Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.186
Filter
1.
Int J Biol Sci ; 20(10): 3956-3971, 2024.
Article in English | MEDLINE | ID: mdl-39113702

ABSTRACT

Platelet extracellular vesicles (PEVs) play an important role in tumor development. However, the mechanisms underlying their biogenesis have not been fully elucidated. Protein kinase Cα (PKCα) is an important regulator of platelet activation, but the effect of PKCα on EV generation is unclear. We used small-particle flow cytometry and found that the number of PEVs was increased in patients with breast cancer compared to those with benign breast disease. This was accompanied by increased levels of activated PKCα in breast cancer platelets. Treating platelets with the PKCα agonist phorbol 12-myristate 13-acetate (PMA) increased the phosphorylation PKCα and induced PEV production, while the PKCα inhibitor GÖ6976 showed the opposite effects. Notably, incubating platelets from patients with benign tumors with the culture supernatant of MDA-MB-231 cells induced PKCα phosphorylation in the platelets. Mass spectrometry and coimmunoprecipitation assays showed that Dynamin 2 (DNM2), a member of the guanosine-triphosphate-binding protein family, might cooperate with activated PKCα to regulate PEV production by breast cancer platelets. Similar results were observed in a mouse model of lung metastasis. In addition, PEVs were engulfed by breast cancer cells and promoted cancer cell migration and invasion via miR-1297 delivery. These findings suggested that PKCα cooperates with DNM2 to induce PEV generation, and PEV release might triggered by factors in the breast cancer environment.


Subject(s)
Blood Platelets , Breast Neoplasms , Extracellular Vesicles , Protein Kinase C-alpha , Protein Kinase C-alpha/metabolism , Extracellular Vesicles/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Humans , Blood Platelets/metabolism , Female , Animals , Mice , Cell Line, Tumor , Platelet Activation , Neoplasm Metastasis , Phosphorylation , Cell Movement , Tetradecanoylphorbol Acetate/pharmacology
2.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 49-57, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097897

ABSTRACT

Non-small cell lung cancer (NSCLC) is a global health concern with a significant impact on morbidity and mortality. Small molecule inhibitors targeting genetic mutations like EGFR and ALK have shown promise in NSCLC treatment. This study focuses on Protein Kinase C-alpha (PKCα), implicated in NSCLC pathogenesis. Overexpression of PKCα correlates with advanced disease stages. Preclinical studies suggest its inhibition can suppress NSCLC cell growth. The research employs molecular docking to identify Pulsatillic acid (PA) as a potential PKCα inhibitor. ADMET predictions support PA's candidacy and PASS analysis and Swiss Target Prediction reveal its biological properties. Fluorescence-based binding assays demonstrate PA's inhibitory potency on PKCα, aligning with molecular docking findings. Cytotoxicity assays show PA's minimal impact on HEK-293 cell viability, with an IC50 of 21.03 µM in A549 cells. mRNA expression analysis in A549 cells indicates PA's potential inhibitory effect on PKCα. In conclusion, this study highlights that PA may emerge as a promising therapeutic candidate for NSCLC, emphasizing the need for further research, validation, and exploration of its translational potential. The study contributes valuable insights into NSCLC treatment strategies, emphasizing the significance of targeting PKCα.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Molecular Docking Simulation , Protein Kinase C-alpha , Protein Kinase Inhibitors , Humans , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , A549 Cells , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , HEK293 Cells , Cell Survival/drug effects , Cell Proliferation/drug effects
3.
Analyst ; 149(17): 4378-4387, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38995156

ABSTRACT

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and a major cause of cancer-related mortality worldwide. Small extracellular vesicles (sEVs) are heterogeneous populations of membrane-structured vesicles that can be found in many biological fluids and are currently considered as a potential source of disease-associated biomarkers for diagnosis. The purpose of this study was to define the proteomic and phosphoproteomic landscape of urinary sEVs in patients with HCC. Mass spectrometry-based methods were used to detect the global proteome and phosphoproteome profiles of sEVs isolated by differential ultracentrifugation. Label-free quantitation analysis showed that 348 differentially expressed proteins (DEPs) and 548 differentially expressed phosphoproteins (DEPPs) were identified in the HCC group. Among them, multiple phosphoproteins related to HCC, including HSP90AA1, IQGAP1, MTOR, and PRKCA, were shown to be upregulated in the HCC group. Pathway enrichment analysis indicated that the upregulated DEPPs participate in the regulation of autophagy, proteoglycans in cancer, and the MAPK/mTOR/Rap1 signaling pathway. Furthermore, kinase-substrate enrichment analysis revealed activation of MTOR, AKT1, MAP2Ks, and MAPKs family kinases in HCC-derived sEVs, indicating that dysregulation of the MAPK and mTOR signaling pathways may be the primary sEV-mediated molecular mechanisms involved in the development and progression of HCC. This study demonstrated that urinary sEVs are enriched in proteomic and phosphoproteomic signatures that could be further explored for their potential use in early HCC diagnostic and therapeutic applications.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Phosphoproteins , Proteomics , Carcinoma, Hepatocellular/urine , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/urine , Liver Neoplasms/metabolism , Humans , Phosphoproteins/metabolism , Phosphoproteins/urine , Extracellular Vesicles/metabolism , Proteomics/methods , Male , TOR Serine-Threonine Kinases/metabolism , Biomarkers, Tumor/urine , Middle Aged , Female , ras GTPase-Activating Proteins/metabolism , Proteome , Protein Kinase C-alpha
4.
Toxicon ; 247: 107824, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38908525

