD. In addition, HA-DA promoted restoration of the epithelial barrier by the upregulation of tight junction proteins. The results reported herein substantiated that self-cross-linkable hydrogel-based enteroprotective agents are a promising approach for the treatment of IBD.


Subject(s)
Hyaluronic Acid , Hydrogels , Inflammatory Bowel Diseases , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Mice , Caco-2 Cells , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Proliferation/drug effects , Protective Agents/pharmacology , Protective Agents/chemistry , Cell Movement/drug effects , Male , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Dextran Sulfate
4.
Int J Med Mushrooms ; 26(7): 67-74, 2024.
Article in English | MEDLINE | ID: mdl-38884264

ABSTRACT

Mushrooms have been used as medicine by humans for more than 5000 years. They have had a successful role in treating immune deficiencies. Nowadays, some extracts and compounds obtained from medicinal mushrooms have increased a great prospect of treating many disorders by having a great role in modulation of immune system, cancer inhibiting, cardio-vascular health, antiviral, antibacterial, antioxidant and protective effects against hepatitis and diabetes. In this study, we evaluated the antioxidant effect of methanol and hot water extract of the Trametes gibbosa (Pers.) Fr. mushroom and hepatoprotective effect of the extract with the most radical scavenging potency. To assess the antioxidant properties of different extracts of the mushroom, DPPH method was used. For assessing the hepatoprotective properties, a seven-day experiment was designed, and liver toxicity was induced by carbon tetrachloride [intraperitoneal (ip) for 7 consecutive days, 0.5 mL/kg body weight (BW)]. Rats were simultaneously fed with aqueous extract of the mushroom with the dose of 250, 500, and 1000 mg/kg BW and silymarin (100 mg/kg BW) as positive control. At the end of the experiment, blood serums of the rats were collected for quantification of major liver factors (e.g., aspartate aminotransferase, alanine aminotransferase, alanine phosphatase, bilirubin, etc.). Tissue samples were obtained for pathological examination. Based on the results, the aqueous extract showed more potent radical scavenging activity (half-maximal inhibitory concentration = 414.33 µg/mL, compared with 936.92 µg/mL for methanolic extract). Indeed, hepatoprotective properties of the aqueous extract of the mushroom (500 and 1000 mg/kg BW) were comparable with those of silymarin and even showed superior protective effects in histopathological examination. It seems that with further complementary studies, T. gibbosa could be considered a potential candidate for hepatoprotection.


Subject(s)
Antioxidants , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Protective Agents , Trametes , Animals , Rats , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Male , Protective Agents/pharmacology , Protective Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Trametes/chemistry , Liver/drug effects , Liver/pathology , Rats, Wistar , Silymarin/pharmacology
5.
Drug Des Devel Ther ; 18: 2125-2142, 2024.
Article in English | MEDLINE | ID: mdl-38882050

ABSTRACT

Background: Aconitum carmichaelii (Fuzi) has been conventionally used to cure a variety of ailments, such as pain, cold sensations, and numbness of limb muscles (Bi Zheng) in China. Our prior investigations identified Benzoylaconine (BAC) as a bioactive alkaloid derived from Aconitum carmichaelii, with other studies also demonstrating its significant pharmacological potential. Purpose: This study aimed to explore the potential of BAC as a protective agent against skeletal muscle ischemia-reperfusion (I/R) injury and to elucidate the underlying mechanisms. Methods: In vivo models involved subjecting Sprague-Dawley rats to I/R through femoral artery ligation followed by reperfusion, while in vitro models utilized C2C12 cells subjected to hypoxia/reoxygenation (H/R). CCK-8 assay was used to assess cell viability. TUNEL staining and flow cytometric analysis were used to measure cell apoptosis. Biochemical assay was used to assess skeletal muscle injury and oxidative stress. Immunofluorescence and Western blot were performed to determine protein levels. Results: BAC effectively protected muscle tissue from I/R injury, enhancing cell viability (p<0.01), elevating SOD levels (p<0.05), and reducing CK (p<0.01), LDH (p<0.01), ROS (p<0.01), MDA (p<0.01), and apoptosis-related molecules in vivo and in vitro (p<0.05, p<0.01). Mechanistically, BAC increased the expression of IF1, phosphorylated AMPK, facilitated the translocation of nuclear Nrf2, and induced the expression of HO-1 (p<0.01). Notably, AMPK inhibitor Compound C significantly hindered the ability of BAC to ameliorate H/R-induced cell injury (p<0.05), oxidative stress(p<0.01), and apoptosis (p<0.05), as well as promote Nrf2 nuclear translocation (p<0.01). Moreover, silencing of IF1 with siRNA abolished BAC-induced activation of AMPK/Nrf2 axis (p<0.01). Conclusion: Our study provides novel evidence supporting the potential of BAC as a myocyte-protective agent against I/R injury, and we establish a previously unknown mechanism involving the activation of the IF1-dependent AMPK/Nrf2 axis in mediating the protective effects of BAC.


