Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.056
1.
Int J Mol Sci ; 25(11)2024 May 21.
Article En | MEDLINE | ID: mdl-38891793

Joint-resident chondrogenic precursor cells have become a significant therapeutic option due to the lack of regenerative capacity in articular cartilage. Progenitor cells are located in the superficial zone of the articular cartilage, producing lubricin/Prg4 to decrease friction of cartilage surfaces during joint movement. Prg4-positive progenitors are crucial in maintaining the joint's structure and functionality. The disappearance of progenitor cells leads to changes in articular hyaline cartilage over time, subchondral bone abnormalities, and the formation of ectopic ossification. Genetic labeling cell technology has been the main tool used to characterize Prg4-expressing progenitor cells of articular cartilage in vivo through drug injection at different time points. This technology allows for the determination of the origin of progenitor cells and the tracking of their progeny during joint development and cartilage damage. We endeavored to highlight the currently known information about the Prg4-producing cell population in the joint to underline the significance of the role of these cells in the development of articular cartilage and its homeostasis. This review focuses on superficial progenitors in the joint, how they contribute to postnatal articular cartilage formation, their capacity for regeneration, and the consequences of Prg4 deficiency in these cells. We have accumulated information about the Prg4+ cell population of articular cartilage obtained through various elegantly designed experiments using transgenic technologies to identify potential opportunities for further research.


Cartilage, Articular , Proteoglycans , Stem Cells , Cartilage, Articular/metabolism , Cartilage, Articular/cytology , Animals , Humans , Stem Cells/metabolism , Stem Cells/cytology , Proteoglycans/metabolism , Chondrogenesis , Chondrocytes/metabolism , Chondrocytes/cytology , Cell Differentiation , Regeneration
2.
Exp Dermatol ; 33(6): e15092, 2024 Jun.
Article En | MEDLINE | ID: mdl-38888196

Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression. To evaluate the clinical significance of SPOCK2 expression in patients with melanoma, we analysed the association between SPOCK2 expression and its prognostic value for patients with melanoma using systematic multiomic analysis. Subsequently, to investigate the roles of Spock2 in melanoma progression in vitro and in vivo, we knocked down Spock2 in the B16F10 melanoma cell line. High SPOCK2 levels were positively associated with good prognosis and long survival rate of patients with melanoma. Spock2 knockdown promoted melanoma cell proliferation by inducing the cell cycle and inhibiting apoptosis. Moreover, Spock2 downregulation significantly increased cell migration and invasion by upregulating MMP2 and MT1-MMP. The increased cell proliferation and migration were inhibited by MAPK inhibitor, and ERK phosphorylation was considerably enhanced in Spock2 knockdown cells. Therefore, Spock2 could function as a tumour suppressor gene to regulate melanoma progression by regulating the MAPK/ERK signalling pathway. Additionally, Spock2 knockdown cell injection induced considerable tumour growth and lung metastasis in C57BL6 mice compared to that in the control group. Our findings suggest that SPOCK2 plays crucial roles in malignant progression of melanoma and functions as a novel therapeutic target of melanoma.


Apoptosis , Cell Movement , Cell Proliferation , Disease Progression , Melanoma , Skin Neoplasms , Humans , Animals , Prognosis , Mice , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Cell Line, Tumor , Proteoglycans/metabolism , Proteoglycans/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , MAP Kinase Signaling System , Female , Male , Mice, Inbred C57BL , Gene Knockdown Techniques , Neoplasm Invasiveness , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Cell Cycle
3.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795180

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Drug Resistance, Neoplasm , Indoles , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Sulfonamides , Thyroid Neoplasms , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Animals , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Indoles/pharmacology , Mice , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Sulfonamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Sorafenib/pharmacology , Quinolines/pharmacology , Mutation , Antigens/metabolism , Proteoglycans/metabolism , Membrane Proteins , Chondroitin Sulfate Proteoglycans
4.
Tissue Cell ; 88: 102409, 2024 Jun.
Article En | MEDLINE | ID: mdl-38781792