ABSTRACT

Phagocytosis, an essential process for host defense, requires the coordination of a variety of signaling reactions. MT-II, an enzymatically inactive Lys49 phospholipase A2 (PLA2) homolog, and MT-III, a catalytically-active Asp49 PLA2, are known to activate phagocytosis in macrophages. In this study, the signaling pathways mediating phagocytosis, focusing on protein kinases, were investigated. Macrophages from male Swiss mice peritoneum were obtained 96 h after intraperitoneal thioglycolate injection. Phagocytosis was evaluated using non-opsonized zymosan particles in the presence or absence of specific inhibitors, as well as PKC and PKC-α localization by confocal microscopy. Moreover, protein kinase C (PKC) activity was assessed by γP32 ATP in macrophages stimulated by both PLA2s. Data showed that both sPLA2s increased phagocytosis. Cytochalasin D, staurosporine/H7, wortmannin, and herbimycin, inhibitors of actin polymerization, PKC, phosphoinositide 3-kinase (PI3K), and protein tyrosine kinase (PTK), respectively, significantly reduced phagocytosis induced by both PLA2s. PKC activity was increased in macrophages stimulated by both PLA2s. Actin polymerization and talin were evidenced by immunofluorescence and talin was recruited 5 min after both PLA2s stimulation. PKC and PKC-α localization within the cell were increased after 60 min of MT-II and MT-III stimulation. These data suggest that the effect of both PLA2s depends on actin cytoskeleton rearrangements and the activation of PKC, PI3K, and PTK signaling events required for phagocytosis.


Subject(s)
Phagocytosis , Protein Kinase C-alpha , Signal Transduction , Animals , Phagocytosis/drug effects , Mice , Signal Transduction/drug effects , Male , Protein Kinase C-alpha/metabolism , Macrophages/drug effects , Phospholipases A2, Secretory/metabolism , Snake Venoms/toxicity , Rifabutin/analogs & derivatives , Rifabutin/pharmacology
5.
CNS Neurosci Ther ; 30(6): e14754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884369

ABSTRACT

AIMS: Islet cell autoantigen 1 (ICA1) is involved in autoimmune diseases and may affect synaptic plasticity as a neurotransmitter. Databases related to Alzheimer's disease (AD) have shown decreased ICA1 expression in patients with AD. However, the role of ICA1 in AD remains unclear. Here, we report that ICA1 expression is decreased in the brains of patients with AD and an AD mouse model. RESULTS: The ICA1 increased the expression of amyloid precursor protein (APP), disintegrin and metalloprotease 10 (ADAM10), and disintegrin and metalloprotease 17 (ADAM17), but did not affect protein half-life or mRNA levels. Transcriptome sequencing analysis showed that ICA1 regulates the G protein-coupled receptor signaling pathway. The overexpression of ICA1 increased PKCα protein levels and phosphorylation. CONCLUSION: Our results demonstrated that ICA1 shifts APP processing to non-amyloid pathways by regulating the PICK1-PKCα signaling pathway. Thus, this study suggests that ICA1 is a novel target for the treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Protein Kinase C-alpha , Signal Transduction , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Signal Transduction/physiology , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , Mice, Transgenic , Female , Mice, Inbred C57BL , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Brain/metabolism , Cell Cycle Proteins
6.
J Nat Prod ; 87(6): 1666-1671, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38840407

ABSTRACT

Hypoxia-inducible factor 1 (HIF-1) signaling is upregulated in an oxygen-dependent manner under hypoxic conditions. Activation of HIF-1 signaling increases the expression of HIF-1 target genes involved in cell survival, proliferation, and angiogenesis. Therefore, compounds that activate HIF-1 signaling have therapeutic potential in ischemic diseases. Screening for compounds that activate HIF-1 activity identified a microbial metabolite, teleocidin B-4, a PKC activator. Other PKC activators, such as TPA and 10-Me-Aplog-1, also activated HIF-1 activity. PKC activators induced HIF-1α protein accumulation through PKCα/mTORC activation. These results suggest that PKC activators without tumor-promoting activity have potential as therapeutic agents via HIF-1 target gene activation.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Protein Kinase C-alpha , Signal Transduction , Humans , Signal Transduction/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Protein Kinase C-alpha/metabolism , Up-Regulation/drug effects , TOR Serine-Threonine Kinases/metabolism
7.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928391