Subject(s)
AMP-Activated Protein Kinases , Muscle, Skeletal , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Reperfusion Injury , Animals , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , AMP-Activated Protein Kinases/metabolism , Rats , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Male , Cell Survival/drug effects , Apoptosis/drug effects , Mice , Oxidative Stress/drug effects , Structure-Activity Relationship , Protective Agents/pharmacology , Protective Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug
6.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893475

ABSTRACT

Oxidative stress significantly contributes to ageing and disease, with antioxidants holding promise in mitigating its effects. Functional foods rich in flavonoids offer a potential strategy to mitigate oxidative damage by free radicals. We investigated the protective effects of mulberry leaf flavonoids (MLF) against H2O2-induced oxidative damage in HepG2 cells. It assessed the inhibitory effect of MLF (62.5-500 µg/mL) on H2O2-induced oxidative damage by analyzing cellular morphology and oxidative stress markers, including ROS production, mitochondrial membrane potential, antioxidant enzyme levels, MDA, and apoptosis-related proteins. The results demonstrated that MLF prevented spiny cell formation triggered by 750 µM H2O2 and significantly reduced ROS levels, restored mitochondrial membrane potential, decreased lactate dehydrogenase and alanine transaminase leakage, and reduced MDA content induced by H2O2. MLF also modulated antioxidant enzymes and attenuated oxidative damage to HepG2 cell DNA, as confirmed by staining techniques. These findings indicate the potential of MLF as a hepatoprotective agent against oxidative damage in HepG2 cells.


Subject(s)
Antioxidants , Flavonoids , Hydrogen Peroxide , Membrane Potential, Mitochondrial , Morus , Oxidative Stress , Plant Leaves , Reactive Oxygen Species , Humans , Morus/chemistry , Oxidative Stress/drug effects , Hep G2 Cells , Flavonoids/pharmacology , Plant Leaves/chemistry , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Apoptosis/drug effects , Cell Survival/drug effects
7.
J Org Chem ; 89(12): 8871-8877, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38837353

ABSTRACT

Magterpenes A-C (1-3), three unprecedented meroterpenoids featuring a unique 6/6/6/6/6 polycyclic skeleton, were isolated from the ethanol extract of Magnolia officinalis Rehd. et Wils. The compounds were obtained as racemic mixtures that were completely resolved through chiral columns. Their structures were elucidated by extensive analyses of one-dimensional (1D) and 2D nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, chemical calculations of 1H/13C NMR, and electronic circular dichroism calculations. The compounds were constructed via two Diels-Alder reactions in the proposed biosynthetic pathway. All isolates were evaluated for their nephroprotective and hepatoprotective activities. The results demonstrated that (+)-1 and (-)-1 possessed promising nephroprotective activities in a dose-dependent manner, while (-)-2 and (+)-3 exhibited moderate hepatoprotective activities.


Subject(s)
Magnolia , Terpenes , Magnolia/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification
8.
J Agric Food Chem ; 72(23): 13138-13153, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814319

ABSTRACT

The fruit of Alpinia oxyphylla Miq is an important food spice in southern China and has been used in the treatment of kidney disorders for centuries. In order to discover the natural products with potent renoprotective activities in A. oxyphylla and provide some references for its usage, systematic phytochemical studies were carried out and 24 new diverse sesquiterpenoids, including seven guaiane sesquiterpenoids (1-7), 10 eudesmane sesquiterpenoids (9-13, 18, 19, and 21-23), six cadinane sesquiterpenoids (31-35 and 38), and an eremophilane sesquiterpenoid (40), along with 24 known analogues were isolated and elucidated by analysis of spectroscopic data and quantum-chemical calculations. Biological evaluation showed that 6 sesquiterpenoids could significantly inhibit the expression of extracellular matrix components, α-SMA in TGF-ß1 induced kidney proximal tubular cells (NRK-52e) at low concentrations, and 9 sesquiterpenoids could also downregulate fibronectin and collagen I in a concentration-dependent manner, showing their potential in renal fibrosis. Further action mechanism study displayed that TGF-ß1/Smads pathway might be involved in the antifibrotic effects of active sesquiterpenoids 15 and 43. These studies suggest that A. oxyphylla may have a potential to serve as a functional food in preventing renal fibrosis-associated diseases.