BACKGROUND: Osteosarcoma is originated from skeletal system. Recombinant human proteoglycan 4 (rhPRG4) can inhibit cell proliferation and migration in multiple cancers. This research is designed to dig out the role and mechanism of PRG4 in osteosarcoma. METHODS: Human osteosarcoma cell lines, MG63 and 143B, were transfected with programmed death 1 (PD-L1) overexpression vectors and/or treated with 20, 50, and 100 µg/mL rhPRG4, followed by the determination of cell viability, colony formation, sphere formation, invasion, migration, apoptosis, and the expressions of matrix metalloproteinases (MMPs), PD-L1 and apoptosis-related proteins. Tumor-bearing mouse models were constructed by injection of 143B cells and treatment of anti-PD-L1 antibody and/or adenovirus PRG4 (AdPRG4). Tumor volume was monitored, and immunohistochemical location of Ki67 was performed. Expressions of MMPs, transforming growth factor-ß (TGF-ß), PD-L1, and epithelial mesenchymal transition (EMT)-related proteins were measured in tumors. RESULTS: RhPRG4 (20, 50, and 100 µg/mL) inhibited the viability, colony formation, sphere formation, invasion, migration, and the expressions of MMP2, MMP9 and Bcl2 in osteosarcoma cells, while promoting cell apoptosis as well as Bax and c-caspase3 expressions, at a dose-dependent manner; by contrast, PD-L1 overexpression reversed the above effects of 100 µg/mL rhPRG4. AdPRG4 or anti-PD-L1 antibody decreased tumor volume, number of pulmonary metastasis nodule, Ki67 location, and expressions of TGF-ß, PD-L1, MMP2, MMP9, Vimentin, and Snail, but increased E-cadherin expression in tumor cells. Moreover, anti-PD-L1 antibody and AdPRG4 together functioned more effectively than them alone in reducing tumor burden. CONCLUSION: PRG4 represses the genesis and metastasis of osteosarcoma via inhibiting PD-L1 expression, and AdPRG4 enhances the effectiveness of anti-PD-L1 therapy.


B7-H1 Antigen , Osteosarcoma , Proteoglycans , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Humans , Cell Line, Tumor , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Mice , Proteoglycans/metabolism , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Metastasis , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/drug effects , Cell Movement/drug effects , Mice, Nude
5.
Sci Rep ; 14(1): 10568, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719877

Early diagnosis and treatment of pre- and early-stage osteoarthritis (OA) is important. However, the cellular and cartilaginous changes occurring during these stages remain unclear. We investigated the histological and immunohistochemical changes over time between pre- and early-stage OA in a rat model of traumatic injury. Thirty-six male rats were divided into two groups, control and OA groups, based on destabilization of the medial meniscus. Histological and immunohistochemical analyses of articular cartilage were performed on days 1, 3, 7, 10, and 14 postoperatively. Cell density of proteins associated with cartilage degradation increased from postoperative day one. On postoperative day three, histological changes, including chondrocyte death, reduced matrix staining, and superficial fibrillation, were observed. Simultaneously, a compensatory increase in matrix staining was observed. The Osteoarthritis Research Society International score increased from postoperative day seven, indicating thinner cartilage. On postoperative day 10, the positive cell density decreased, whereas histological changes progressed with fissuring and matrix loss. The proteoglycan 4-positive cell density increased on postoperative day seven. These findings will help establish an experimental model and clarify the mechanism of the onset and progression of pre- and early-stage traumatic OA.


Cartilage, Articular , Disease Models, Animal , Disease Progression , Immunohistochemistry , Osteoarthritis , Animals , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Male , Rats , Osteoarthritis/pathology , Osteoarthritis/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Rats, Sprague-Dawley , Proteoglycans/metabolism
6.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(5): 293-308, 2024.
Article En | MEDLINE | ID: mdl-38735753

Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.


Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Chondroitin Sulfate Proteoglycans/metabolism , Chondroitin Sulfate Proteoglycans/immunology , Proteoglycans/metabolism , Proteoglycans/chemistry , Molecular Targeted Therapy , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Antigens , Membrane Proteins
7.
Am J Physiol Renal Physiol ; 326(6): F1016-F1031, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38601985

Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a secreted proteoglycan, with notable expression in kidney, which attenuates inflammation and albuminuria. However, little is known about Esm1 expression in mature tissues in the presence or absence of diabetes. We utilized publicly available single-cell RNA sequencing data to characterize Esm1 expression in 27,786 renal endothelial cells (RECs) obtained from three mouse and four human databases. We validated our findings using bulk transcriptome data from 20 healthy subjects and 41 patients with DKD and using RNAscope. In both mice and humans, Esm1 is expressed in a subset of all REC types and represents a minority of glomerular RECs. In patients, Esm1(+) cells exhibit conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and shift expression toward chemotaxis pathways. Esm1 correlates with a majority of genes within these pathways, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. Diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1(+) cells. Thus, Esm1 appears to be a marker for glomerular transcriptional polarization in DKD.NEW & NOTEWORTHY Esm-1 is primarily expressed in glomerular endothelium in humans. Cells expressing Esm1 exhibit a high degree of conservation in the enrichment of genes related to blood vessel development. In the context of diabetes, these cells are reduced in number and show a significant transcriptional shift toward the chemotaxis pathway. In diabetes, there is a transcriptional polarization in the glomerulus that is reflected by the degree of Esm1 deficiency.


Diabetic Nephropathies , Endothelial Cells , Proteoglycans , Humans , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Proteoglycans/genetics , Proteoglycans/metabolism , Endothelial Cells/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Case-Control Studies , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Transcriptome , Mice , Transcription, Genetic , Chemotaxis , Neoplasm Proteins
8.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673852

One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.


Extracellular Matrix Proteins , Mice, Knockout , Spinal Cord Injuries , Spinal Cord , Animals , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Mice , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Neuronal Plasticity , Motor Neurons/metabolism , Nerve Net/metabolism , Male , Proteoglycans/metabolism , Proteoglycans/genetics , Mice, Inbred C57BL
9.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672477

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
10.
Osteoarthritis Cartilage ; 32(7): 881-894, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604493

OBJECTIVE: Transient receptor potential vanilloid 4 (TRPV4) is a multi-modally activated cation channel that mediates mechanotransduction pathways by which musculoskeletal tissues respond to mechanical load and regulate tissue health. Using conditional Trpv4 knockout mice, we investigated the role of Trpv4 in regulating intervertebral disc (IVD) health and injury-induced IVD degeneration. METHODS: Col2-Cre;Trpv4fl/f (Trpv4 KO) mice were used to knockout Trpv4 in all type 2 collagen-expressing cells. Effects of gene targeting alone was assessed in lumbar spines, using vertebral bone length measurement, histological, immunohistochemistry and gene expression analyses, and mechanical testing. Disc puncture was performed on caudal IVDs of wild-type (WT) and Trpv4 KO mice at 2.5- and 6.5-months-of-age. Six weeks after puncture (4- and 8-months-of-age at sacrifice), caudal spines were assessed using histological analyses. RESULTS: While loss of Trpv4 did not significantly alter vertebral bone length and tissue histomorphology compared to age-matched WT mice, Trpv4 KO mice showed decreased proteoglycan and PRG4 staining in the annulus fibrosus compared to WT. At the gene level, Trpv4 KO mice showed significantly increased expression of Acan, Bgn, and Prg4 compared to WT. Functionally, loss of Trpv4 was associated with significantly increased neutral zone length in lumbar IVDs. Following puncture, both Trpv4 KO and WT mice showed similar signs of degeneration at the site of injury. Interestingly, loss of Trpv4 prevented mechanically-induced degeneration in IVDs adjacent to sites of injury. CONCLUSION: These studies suggest a role for Trpv4 in regulating extracellular matrix synthesis and mediating the response of IVD tissues to mechanical stress.


Disease Models, Animal , Extracellular Matrix , Intervertebral Disc Degeneration , Mice, Knockout , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Mice , Extracellular Matrix/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Lumbar Vertebrae , Weight-Bearing/physiology , Collagen Type II/metabolism , Mechanotransduction, Cellular/physiology , Aggrecans/metabolism , Stress, Mechanical , Proteoglycans/metabolism , Proteoglycans/genetics
11.
J Physiol ; 602(9): 1939-1951, 2024 May.
Article En | MEDLINE | ID: mdl-38606903