ABSTRACT

Oil-Gan is the fruit of the genus Phyllanthus emblica L. The fruits have excellent effects on health care and development values. There are many methods for the management of diabetic nephropathy (DN). However, there is a lack of effective drugs for treating DN throughout the disease course. The primary aim of this study was to examine the protective effects (including analyses of urine and blood, and inflammatory cytokine levels) and mechanisms of the ethyl acetate extract of P. emblica (EPE) on db/db mice, an animal model of diabetic nephropathy; the secondary aim was to examine the expression levels of p- protein kinase Cα (PKCα)/t-PKCα in the kidney and its downregulation of vascular endothelial growth factor (VEGF) and fibrosis gene transforming growth factor-ß1 (TGF-ß1) by Western blot analyses. Eight db/m mice were used as the control group. Forty db/db mice were randomly divided into five groups. Treatments included a vehicle, EPE1, EPE2, EPE3 (at doses of 100, 200, or 400 mg/kg EPE), or the comparative drug aminoguanidine for 8 weeks. After 8 weeks of treatment, the administration of EPE to db/db mice effectively controlled hyperglycemia and hyperinsulinemia by markedly lowering blood glucose, insulin, and glycosylated HbA1c levels. The administration of EPE to db/db mice decreased the levels of BUN and creatinine both in blood and urine and reduced urinary albumin excretion and the albumin creatine ratio (UACR) in urine. Moreover, EPE treatment decreased the blood levels of inflammatory cytokines, including kidney injury molecule-1 (KIM-1), C-reactive protein (CRP), and NLR family pyrin domain containing 3 (NLRP3). Our findings showed that EPE not only had antihyperglycemic effects but also improved renal function in db/db mice. A histological examination of the kidney by immunohistochemistry indicated that EPE can improve kidney function by ameliorating glomerular morphological damage following glomerular injury; alleviating proteinuria by upregulating the expression of nephrin, a biomarker of early glomerular damage; and inhibiting glomerular expansion and tubular fibrosis. Moreover, the administration of EPE to db/db mice increased the expression levels of p- PKCα/t-PKCα but decreased the expression levels of VEGF and renal fibrosis biomarkers (TGF-ß1, collagen IV, p-Smad2, p-Smad3, and Smad4), as shown by Western blot analyses. These results implied that EPE as a supplement has a protective effect against renal dysfunction through the amelioration of insulin resistance as well as the suppression of nephritis and fibrosis in a DN model.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Disease Models, Animal , Phyllanthus emblica , Plant Extracts , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Phyllanthus emblica/chemistry , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Acetates/chemistry , Vascular Endothelial Growth Factor A/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Transforming Growth Factor beta1/metabolism , Protein Kinase C-alpha/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects
8.
J Ethnopharmacol ; 334: 118464, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38908492

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonol (PAE) and glycyrrhizic acid (GLY) are predominate components of 14 blood-entering ones of Piantongtang No. 1, which is a traditional Chinese medicine prescription for chronic migraine with minimal side effects. Both paeonol and glycyrrhizic acid exhibit analgesic, neuroprotective and anti-inflammatory properties individually. Our previous research has highlighted their combined effect (PAE + GLY) in ameliorating migraine symptoms. However, there are not yet any studies exploring the mechanism of action of PAE + GLY in the treatment of migraine. AIM OF THE STUDY: This research aimed to determine the mechanism of PAE + GLY in ameliorating the recurrent nitroglycerin-induced migraine-like phenotype in rats. MATERIALS AND METHODS: Using a nitroglycerin-induced migraine model via subcutaneous injection in the neck, we evaluated the effect of PAE + GLY on migraine-like symptoms. Behavioural tests and biomarkers analysis were employed, alongside transcriptome sequencing (RNA-seq). Mechanistic insights were further verified utilising reverse transcription quantitative PCR (RT-qPCR), Western blot (WB), ELISA and immunofluorescence (IF) techniques. RESULTS: Following treatment with PAE + GLY, hyperalgesia threshold and 5-hydroxytryptamine (5-HT) levels increased, and migraine-like head scratching, histamine and calcitonin gene-related peptide (CGRP) levels were reduced. RNA-Seq experiments revealed that PAE + GLY upregulated the expression of Glutamate decarboxylase 2 (GAD2) and γ-aminobutyric acid type B receptor subunit 2 (GABBR2) genes. This upregulation activated the GABAergic synapse pathway, effectively inhibiting migraine attacks. Further validation demonstrated an increase in γ-aminobutyric acid (GABA) content in cerebrospinal fluid post PAE + GLY treatment, coupled with increased expression of dural GAD2, GABBR2 and transient receptor potential channel M8 (TRPM8). Consequently, this inhibited the expression of dural cAMP-dependent protein kinase catalytic subunit alpha (PRKACA) and transient receptor potential channel type 1 (TRPV1), subsequently downregulating p-ERK1/2, p-AKT1, IL-1ß and TNF-α. CONCLUSIONS: Our findings underscore that PAE + GLY ameliorates inflammatory hyperalgesia migraine by upregulating inhibitory neurotransmitters and modulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway.