Subject(s)
Alpinia , Fruit , Plant Extracts , Sesquiterpenes , Smad Proteins , Transforming Growth Factor beta1 , Alpinia/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Fruit/chemistry , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Animals , Phosphorylation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Smad Proteins/metabolism , Smad Proteins/genetics , Humans , Rats , Cell Line , Protective Agents/pharmacology , Protective Agents/chemistry , Molecular Structure
9.
J Agric Food Chem ; 72(20): 11515-11530, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726599

ABSTRACT

Chronic stress is a major inducer of anxiety and insomnia. Milk casein has been studied for its stress-relieving effects. We previously prepared a casein hydrolysate (CP) rich in the sleep-enhancing peptide YPVEPF, and this study aims to systemically investigate the different protective effects of CP and casein on dysfunction and anxiety/insomnia behavior and its underlying mechanisms in chronically stressed mice. Behavioral results showed that CP ameliorated stress-induced insomnia and anxiety more effectively than milk casein, and this difference in amelioration was highly correlated with an increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors in stressed mice. Furthermore, CP restored these dysfunctions in the brain and colon by activating the HPA response, modulating the ERK/CREB-BDNF-TrκB signaling pathway, and alleviating inflammation. The abundant YPVEPF (1.20 ± 0.04%) and Tyr-based/Trp-containing peptides of CP may be the key reasons for its different effects compared to casein. Thus, this work revealed the main active structures of CP and provided a novel dietary intervention strategy for the prevention and treatment of chronic-stress-induced dysfunction and anxiety/insomnia behaviors.


Subject(s)
Anxiety , Brain , Caseins , Sleep Initiation and Maintenance Disorders , Animals , Male , Mice , Anxiety/prevention & control , Behavior, Animal/drug effects , Brain/metabolism , Brain/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Caseins/chemistry , Caseins/administration & dosage , Protective Agents/administration & dosage , Protective Agents/pharmacology , Protective Agents/chemistry , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/metabolism , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Initiation and Maintenance Disorders/prevention & control , Stress, Psychological
10.
Phytochemistry ; 224: 114148, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763311

ABSTRACT

Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 µM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.


Subject(s)
Fruiting Bodies, Fungal , Protective Agents , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Humans , Hep G2 Cells , Fruiting Bodies, Fungal/chemistry , Reishi/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification , Molecular Structure , Cell Survival/drug effects , Acetaminophen/pharmacology , Structure-Activity Relationship , Liver/drug effects , Dose-Response Relationship, Drug
11.
Biomed Chromatogr ; 38(7): e5887, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38751131

ABSTRACT

Omics, bioinformatics, molecular docking, and experimental validation were used to elucidate the hepatoprotective effects, mechanisms, and active compounds of Shandougen (SDG) based on the biolabel-led research pattern. Integrated omics were used to explore the biolabels of SDG intervention in liver tissue. Subsequently, bioinformatics and molecular docking were applied to topologically analyze its therapeutic effects, mechanisms, and active compounds based on biolabels. Finally, an animal model was used to verify the biolabel analysis results. Omics, bioinformatics, and molecular docking revealed that SDG may exert therapeutic effects on liver diseases in the multicompound and multitarget synergistic modes, especially liver cirrhosis. In the validation experiment, SDG and its active compounds (betulinic acid and gallic acid) significantly improved the liver histopathological damage in the CCl4-induced liver cirrhosis model. Meanwhile, they also produced significant inhibitory effects on the focal adhesion pathway (integrin alpha-1, myosin regulatory light chain 2, laminin subunit gamma-1, etc.) and alleviated the associated pathological processes: focal adhesion (focal adhesion kinase 1)-extracellular matrix (collagen alpha-1(IV) chain, collagen alpha-1(VI) chain, and collagen alpha-2(VI) chain) dysfunction, carcinogenesis (alpha-fetoprotein, NH3, and acetylcholinesterase), inflammation (tumor necrosis factor alpha, interleukin-1 [IL-1], IL-6, and IL-10), and oxidative stress (reactive oxygen species, malonaldehyde, and superoxide dismutase). This study provides new evidence and insights for the hepatoprotective effects, mechanisms, and active compounds of SDG.