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Atherosclerosis , Inflammation , Mice, Knockout , Proteoglycans , Receptors, LDL , Recombinant Proteins , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Female , Proteoglycans/pharmacology , Proteoglycans/metabolism , Proteoglycans/genetics , Receptors, LDL/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Mice , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Macrophages/metabolism , Macrophages/drug effects , Foam Cells/metabolism , Foam Cells/drug effects
12.
PLoS One ; 19(4): e0298631, 2024.
Article En | MEDLINE | ID: mdl-38626010

OBJECTIVE: Endothelial specific molecule-1 (ESM1) is implicated as an oncogene in multiple human cancers. However, the function of ESM1 in papillary thyroid cancer (PTC) is not well understood. The current study aimed to investigate the effect of ESM1 on the growth, migration, and invasion of PTC to provide a novel perspective for PTC treatment. METHODS: The expression levels of ESM1 in PTC tissues form 53 tumor tissue samples and 59 matching adjacent normal tissue samples were detected by immunohistochemical analysis. Knockdown of ESM1 expression in TPC-1 and SW579 cell lines was established to investigate its role in PTC. Moreover, cell proliferation, apoptosis, wound healing, and transwell assays were conducted in vitro to assess cell proliferation, migration and invasion. RESULTS: The findings revealed that ESM1 expression was significantly higher in PTC tissues than that found in paraneoplastic tissues (P<0.0001). Knockdown of ESM1 expression inhibited the proliferation, migration, and invasion of TPC-1 and SW579 cells in vitro. Compared with the control group, the mRNA and protein levels of ESM1 in PTC cells were significantly reduced following knockdown of its expression (P<0.01). In addition, ESM1-knockdown cells indicated decreased proliferation and decreased migratory and invasive activities (P<0.01, P<0.01, P<0.001, respectively). CONCLUSIONS: ESM1 was identified as a major gene in the occurrence and progression of PTC, which could increase the proliferation, migration, and invasion of PTC cells. It may be a promising diagnostic and therapeutic target gene.


Carcinoma, Papillary , MicroRNAs , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , RNA, Small Interfering/genetics , Thyroid Neoplasms/pathology , Carcinoma, Papillary/genetics , Carcinoma, Papillary/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proteoglycans/metabolism
13.
BMC Cardiovasc Disord ; 24(1): 197, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580957

BACKGROUND: Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS: HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS: Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION: HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.


Extracellular Matrix Proteins , Heart Failure , Ventricular Function, Left , Animals , Rats , Heart Failure/genetics , Heart Failure/metabolism , Rats, Sprague-Dawley , Signal Transduction , Stroke Volume , Proteoglycans/genetics , Proteoglycans/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism
14.
Connect Tissue Res ; 65(2): 117-132, 2024 03.
Article En | MEDLINE | ID: mdl-38530304

Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.


Cartilage, Articular , Osteoarthritis , Rats , Animals , Rats, Sprague-Dawley , Knee Joint/pathology , Osteoarthritis/pathology , Proteoglycans/metabolism , Obesity/metabolism , Cartilage, Articular/pathology , Collagen/metabolism
15.
Glycobiology ; 34(5)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38438145

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Glycosaminoglycans , Hyaluronic Acid , Mice , Animals , Glycosaminoglycans/metabolism , Proteoglycans/metabolism , Keratan Sulfate/metabolism , Chondroitin Sulfates/metabolism , Heparitin Sulfate/metabolism , Odontogenesis , Dermatan Sulfate
16.
Nat Commun ; 15(1): 2723, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548715

Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.


Glycosaminoglycans , Semaphorins , Glycosaminoglycans/metabolism , Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Cell Movement , Semaphorins/genetics , Semaphorins/metabolism
17.
Ann Allergy Asthma Immunol ; 132(6): 713-722.e4, 2024 Jun.
Article En | MEDLINE | ID: mdl-38382675