Subject(s)
Acetophenones , Glycyrrhizic Acid , Migraine Disorders , Nitroglycerin , TRPM Cation Channels , TRPV Cation Channels , Animals , Male , Rats , Acetophenones/pharmacology , Disease Models, Animal , Drug Therapy, Combination , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Migraine Disorders/drug therapy , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Nitroglycerin/toxicity , Nitroglycerin/pharmacology , Phenotype , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Rats, Sprague-Dawley , Receptors, GABA/metabolism , Receptors, GABA/genetics , Signal Transduction/drug effects , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics
9.
Redox Biol ; 75: 103239, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901102

ABSTRACT

Morphine, a typical opiate, is widely used for controlling pain but can lead to various side effects with long-term use, including addiction, analgesic tolerance, and hyperalgesia. At present, however, the mechanisms underlying the development of morphine analgesic tolerance are not fully understood. This tolerance is influenced by various opioid receptor and kinase protein modifications, such as phosphorylation and ubiquitination. Here, we established a murine morphine tolerance model to investigate whether and how S-nitrosoglutathione reductase (GSNOR) is involved in morphine tolerance. Repeated administration of morphine resulted in the down-regulation of GSNOR, which increased excessive total protein S-nitrosation in the prefrontal cortex. Knockout or chemical inhibition of GSNOR promoted the development of morphine analgesic tolerance and neuron-specific overexpression of GSNOR alleviated morphine analgesic tolerance. Mechanistically, GSNOR deficiency enhanced S-nitrosation of cellular protein kinase alpha (PKCα) at the Cys78 and Cys132 sites, leading to inhibition of PKCα kinase activity, which ultimately promoted the development of morphine analgesic tolerance. Our study highlighted the significant role of GSNOR as a key regulator of PKCα S-nitrosation and its involvement in morphine analgesic tolerance, thus providing a potential therapeutic target for morphine tolerance.


Subject(s)
Drug Tolerance , Morphine , Protein Kinase C-alpha , Animals , Mice , Morphine/pharmacology , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Nitrosation , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Male , Mice, Knockout , Analgesics, Opioid/pharmacology , Disease Models, Animal , Alcohol Dehydrogenase
10.
Cell Calcium ; 121: 102894, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728789

ABSTRACT

TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.


Subject(s)
Calcium , Neural Cell Adhesion Molecule L1 , Neural Cell Adhesion Molecules , Neuronal Outgrowth , Proteome , TRPV Cation Channels , Animals , Humans , Rats , Calcium/metabolism , Calcium Signaling , Cell Adhesion , Neural Cell Adhesion Molecule L1/metabolism , Neural Cell Adhesion Molecules/metabolism , Neurites/metabolism , PC12 Cells , Protein Kinase C-alpha/metabolism , Proteome/metabolism , TRPV Cation Channels/metabolism , CD56 Antigen/metabolism
11.
J Biol Chem ; 300(7): 107417, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815861