Subject(s)
Computational Biology , Molecular Docking Simulation , Animals , Liver/drug effects , Liver/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Male , Rats , Carbon Tetrachloride , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Gallic Acid/chemistry , Gallic Acid/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Proteomics/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
12.
Bioorg Chem ; 148: 107461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788363

ABSTRACT

Stachybatranones A-F (1a/1b and 2-6) and three known analogues, namely methylatranones A and B (7 and 8) and atranone B (9), were isolated and identified from a toxigenic fungus Stachybotrys chartarum. Their structures and absolute configurations were elucidated via the extensive spectroscopic data, comparison of the experimental electronic circular dichroism (ECD) data, and single-crystal X-ray diffraction analyses. Structurally, compounds 2-6 belonged to a rare class of C-alkylated dolabellanes, featuring a unique five-membered hemiketal ring and a γ-butyrolactone moiety both fused to an 11-membered carbocyclic system, while compound 1 (1a/1b) represented the first example of a 5-11-6-fused atranone possessing a 2,3-butanediol moiety. The cardiomyocyte protective activity assay revealed that compounds 1-9 ameliorated cold ischemic injury at 24 h post cold ischemia (CI), with compounds 1 and 4 acting in a dose-dependent manner. Moreover, compound 1 prevented cold ischemia induced dephosphorylation of PI3K and AKT acting in a dose-dependent manner. In this study, a new class of natural products were found to protect cardiomyocytes against cold ischemic injury, providing a potential option for the development of novel cardioprotectants in heart transplant medicine.


Subject(s)
Myocytes, Cardiac , Stachybotrys , Stachybotrys/chemistry , Animals , Myocytes, Cardiac/drug effects , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Rats , Drug Discovery , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification
13.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
14.
Chin J Nat Med ; 22(5): 466-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38796219

ABSTRACT

Sixteen new dammarane-type triterpenoid saponins (1-16) featuring diverse structural variations in the side chain at C-17, along with twenty-one known analogues (17-37), have been isolated from the rhizomes of Gynostemma longipes C. Y. Wu, a plant renowned for its medicinal and edible properties. The structural elucidation of these compounds was accomplished through comprehensive analyses of 1D and 2D NMR and HRMS spectroscopic data, supplemented by comparison with previously reported data. Subsequent assays on the isolates for their protective effects against hypoxia-induced damage in pheochromocytoma cells (PC12 cells) revealed that nine saponins exhibited significant anti-hypoxic activities. Further investigation into the anti-hypoxia mechanisms of the representative saponins demonstrated that compounds 22 and 36 markedly reduced the levels of hypoxia-induced apoptosis. Additionally, these compounds were found to decrease the release of lactate dehydrogenase (LDH) and malondialdehyde (MDA), while increasing the activity of superoxide dismutase (SOD), thereby indicating that the saponins could mitigate hypoxia-induced injuries by ameliorating apoptosis and oxidative stress. These findings offer substantial evidence for the future utilization and development of G. longipes, identifying dammarane-type triterpenoid saponins as its active anti-hypoxic constituents.


Subject(s)
Apoptosis , Dammaranes , Gynostemma , Saponins , Triterpenes , PC12 Cells , Triterpenes/pharmacology , Triterpenes/chemistry , Gynostemma/chemistry , Rats , Animals , Apoptosis/drug effects , Molecular Structure , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Rhizome/chemistry , Cell Hypoxia/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , L-Lactate Dehydrogenase/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry
15.
Food Funct ; 15(10): 5315-5328, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38605685

ABSTRACT

In this study, walnut protein was hydrolyzed, separated by ultrafiltration, purified by RP-HPLC, identified by LC-MS/MS, and screened by molecular docking to finally obtain three novel antioxidant peptides HGEPGQQQR (1189.584 Da), VAPFPEVFGK (1089.586 Da) and HNVADPQR (949.473 Da). These three peptides exhibited excellent cellular antioxidant activity (CAA) with EC50 values of 0.0120 mg mL-1, 0.0068 mg mL-1, and 0.0069 mg mL-1, respectively, which were superior to that of the positive control GSH (EC50: 0.0122 mg mL-1). In the ethanol injury model, three antioxidant peptides enhanced the survival of cells treated with ethanol from 47.36% to 62.69%, 57.06% and 71.64%, respectively. Molecular docking results showed that the three antioxidant peptides could effectively bind to Keap1, CYP2E1 and TLR4 proteins. These results suggested that walnut-derived antioxidant peptides could be potential antioxidants and hepatoprotective agents for application in functional foods.