BACKGROUND: The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) with comorbid asthma remains unclear. OBJECTIVE: To assess upper and lower airway unity and identify a possible common pathogenesis in CRSwNP with asthma. METHODS: This study analyzed the expression of proteins and metabolites in nasal lavage fluid cells (NLFCs) and induced sputum cells (ISCs). Differentially expressed proteins and their function-related metabolites in the upper and lower airways of patients having CRSwNP with or without asthma were identified; relevant signaling pathways were analyzed, and key pathway-related proteins were identified. Parallel reaction monitoring was used to verify these target proteins. RESULTS: Protein or metabolite expression between NLFCs and ISCs was highly correlated and conservative on the basis of expression profiles and weighted gene coexpression network analysis. There were 17 differentially coexpressed proteins and their function-related 13 metabolites that were identified in the NLFCs and ISCs of CRSwNP, whereas 11 proteins and 11 metabolites were identified in CRSwNP with asthma. An asthma pathway was involved in the copathogenesis of upper and lower airways in whether CRSwNP or CRSwNP with asthma. The asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase, as the core of the protein-metabolism interaction networks between the upper and lower airways, were both highly coexpressed in NLFCs and ISCs in patients having either CRSwNP or CRSwNP with asthma by parallel reaction monitoring validation. CONCLUSION: Proteomics and metabolomics reveal upper and lower airway unity. Asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase from the upper airway could be used to assess the potential risk of lower airway dysfunction in CRSwNP.


Asthma , Metabolomics , Nasal Polyps , Proteomics , Rhinitis , Sinusitis , Humans , Sinusitis/metabolism , Asthma/metabolism , Rhinitis/metabolism , Proteomics/methods , Chronic Disease , Female , Nasal Polyps/metabolism , Male , Adult , Middle Aged , Sputum/metabolism , Nasal Lavage Fluid/chemistry , Eosinophil Peroxidase/metabolism , Proteoglycans/metabolism , Rhinosinusitis
18.
Glycobiology ; 34(3)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38376199

The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.


Glycosaminoglycans , Keratan Sulfate , Animals , Keratan Sulfate/chemistry , Proteoglycans/metabolism , Mammals/metabolism
19.
PLoS One ; 19(2): e0298802, 2024.
Article En | MEDLINE | ID: mdl-38394161

In this study we used a spatial transcriptomics approach to identify genes specifically associated with either high or low outflow regions in the trabecular meshwork (TM) that could potentially affect aqueous humor outflow in vivo. High and low outflow regions were identified and isolated from organ cultured human anterior segments perfused with fluorescently-labeled 200 nm FluoSpheres. The NanoString GeoMx Digital Spatial Profiler (DSP) platform was then used to identified genes in the paraffin embedded tissue sections from within those regions. These transcriptome analyses revealed that 16 genes were statistically upregulated in high outflow regions and 57 genes were statistically downregulated in high outflow regions when compared to low outflow regions. Gene ontology enrichment analysis indicated that the top three biological categories of these differentially expressed genes were ECM/cell adhesion, signal transduction, and transcription. The ECM/cell adhesion genes that showed the largest differential expression (Log2FC ±1.5) were ADAM15, BGN, LDB3, and CRKL. ADAM15, which is a metalloproteinase that can bind integrins, was upregulated in high outflow regions, while the proteoglycan BGN and two genes associated with integrin signaling (LDB3, and CRKL) were downregulated. Immunolabeling studies supported the differential expression of ADAM15 and showed that it was specifically upregulated in high outflow regions along the inner wall of Schlemm's canal and in the juxtacanalicular (JCT) region of the TM. In addition to these genes, the studies showed that genes for decorin, a small leucine-rich proteoglycan, and the α8 integrin subunit were enriched in high outflow regions. These studies identify several novel genes that could be involved in segmental outflow, thus demonstrating that digital spatial profiling could be a useful approach for understanding segmental flow through the TM. Furthermore, this study suggests that changes in the expression of genes involved in regulating the activity and/or organization of the ECM and integrins in the TM are likely to be key players in segmental outflow.


Aqueous Humor , Trabecular Meshwork , Humans , Trabecular Meshwork/metabolism , Aqueous Humor/metabolism , Sclera , Proteoglycans/metabolism , Integrins/genetics , Integrins/metabolism , Intraocular Pressure , Membrane Proteins/metabolism , ADAM Proteins/metabolism
20.
Cell Commun Signal ; 22(1): 128, 2024 02 15.
Article En | MEDLINE | ID: mdl-38360757

In pathologies including cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.


Glycosaminoglycans , Ovarian Neoplasms , Humans , Female , Glycosaminoglycans/metabolism , Transforming Growth Factor beta/metabolism , Proteoglycans/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Heparitin Sulfate/metabolism
...