ABSTRACT

The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), inhibits pro-oncogenic signaling in pancreatic cancer (PC). This investigation dissected a novel mechanism induced by NDRG1 on WNT/ß-catenin signaling in multiple PC cell types. NDRG1 overexpression decreased ß-catenin and downregulated glycogen synthase kinase-3ß (GSK-3ß) protein levels and its activation. However, ß-catenin phosphorylation at Ser33, Ser37, and Thr41 are classically induced by GSK-3ß was significantly increased after NDRG1 overexpression, suggesting a GSK-3ß-independent mechanism. Intriguingly, NDRG1 overexpression upregulated protein kinase Cα (PKCα), with PKCα silencing preventing ß-catenin phosphorylation at Ser33, Ser37, and Thr41, and decreasing ß-catenin expression. Further, NDRG1 and PKCα were demonstrated to associate, with PKCα stabilization occurring after NDRG1 overexpression. PKCα half-life increased from 1.5 ± 0.8 h (3) in control cells to 11.0 ± 2.5 h (3) after NDRG1 overexpression. Thus, NDRG1 overexpression leads to the association of NDRG1 with PKCα and PKCα stabilization, resulting in ß-catenin phosphorylation at Ser33, Ser37, and Thr41. The association between PKCα, NDRG1, and ß-catenin was identified, with the formation of a potential metabolon that promotes the latter ß-catenin phosphorylation. This anti-oncogenic activity of NDRG1 was multi-modal, with the above mechanism accompanied by the downregulation of the nucleo-cytoplasmic shuttling protein, p21-activated kinase 4 (PAK4), which is involved in ß-catenin nuclear translocation, inhibition of AKT phosphorylation (Ser473), and decreased ß-catenin phosphorylation at Ser552 that suppresses its transcriptional activity. These mechanisms of NDRG1 activity are important to dissect to understand the marked anti-cancer efficacy of NDRG1-inducing thiosemicarbazones that upregulate PKCα and inhibit WNT signaling.


Subject(s)
Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins , Protein Kinase C-alpha , Wnt Signaling Pathway , beta Catenin , Humans , beta Catenin/metabolism , beta Catenin/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Phosphorylation , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Protein Stability
12.
Int Immunopharmacol ; 132: 111933, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581988

ABSTRACT

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation. We observed increased TRPM7 expression in FLSs derived from human RA patients. Pharmacological inhibition of TRPM7 protected primary RA-FLSs from proliferation, metastasis and inflammation. Furthermore, we found that TRPM7 contributes to RA-FLS proliferation, metastasis and inflammation by increasing the intracellular Ca2+ concentration. Mechanistically, the PKCα-HuR axis was demonstrated to respond to Ca2+ influx, leading to TRPM7-mediated RA-FLS proliferation, metastasis and inflammation. Moreover, HuR was shown to bind to IL-6 mRNA after nuclear translocation, which could be weakened by TRPM7 channel inhibition. Additionally, adeno-associated virus 9-mediated TRPM7 silencing is highly effective at alleviating synovial hyperplasia and inflammation in adjuvant-induced arthritis rats. In conclusion, our findings unveil a novel regulatory mechanism involved in the pathogenesis of RA and suggest that targeting TRPM7 might be a potential strategy for the prevention and treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Cell Proliferation , Interleukin-6 , Protein Kinase C-alpha , Synoviocytes , TRPM Cation Channels , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Humans , Interleukin-6/metabolism , Interleukin-6/genetics , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Male , Rats , Fibroblasts/metabolism , Fibroblasts/pathology , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cells, Cultured , Inflammation/metabolism , Inflammation/pathology , Rats, Sprague-Dawley , Female , Signal Transduction
13.
J Exp Clin Cancer Res ; 43(1): 97, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561833

ABSTRACT

BACKGROUND: CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. METHODS: We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. RESULTS: Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. CONCLUSIONS: This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.


Subject(s)
Bone Neoplasms , Diterpenes , Osteosarcoma , Humans , Protein Kinase C-alpha/metabolism , B7 Antigens/genetics , B7 Antigens/metabolism , Osteosarcoma/metabolism , Bone Neoplasms/pathology , T-Lymphocytes , Cytokines/metabolism , Cell Line, Tumor
14.
Arterioscler Thromb Vasc Biol ; 44(6): 1202-1221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602101

ABSTRACT

BACKGROUND: Hypertension is a major, prevalent risk factor for the development and progression of cerebrovascular disease. Regular exercise has been recommended as an excellent choice for the large population of individuals with mild-to-moderate elevations in blood pressure, but the mechanisms that underlie its vascular-protective and antihypertensive effects remain unknown. Here, we describe a mechanism by which myocyte AKAP150 (A-kinase anchoring protein 150) inhibition induced by exercise training alleviates voltage-dependent L-type Ca2+ channel (CaV1.2) activity and restores cerebral arterial function in hypertension. METHODS: Spontaneously hypertensive rats and newly generated smooth muscle-specific AKAP150 knockin mice were used to assess the role of myocyte AKAP150/CaV1.2 channel in regulating cerebral artery function after exercise intervention. RESULTS: Activation of the AKAP150/PKCα (protein kinase Cα) signaling increased CaV1.2 activity and Ca2+ influx of cerebral arterial myocyte, thus enhancing vascular tone in spontaneously hypertensive rats. Smooth muscle-specific AKAP150 knockin mice were hypertensive with higher CaV1.2 channel activity and increased vascular tone. Furthermore, treatment of Ang II (angiotensin II) resulted in a more pronounced increase in blood pressure in smooth muscle-specific AKAP150 knockin mice. Exercise training significantly reduced arterial myocyte AKAP150 expression and alleviated CaV1.2 channel activity, thus restoring cerebral arterial function in spontaneously hypertensive rats and smooth muscle-specific AKAP150 knockin mice. AT1R (AT1 receptor) and AKAP150 were interacted closely in arterial myocytes. Exercise decreased the circulating Ang II and Ang II-involved AT1R-AKAP150 association in myocytes of hypertension. CONCLUSIONS: The current study demonstrates that aerobic exercise ameliorates CaV1.2 channel function via inhibiting myocyte AKAP150, which contributes to reduced cerebral arterial tone in hypertension.