Subject(s)
Antioxidants , Juglans , Molecular Docking Simulation , Peptides , Protein Hydrolysates , Juglans/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Peptides/pharmacology , Peptides/chemistry , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Plant Proteins/pharmacology , Plant Proteins/chemistry , Ethanol , Toll-Like Receptor 4/metabolism , Cytochrome P-450 CYP2E1/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Nuts/chemistry , Tandem Mass Spectrometry
16.
J Nat Prod ; 87(4): 1036-1043, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38600636

ABSTRACT

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Subject(s)
Anti-Inflammatory Agents , Cytochrome P-450 Enzyme System , Intramolecular Transferases , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Cytochrome P-450 Enzyme System/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Molecular Structure , Saccharomyces cerevisiae , Hydroxylation , Hep G2 Cells , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry
17.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667771

ABSTRACT

Algae are used as safe materials to fabricate novel nanoparticles to treat some diseases. Marine brown alga Sargassum vulgare are used to fabricate silver nanoparticles (Sv/Ag-NPs). The characterization of Sv/Ag-NPs was determined by TEM, EDX, Zeta potential, XRD, and UV spectroscopy. The Sv/Ag-NPs were investigated as antioxidant, anticancer, and antibacterial activities against Gram-positive bacteria Bacillus mojavensis PP400982, Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. The activity of the Sv/Ag-NPs was evaluated as hepatoprotective in vitro in comparison with silymarin. The UV-visible spectrum of Sv/Ag-NPs appeared at 442 nm; the size of Sv/Ag-NPs is in range between 6.90 to 16.97 nm, and spherical in shape. Different concentrations of Sv/Ag-NPs possessed antioxidant, anticancer activities against (HepG-2), colon carcinoma (HCT-116), cervical carcinoma (HeLa), and prostate carcinoma (PC-3) with IC50 50.46, 45.84, 78.42, and 100.39 µg/mL, respectively. The Sv/Ag-NPs induced the cell viability of Hep G2 cells and hepatocytes treated with carbon tetrachloride. The Sv/Ag-NPs exhibited antibacterial activities against Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. This study strongly suggests the silver nanoparticles derived from Sargassum vulgare showed potential hepato-protective effect against carbon tetrachloride-induced liver cells, and could be used as anticancer and antibacterial activities.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Antioxidants , Metal Nanoparticles , Sargassum , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Silver/pharmacology , Silver/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Sargassum/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Microbial Sensitivity Tests , Hep G2 Cells , Protective Agents/pharmacology , Protective Agents/chemistry , Staphylococcus epidermidis/drug effects , HeLa Cells
18.
Biomolecules ; 14(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38672467

ABSTRACT

Inflammation is a pivotal factor in the development and advancement of conditions like NAFLD and asthma. Diet can affect several phases of inflammation and significantly influence multiple inflammatory disorders. Siraitia grosvenorii, a traditional Chinese edible and medicinal plant, is considered beneficial to health. Flavonoids can suppress inflammatory cytokines, which play a crucial role in regulating inflammation. In the present experiments, kaempferol 3-O-α-L-rhamnoside-7-O-ß-D-xylosyl(1→2)-O-α-L-rhamnoside (SGPF) is a flavonoid glycoside that was first isolated from S. grosvenorii. A series of experimental investigations were carried out to investigate whether the flavonoid component has anti-inflammatory and hepatoprotective effects in this plant. The researchers showed that SGPF has a stronger modulation of protein expression in LPS-induced macrophages (MH-S) and OA-induced HepG2 cells. The drug was dose-dependent on cells, and in the TLR4/NF-κB/MyD88 pathway and Nrf2/HO-1 pathway, SGPF regulated all protein expression. SGPF has a clear anti-inflammatory and hepatoprotective function in inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents , Flavonoids , Glycosides , NF-kappa B , Toll-Like Receptor 4 , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Hep G2 Cells , Animals , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Cucurbitaceae/chemistry , Mice , Macrophages/drug effects , Macrophages/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/drug effects , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Lipopolysaccharides/pharmacology , Heme Oxygenase-1/metabolism
19.
Food Funct ; 15(9): 4894-4904, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38597802