Subject(s)
A Kinase Anchor Proteins , Calcium Channels, L-Type , Cerebral Arteries , Disease Models, Animal , Hypertension , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Rats, Inbred SHR , Animals , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Hypertension/physiopathology , Hypertension/metabolism , Hypertension/genetics , Cerebral Arteries/metabolism , Cerebral Arteries/physiopathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Male , Myocytes, Smooth Muscle/metabolism , Physical Conditioning, Animal/physiology , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Calcium Signaling , Mice, Inbred C57BL , Mice , Rats , Rats, Inbred WKY , Angiotensin II , Blood Pressure , Signal Transduction
15.
Pflugers Arch ; 476(7): 1041-1064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38658400

ABSTRACT

Signaling of G protein-activated inwardly rectifying K+ (GIRK) channels is an important mechanism of the parasympathetic regulation of the heart rate and cardiac excitability. GIRK channels are inhibited during stimulation of Gq-coupled receptors (GqPCRs) by depletion of phosphatidyl-4,5-bisphosphate (PIP2) and/or channel phosphorylation by protein kinase C (PKC). The GqPCR-dependent modulation of GIRK currents in terms of specific PKC isoform activation was analyzed in voltage-clamp experiments in rat atrial myocytes and in CHO or HEK 293 cells. By using specific PKC inhibitors, we identified the receptor-activated PKC isoforms that contribute to phenylephrine- and angiotensin-induced GIRK channel inhibition. We demonstrate that the cPKC isoform PKCα significantly contributes to GIRK inhibition during stimulation of wildtype α1B-adrenergic receptors (α1B-ARs). Deletion of the α1B-AR serine residues S396 and S400 results in a preferential regulation of GIRK activity by PKCß. As a novel finding, we report that the AT1-receptor-induced GIRK inhibition depends on the activation of the nPKC isoform PKCε whereas PKCα and PKCß do not mainly participate in the angiotensin-mediated GIRK reduction. Expression of the dominant negative (DN) PKCε prolonged the onset of GIRK inhibition and significantly reduced AT1-R desensitization, indicating that PKCε regulates both GIRK channel activity and the strength of the receptor signal via a negative feedback mechanism. The serine residue S418 represents an important phosphorylation site for PKCε in the GIRK4 subunit. To analyze the functional impact of this PKC phosphorylation site for receptor-specific GIRK channel modulation, we monitored the activity of a phosphorylation-deficient (GIRK4 (S418A)) GIRK4 channel mutant during stimulation of α1B-ARs or AT1-receptors. Mutation of S418 did not impede α1B-AR-mediated GIRK inhibition, suggesting that S418 within the GIRK4 subunit is not subject to PKCα-induced phosphorylation. Furthermore, activation of angiotensin receptors induced pronounced GIRK4 (S418A) channel inhibition, excluding that this phosphorylation site contributes to the AT1-R-induced GIRK reduction. Instead, phosphorylation of S418 has a facilitative effect on GIRK activity that was abolished in the GIRK4 (S418A) mutant. To summarize, the present study shows that the receptor-dependent regulation of atrial GIRK channels is attributed to the GqPCR-specific activation of different PKC isoforms. Receptor-specific activated PKC isoforms target distinct phosphorylation sites within the GIRK4 subunit, resulting in differential regulation of GIRK channel activity with either facilitative or inhibitory effects on GIRK currents.


Subject(s)
Cricetulus , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Protein Kinase C , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Animals , Phosphorylation , HEK293 Cells , Humans , Rats , Protein Kinase C/metabolism , CHO Cells , Receptors, Adrenergic, alpha-1/metabolism , Myocytes, Cardiac/metabolism , Male , Rats, Wistar , Protein Kinase C-alpha/metabolism , Isoenzymes/metabolism
16.
Food Funct ; 15(8): 4180-4192, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38506030

ABSTRACT

Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or ß acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds. A pressure myograph was used to perform vascular reactivity studies on mouse resistance arteries. Phytocomplex fractionation was performed on a semi-prep HPLC system and characterized by UHPLC-PDA-MS/MS coupled to mass spectrometry. Western blot analysis was performed to characterize the phosphorylation site enrolled. The entire Hop extract exerts a direct dose-dependent endothelial vascular action. The B1 subfraction, containing a high concentration of α acids, recapitulates the vascular effect of the crude extract. Its vasorelaxant action is mediated by the opening of Transient Receptor Potential Vanilloid type 4 (TRPV4), potentiated by PKCα, and subsequent involvement of endothelial small-conductance calcium-activated potassium channels (SKCa) and intermediate-conductance calcium-activated potassium channels (IKCa) that drives endothelium-dependent hyperpolarization (EDH) through heterocellular myoendothelial gap junctions (MEGJs). This is the first comprehensive investigation of the vascular function of Hop-derived α acids in resistance arteries. Overall, our data suggest that the B1 subfraction from Hop extracts, containing only α acids, has great potential to be translated into the useful armamentarium of natural bioactive compounds with cardiovascular benefits.


Subject(s)
Humulus , Plant Extracts , Protein Kinase C-alpha , TRPV Cation Channels , Vasodilator Agents , Humulus/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Protein Kinase C-alpha/metabolism , TRPV Cation Channels/metabolism , Mice , Vasodilator Agents/pharmacology , Vasodilator Agents/chemistry , Male , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Vasodilation/drug effects , Mice, Inbred C57BL
17.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474189

ABSTRACT

Coronary artery spasm (CAS) plays an important role in the pathogeneses of various ischemic heart diseases and has gradually become a common cause of life-threatening arrhythmia. The specific molecular mechanism of CAS has not been fully elucidated, nor are there any specific diagnostic markers for the condition. Therefore, this study aimed to examine the specific molecular mechanism underlying CAS, and screen for potential diagnostic markers. To this end, we successfully constructed a rat CAS model and achieved in vitro culture of a human coronary-artery smooth-muscle cell (hCASMC) contraction model. Possible molecular mechanisms by which protein kinase C (PKC) regulated CAS through the C kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa (CPI-17)/myosin II regulatory light chain (MLC2) pathway were studied in vivo and in vitro to screen for potential molecular markers of CAS. We performed hematoxylin and eosin staining, myocardial zymogram, and transmission electron microscopy to determine myocardial and coronary artery injury in CAS rats. Then, using immunohistochemical staining, immunofluorescence staining, and Western blotting, we further demonstrated a potential molecular mechanism by which PKC regulated CAS via the CPI-17/MLC2 pathway. The results showed that membrane translocation of PKCα occurred in the coronary arteries of CAS rats. CPI-17/MLC2 signaling was observably activated in coronary arteries undergoing CAS. In addition, in vitro treatment of hCASMCs with angiotensin II (Ang II) increased PKCα membrane translocation while consistently activating CPI-17/MLC2 signaling. Conversely, GF-109203X and calphostin C, specific inhibitors of PKC, inactivated CPI-17/MLC2 signaling. We also collected the coronary artery tissues from deceased subjects suspected to have died of CAS and measured their levels of phosphorylated CPI-17 (p-CPI-17) and MLC2 (p-MLC2). Immunohistochemical staining was positive for p-CPI-17 and p-MLC2 in the tissues of these subjects. These findings suggest that PKCα induced CAS through the CPI-17/MLC2 pathway; therefore, p-CPI-17 and p-MLC2 could be used as potential markers for CAS. Our data provide novel evidence that therapeutic strategies against PKC or CPI-17/MLC2 signaling might be promising in the treatment of CAS.


Subject(s)
Coronary Vasospasm , Animals , Humans , Rats , Biomarkers/metabolism , Death, Sudden, Cardiac , Phosphoproteins/metabolism , Phosphorylation , Protein Kinase C/metabolism , Protein Kinase C-alpha/metabolism
18.
Am J Pathol ; 194(5): 796-809, 2024 05.
Article in English | MEDLINE | ID: mdl-38395146

ABSTRACT

α-Synuclein (α-Syn) is a key determinator of Parkinson disease (PD) pathology, but synapse and microcircuit pathologies in the retina underlying visual dysfunction are poorly understood. Herein, histochemical and ultrastructural analyses and ophthalmologic measurements in old transgenic M83 PD model (mice aged 16 to 18 months) indicated that abnormal α-Syn aggregation in the outer plexiform layer (OPL) was associated with degeneration in the C-terminal binding protein 2 (CtBP2)+ ribbon synapses of photoreceptor terminals and protein kinase C alpha (PKCα)+ rod bipolar cell terminals, whereas α-Syn aggregates in the inner retina correlated with the reduction and degeneration of tyrosine hydroxylase- and parvalbumin-positive amacrine cells. Phosphorylated Ser129 α-synuclein expression was strikingly restricted in the OPL, with the most severe degenerations in the entire retina, including mitochondrial degeneration and loss of ribbon synapses in 16- to 18-month-old mice. These synapse- and microcircuit-specific deficits of the rod pathway at the CtBP2+ rod terminals and PKCα+ rod bipolar and amacrine cells were associated with attenuated a- and b-wave amplitudes and oscillatory potentials on the electroretinogram. They were also associated with the impairment of visual functions, including reduced contrast sensitivity and impairment of the middle range of spatial frequencies. Collectively, these findings demonstrate that α-Syn aggregates cause the synapse- and microcircuit-specific deficits of the rod pathway and the most severe damage to the OPL, providing the retinal synaptic and microcircuit basis for visual dysfunctions in PD.