ABSTRACT

The contributions of cruciferous vegetables to human health are widely recognised, particularly at the molecular level, where their isothiocyanates play a significant role. However, compared to the well-studied isothiocyanate 4-(methylsulfinyl)butyl isothiocyanate (sulforaphane) produced from broccoli sprouts, less is known about the pharmacological effects of other isothiocyanates and the stage of vegetables preferable to obtain their benefits. We analysed the quantity and quality of isothiocyanates produced in both the sprouts and mature stages of eight cruciferous vegetables using gas chromatography-mass spectrometry (GC-MS). Additionally, we investigated the hepatoprotective effects of isothiocyanates in a mouse model of acute hepatitis induced by carbon tetrachloride (CCl4). Furthermore, we explored the detoxification enzyme-inducing activities of crude sprout extracts in normal rats. Among the eight cruciferous vegetables, daikon radish (Raphanus sativus L.) sprouts produced the highest amount of isothiocyanates, with 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) being the dominant compound. The amount of sulforaphene in daikon radish sprouts was approximately 30 times that of sulforaphane in broccoli sprouts. Sulforaphene demonstrated hepatoprotective effects similar to sulforaphane in ameliorating CCl4-induced hepatic injury in mice. A crude extract of 3-day-old daikon radish sprouts upregulated the detoxifying enzyme glutathione S-transferase (GST) in the liver, whereas the crude extract of broccoli sprouts showed limited upregulation. This study highlights that daikon radish sprouts and sulforaphene have the potential to serve as functional food materials with hepatoprotective effects. Furthermore, daikon radish sprouts may exhibit more potent hepatoprotective effects compared to broccoli sprouts.


Subject(s)
Isothiocyanates , Liver , Raphanus , Vegetables , Isothiocyanates/pharmacology , Animals , Mice , Raphanus/chemistry , Male , Vegetables/chemistry , Rats , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sulfoxides , Chemical and Drug Induced Liver Injury/prevention & control , Protective Agents/pharmacology , Protective Agents/chemistry , Brassica/chemistry , Humans , Rats, Sprague-Dawley , Brassicaceae/chemistry
20.
Drug Des Devel Ther ; 18: 1247-1262, 2024.
Article in English | MEDLINE | ID: mdl-38645988

ABSTRACT

Purpose: Sinomenine hydrochloride (SH) is used to treat chronic inflammatory diseases such as rheumatoid arthritis and may also be efficacious against Immunoglobulin A nephropathy (IgAN). However, no trial has investigated the molecular mechanism of SH on IgAN. Therefore, this study aims to investigate the effect and mechanism of SH on IgAN. Methods: The pathological changes and IgA and C3 depositions in the kidney of an IgAN rat model were detected by periodic acid-Schiff (PAS) and direct immunofluorescence staining. After extracting T and B cells using immunomagnetic beads, we assessed their purity, cell cycle phase, and apoptosis stage through flow cytometry. Furthermore, we quantified cell cycle-related and apoptosis-associated proteins by Western blotting. Results: SH reduced IgA and C3 depositions in stage 4 IgAN, thereby decreasing inflammatory cellular infiltration and mesangial injury in an IgAN model induced using heteroproteins. Furthermore, SH arrested the cell cycle of lymphocytes T and B from the spleen of IgAN rats. Regarding the mechanism, our results demonstrated that SH regulated the Cyclin D1 and Cyclin E1 protein levels for arresting the cell cycle and it also regulated Bax and Bcl-2 protein levels, thus increasing Cleaved caspase-3 protein levels in Jurkat T and Ramos B cells. Conclusion: SH exerts a dual regulation on the cell cycle and apoptosis of T and B cells by controlling cell cycle-related and apoptosis-associated proteins; it also reduces inflammatory cellular infiltration and mesangial proliferation. These are the major mechanisms of SH in IgAN.


Subject(s)
Apoptosis , B-Lymphocytes , Cell Proliferation , Glomerulonephritis, IGA , Morphinans , T-Lymphocytes , Morphinans/pharmacology , Morphinans/chemistry , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/pathology , Animals , Apoptosis/drug effects , Rats , Cell Proliferation/drug effects , B-Lymphocytes/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Male , Dose-Response Relationship, Drug , Disease Models, Animal , Rats, Sprague-Dawley , Structure-Activity Relationship , Protective Agents/pharmacology , Protective Agents/chemistry , Humans , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...