Subject(s)
Protein Kinase C-alpha , alpha-Synuclein , Animals , Mice , alpha-Synuclein/metabolism , Amacrine Cells/metabolism , Protein Kinase C-alpha/metabolism , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/metabolism , Transcription Factors/metabolism
19.
Mol Biotechnol ; 66(5): 1062-1070, 2024 May.
Article in English | MEDLINE | ID: mdl-38184808

ABSTRACT

To investigate the inhibitory effect of hirudin on the cell proliferation of human ovarian cancer A2780 cells by preventing thrombin and its underlying molecular mechanism. Cell Counting Kit-8 (CCK-8) method was used to detect the effect of different concentrations of hirudin and thrombin on the cell proliferation of A2780 cells. PAR-1 wild-type overexpression plasmid was constructed utilizing enzyme digestion identification, and it was transferred to A2780 cells. Sequencing and Western blot were used to detect the changes in PAR-1 protein expression. Western blot detection of PKCα protein phosphorylation in A2780 cells was performed. We also implemented quantitative PCR to detect the mRNA expression levels of epithelial-mesenchymal transition (EMT)-related genes, CDH2, Snail, and Vimentin, in A2780 cells. 1 µg/ml hirudin treatment maximally inhibited the promotion of A2780 cell proliferation by thrombin. Hirudin inhibited the binding of thrombin to the N-terminus of PAR-1, hindered PKCα protein phosphorylation in A2780 cells, and downregulated the mRNA expression levels of CDH2, Snail, and Vimentin. In conclusion, hirudin inhibits the cell proliferation of ovarian cancer A2780 cells, and the underlying mechanism may be through downregulating the transcription level of EMT genes, CDH2, Snail, and Vimentin. This study indicates that hirudin may have a therapeutic potential as an anti-cancer agent for ovarian cancer.


Subject(s)
Cell Proliferation , Epithelial-Mesenchymal Transition , Hirudins , Ovarian Neoplasms , Humans , Hirudins/pharmacology , Hirudins/genetics , Female , Cell Proliferation/drug effects , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Thrombin/pharmacology , Thrombin/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Phosphorylation/drug effects , Vimentin/metabolism , Vimentin/genetics
20.
J Cell Mol Med ; 28(3): e18110, 2024 02.
Article in English | MEDLINE | ID: mdl-38164042

ABSTRACT

BACKGROUND AND AIMS: The secretion of bile salts transported by the bile salt export pump (BSEP) is the primary driving force for the generation of bile flow; thus, it is closely related to the formation of cholesterol stones. Caveolin-1 (Cav-1), an essential player in cell signalling and endocytosis, is known to co-localize with cholesterol-rich membrane domains. This study illustrates the role of Cav-1 and BSEP in cholesterol stone formation. METHODS: Adult male C57BL/6 mice were used as an animal model. HepG2 cells were cultured under different cholesterol concentrations and BSEP, Cav-1, p-PKCα and Hax-1 expression levels were determined via Western blotting. Expression levels of BSEP and Cav-1 mRNA were detected using real-time PCR. Immunofluorescence and immunoprecipitation assays were performed to study BSEP and Hax-1 distribution. Finally, an ATPase activity assay was performed to detect BSEP transport activity under different cholesterol concentrations in cells. RESULTS: Under low-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels significantly increased, PKCα phosphorylation significantly decreased, BSEP binding capacity to Hax-1 weakened, and BSEP function increased. Under high-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels decreased, PKCα phosphorylation increased, BSEP binding capacity to Hax-1 rose, and BSEP function decreased. CONCLUSION: Cav-1 regulates the bile salt export pump on the canalicular membrane of hepatocytes via PKCα-associated signalling under cholesterol stimulation.


Subject(s)
Caveolin 1 , Protein Kinase C-alpha , Animals , Male , Mice , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP-Binding Cassette Transporters/genetics , Bile Acids and Salts/metabolism , Caveolin 1/metabolism , Cholesterol/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Protein Kinase C-alpha/metabolism , RNA, Messenger/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL