Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.933
Filter
1.
Nat Commun ; 15(1): 7246, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39174534

ABSTRACT

The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the ß-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.


Subject(s)
Bacterial Outer Membrane Proteins , Escherichia coli Proteins , Escherichia coli , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Proteolipids/metabolism , Protein Transport
2.
Methods Mol Biol ; 2843: 177-194, 2024.
Article in English | MEDLINE | ID: mdl-39141301

ABSTRACT

Outer membrane vesicles (OMVs) are small, spherical, nanoscale proteoliposomes released from Gram-negative bacteria that play an important role in cellular defense, pathogenesis, and signaling, among other functions. The functionality of OMVs can be enhanced by engineering developed for biomedical and biochemical applications. Here, we describe methods for directed packaging of enzymes into bacterial OMVs of E. coli using engineered molecular systems, such as localizing proteins to the inner or outer surface of the vesicle. Additionally, we detail some modification strategies for OMVs such as lyophilization and surfactant conjugation that enable the protection of activity of the packaged enzyme when exposed to non-physiological conditions such as elevated temperature, organic solvents, and repeated freeze/thaw that otherwise lead to a substantial loss in the activity of the free enzyme.


Subject(s)
Escherichia coli , Proteolipids , Escherichia coli/metabolism , Escherichia coli/genetics , Proteolipids/metabolism , Bacterial Outer Membrane/metabolism , Freeze Drying/methods , Bacterial Outer Membrane Proteins/metabolism , Enzymes/metabolism , Enzymes/chemistry
3.
Methods Mol Biol ; 2839: 77-97, 2024.
Article in English | MEDLINE | ID: mdl-39008249

ABSTRACT

Transmembrane transition metal transporter proteins are central gatekeepers in selectively controlling vectorial metal cargo uptake and extrusion across cellular membranes in all living organisms, thus playing key roles in essential and toxic metal homeostasis. Biochemical characterization of transporter-mediated translocation events and transport kinetics of redox-active metals, such as iron and copper, is challenged by the complexity in generating reconstituted systems in which vectorial metal transport can be studied in real time. We present fluorescence-based proteoliposome methods to monitor redox-active metal transmembrane translocation upon reconstitution of purified metal transporters in artificial lipid bilayers. By encapsulating turn-on/-off iron or copper-dependent sensors in the proteoliposome lumen and conducting real-time transport assays using small unilamellar vesicles (SUVs), in which selected purified Fe(II) and Cu(I) transmembrane importer and exporter proteins have been reconstituted, we provide a platform to monitor metal translocation events across lipid bilayers in real time. The strategy is modular and expandable toward the study of different transporter families featuring diverse metal substrate selectivity and promiscuity.


Subject(s)
Lipid Bilayers , Oxidation-Reduction , Proteolipids , Proteolipids/metabolism , Proteolipids/chemistry , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Copper/metabolism , Copper/chemistry , Iron/metabolism , Metals/metabolism , Metals/chemistry , Biological Transport , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry
4.
Adv Sci (Weinh) ; 11(31): e2401844, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884204

ABSTRACT

Vascular injury is central to the pathogenesis and progression of cardiovascular diseases, however, fostering alternative strategies to alleviate vascular injury remains a persisting challenge. Given the central role of cell-derived nitric oxide (NO) in modulating the endogenous repair of vascular injury, NO-generating proteolipid nanovesicles (PLV-NO) are designed that recapitulate the cell-mimicking functions for vascular repair and replacement. Specifically, the proteolipid nanovesicles (PLV) are versatilely fabricated using membrane proteins derived from different types of cells, followed by the incorporation of NO-generating nanozymes capable of catalyzing endogenous donors to produce NO. Taking two vascular injury models, two types of PLV-NO are tailored to meet the individual requirements of targeted diseases using platelet membrane proteins and endothelial membrane proteins, respectively. The platelet-based PLV-NO (pPLV-NO) demonstrates its efficacy in targeted repair of a vascular endothelium injury model through systemic delivery. On the other hand, the endothelial cell (EC)-based PLV-NO (ePLV-NO) exhibits suppression of thrombosis when modified onto a locally transplanted small-diameter vascular graft (SDVG). The versatile design of PLV-NO may enable a promising therapeutic option for various vascular injury-evoked cardiovascular diseases.


Subject(s)
Nitric Oxide , Proteolipids , Vascular System Injuries , Nitric Oxide/metabolism , Animals , Vascular System Injuries/metabolism , Proteolipids/metabolism , Disease Models, Animal , Mice , Humans , Nanoparticles/chemistry , Male
5.
Article in English | MEDLINE | ID: mdl-38782254

ABSTRACT

Regional endothermy is the ability of an animal to elevate the temperature of specific regions of the body above that of the surrounding environment and has evolved independently among several fish lineages. Sarcolipin (SLN) is a small transmembrane protein that uncouples the sarcoplasmic reticulum calcium ATPase pump (SERCA1b) resulting in futile Ca2+ cycling and is thought to play a role in non-shivering thermogenesis (NST) in cold-challenged mammals and possibly some fishes. This study investigated the relative expression of sln and serca1 transcripts in three regionally-endothermic fishes (the skipjack, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, both of which elevate the temperatures of their slow-twitch red skeletal muscle (RM) and extraocular muscles (EM), as well as the cranial endothermic swordfish, Xiphias gladius), and closely related ectothermic scombrids (the Eastern Pacific bonito, Sarda chiliensis, and Pacific chub mackerel, Scomber japonicus). Using Reverse Transcription quantitative PCR (RT-qPCR) and species-specific primers, relative sln expression trended higher in both the RM and EM for all four scombrid species compared to white muscle. In addition, relative serca1 expression was found to be higher in RM of skipjack and yellowfin tuna in comparison to white muscle. However, neither sln nor serca1 transcripts were higher in swordfish RM, EM or cranial heater tissue in comparison to white muscle. A key phosphorylation site in sarcolipin, threonine 5, is conserved in the swordfish, but is mutated to alanine or valine in tunas and the endothermic smalleye Pacific opah, Lampris incognitus, which should result in increased uncoupling of the SERCA pump. Our results support the role of potential SLN-NST in endothermic tunas and the lack thereof for swordfish.


Subject(s)
Calcium , Muscle Proteins , Proteolipids , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Thermogenesis , Animals , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Proteolipids/genetics , Proteolipids/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Thermogenesis/genetics , Calcium/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Perciformes/genetics , Perciformes/physiology , Perciformes/metabolism , Tuna/genetics , Tuna/metabolism , Tuna/physiology
6.
Bioelectrochemistry ; 159: 108732, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38810322

ABSTRACT

Functional characterization of transporters is impeded by the high cost and technical challenges of current transporter assays. Thus, in this work, we developed a new characterization workflow that combines cell-free protein synthesis (CFPS) and solid supported membrane-based electrophysiology (SSME). For this, membrane protein synthesis was accomplished in a continuous exchange cell-free system (CECF) in the presence of nanodiscs. The resulting transporters expressed in nanodiscs were incorporated into proteoliposomes and assayed in the presence of different substrates using the surface electrogenic event reader. As a proof of concept, we validated this workflow to express and characterize five diverse transporters: the drug/H+-coupled antiporters EmrE and SugE, the lactose permease LacY, the Na+/H+ antiporter NhaA from Escherichia coli, and the mitochondrial carrier AAC2 from Saccharomyces cerevisiae. For all transporters kinetic parameters, such as KM, IMAX, and pH dependency, were evaluated. This robust and expedite workflow (e.g., can be executed within only five workdays) offers a convenient direct functional assessment of transporter protein activity and has the ability to facilitate applications of transporters in medical and biotechnological research.


Subject(s)
Cell-Free System , Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Escherichia coli/metabolism , Proteolipids/metabolism , Proteolipids/chemistry , Sodium-Hydrogen Exchangers/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Monosaccharide Transport Proteins/chemistry , Kinetics , Antiporters/metabolism , Electrophysiological Phenomena , Symporters
7.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564291

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Subject(s)
Cardiomyopathies , Dystrophin , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins , Muscular Dystrophy, Duchenne , Proteolipids , Utrophin , Animals , Male , Mice , Calcium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mitochondria, Heart/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteolipids/metabolism , Proteolipids/genetics , Utrophin/genetics , Utrophin/metabolism
8.
Front Immunol ; 15: 1191966, 2024.
Article in English | MEDLINE | ID: mdl-38655253

ABSTRACT

NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.


Subject(s)
Antimicrobial Peptides , Fish Proteins , Proteolipids , Salmo salar , Animals , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/metabolism , Fish Proteins/pharmacology , Immunity, Innate , Proteolipids/metabolism , Proteolipids/pharmacology , Salmo salar/immunology , Signal Transduction
9.
Proteins ; 92(7): 874-885, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38477414

ABSTRACT

Aquaporin (AQP) is a water channel protein from the family of transmembrane proteins which facilitates the movement of water across the cell membrane. It is ubiquitous in nature, however the understanding of the water transport mechanism, especially for AQPs in microbes adapted to low temperatures, remains limited. AQP also has been recognized for its ability to be used for water filtration, but knowledge of the biochemical features necessary for its potential applications in industrial processes has been lacking. Therefore, this research was conducted to express, extract, solubilize, purify, and study the functional adaptations of the aquaporin Z family from Pseudomonas sp. AMS3 via molecular approaches. In this study, AqpZ1 AMS3 was successfully subcloned and expressed in E. coli BL21 (DE3) as a recombinant protein. The AqpZ1 AMS3 gene was expressed under optimized conditions and the best optimized condition for the AQP was in 0.5 mM IPTG incubated at 25°C for 20 h induction time. A zwitterionic mild detergent [(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate was the suitable surfactant for the protein solubilization. The protein was then purified via affinity chromatography. Liposome and proteoliposome was reconstituted to determine the particle size using dynamic light scattering. This information obtained from this psychrophilic AQP identified provides new insights into the structural adaptation of this protein at low temperatures and could be useful for low temperature application and molecular engineering purposes in the future.


Subject(s)
Aquaporins , Bacterial Proteins , Cloning, Molecular , Escherichia coli , Pseudomonas , Recombinant Proteins , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Aquaporins/chemistry , Aquaporins/genetics , Aquaporins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression , Proteolipids/metabolism , Proteolipids/chemistry , Antarctic Regions , Liposomes/metabolism , Liposomes/chemistry , Water/chemistry , Water/metabolism , Solubility , Amino Acid Sequence
10.
Methods Mol Biol ; 2778: 83-99, 2024.
Article in English | MEDLINE | ID: mdl-38478273

ABSTRACT

ß-barrel membrane proteins populate the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts, playing significant roles in multiple key cellular pathways. Characterizing the functions of these membrane proteins in vivo is often challenging due to the complex protein network in the periplasm of Gram-negative bacteria (or intermembrane space in mitochondria and chloroplasts) and the presence of other outer membrane proteins. In vitro reconstitution into lipid-bilayer-like environments such as nanodiscs or proteoliposomes provides an excellent method for examining the specific function and mechanism of these membrane proteins in an isolated system. Here, we describe the methodologies employed to investigate Slam, a 14-stranded ß-barrel membrane protein also known as the type XI secretion system that is responsible for translocating proteins across the outer membrane of many bacterial species.


Subject(s)
Bacterial Outer Membrane Proteins , Proteolipids , Bacterial Outer Membrane Proteins/metabolism , Proteolipids/metabolism , Mitochondria/metabolism , Protein Transport , Gram-Negative Bacteria/metabolism
11.
Biomolecules ; 14(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540765

ABSTRACT

Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which Pten was conditionally ablated, (1) in glia (Plp1-expressing cells) and (2) in neurons (Calb2-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; n = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS). We investigated gut motility and evaluated the enteric nervous system. Pten inhibition in Plp1-expressing cells elicited gliogenesis at baseline and post-DSS (early and late) in the colon, and neurogenesis post-DSS late in the proximal colon. They also exhibited an increased frequency of colonic migrating motor complexes (CMMC) and slower whole gut transit times. Pten inhibition in Calb2-expressing cells did not induce enteric neuro- or gliogenesis, and no alterations were detected in CMMC or whole gut transit times when compared to the control at baseline or post-DSS (early and late). Our results merit further research into Pten modulation where increased glia and/or slower intestinal transit times are desired (e.g., short-bowel syndrome and rapid-transit disorders).


Subject(s)
Enteric Nervous System , Animals , Mice , Enteric Nervous System/metabolism , Neurogenesis/physiology , Proteolipids/metabolism , Tamoxifen/pharmacology , Tensins/metabolism
12.
BMC Biol ; 22(1): 46, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414038

ABSTRACT

Membranes are protein and lipid structures that surround cells and other biological compartments. We present a conceptual model wherein all membranes are organized into structural and functional zones. The assembly of zones such as receptor clusters, protein-coated pits, lamellipodia, cell junctions, and membrane fusion sites is explained to occur through a protein-lipid code. This challenges the theory that lipids sort proteins after forming stable membrane subregions independently of proteins.


Subject(s)
Carrier Proteins , Proteolipids , Proteolipids/metabolism , Membranes/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism
13.
Mol Med Rep ; 29(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38362940

ABSTRACT

The myelin and lymphocyte protein (MAL) family is a novel gene family first identified and characterized in 2002. This family is comprised of seven members, including MAL, MAL2, plasmolipin, MALL, myeloid differentiation­associated marker (MYADM), MYADML2 and CMTM8, which are located on different chromosomes. In addition to exhibiting extensive activity during transcytosis, the MAL family plays a vital role in the neurological, digestive, respiratory, genitourinary and other physiological systems. Furthermore, the intimate association between MAL and the pathogenesis, progression and metastasis of malignancies, attributable to several mechanisms such as DNA methylation has also been elucidated. In the present review, an overview of the structural and functional properties of the MAL family and the latest research findings regarding the relationship between several MAL members and various cancers is provided. Furthermore, the potential clinical and scientific significance of MAL is discussed and directions for future research are summarized.


Subject(s)
Neoplasms , Proteolipids , Humans , Myelin and Lymphocyte-Associated Proteolipid Proteins , Proteolipids/chemistry , Proteolipids/genetics , Proteolipids/metabolism , Myelin Proteins/genetics , Proteins , Neoplasms/genetics , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Lymphocytes/metabolism , Chemokines , MARVEL Domain-Containing Proteins
14.
Biochim Biophys Acta Biomembr ; 1866(4): 184305, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408696

ABSTRACT

The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.


Subject(s)
Carrier Proteins , Vesicular Transport Proteins , Carrier Proteins/chemistry , Vesicular Transport Proteins/metabolism , Sorting Nexins/metabolism , Protein Transport , Proteolipids/metabolism
15.
J Cell Sci ; 137(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38345097

ABSTRACT

Tricellular junctions (TCJs) seal epithelial cell vertices and are essential for tissue integrity and physiology, but how TCJs are assembled and maintained is poorly understood. In Drosophila, the transmembrane proteins Anakonda (Aka, also known as Bark), Gliotactin (Gli) and M6 organize occluding TCJs. Aka and M6 localize in an interdependent manner to vertices and act jointly to localize Gli, but how these proteins interact to assemble TCJs was not previously known. Here, we show that the proteolipid protein M6 physically interacts with Aka and with itself, and that M6 is palmitoylated on conserved juxta-membrane cysteine residues. This modification promotes vertex localization of M6 and binding to Aka, but not to itself, and becomes essential when TCJ protein levels are reduced. Abolishing M6 palmitoylation leads to delayed localization of M6 and Aka but does not affect the rate of TCJ growth or mobility of M6 or Aka. Our findings suggest that palmitoylation-dependent recruitment of Aka by M6 promotes initiation of TCJ assembly, whereas subsequent TCJ growth relies on different mechanisms that are independent of M6 palmitoylation.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Intercellular Junctions/metabolism , Lipoylation , Proteolipids/metabolism
16.
J Exp Biol ; 227(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38044822

ABSTRACT

In order to complete their energetically demanding journeys, migratory birds undergo a suite of physiological changes to prepare for long-duration endurance flight, including hyperphagia, fat deposition, reliance on fat as a fuel source, and flight muscle hypertrophy. In mammalian muscle, SLN is a small regulatory protein which binds to sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis, increasing energy consumption, heat production, and cytosolic Ca2+ transients that signal for mitochondrial biogenesis, fatigue resistance and a shift to fatty acid oxidation. Using a photoperiod manipulation of captive gray catbirds (Dumetella carolinensis), we investigated whether SLN may play a role in coordinating the development of the migratory phenotype. In response to long-day photostimulation, catbirds demonstrated migratory restlessness and significant body fat stores, alongside higher SLN transcription while SERCA2 remained constant. SLN transcription was strongly correlated with h-FABP and PGC1α transcription, as well as fat mass. However, SLN was not significantly correlated with HOAD or CD36 transcripts or measurements of SERCA activity, SR membrane Ca2+ leak, Ca2+ uptake rates, pumping efficiency or mitochondrial biogenesis. Therefore, SLN may be involved in the process of storing fat and shifting to fat as a fuel, but the mechanism of its involvement remains unclear.


Subject(s)
Calcium , Songbirds , Animals , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Muscle Proteins , Proteolipids/genetics , Proteolipids/metabolism , Endoplasmic Reticulum/metabolism , Songbirds/metabolism , Mammals/metabolism
17.
Mol Biol Rep ; 51(1): 10, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085372

ABSTRACT

BACKGROUND: The Proteolipid Protein 2 (PLP2), a protein in the Endoplasmic Reticulum (ER) membrane, has been reported to be highly expressed in various tumors. Previous studies have demonstrated that the reduced PLP2 can induce apoptosis and autophagy through ER stress-related pathways, leading to a decreased proliferation and aggressiveness. However, there is no research literature on the role of PLP2 in Acute Myeloid Leukemia (AML). METHODS: PLP2 expression, clinical data, genetic mutations, and karyotype changes from GEO, TCGA, and timer2.0 databases were analyzed through the R packages. The possible functions and pathways of cells were explored through GO, KEGG, and GSEA enrichment analysis using the clusterProfiler R package. Immuno-infiltration analysis was conducted using the Cibersort algorithm and the Xcell R package. RT-PCR and western blot techniques were employed to identify the PLP2 expression, examine the knockdown effects in THP-1 cells, and assess the expression of genes associated with endoplasmic reticulum stress and apoptosis. Flow cytometry was utilized to determine the apoptosis and survival rates of different groups. RESULTS: PLP2 expression was observed in different subsets of AML and other cancers. Enrichment analyses revealed that PLP2 was involved in various tumor-related biological processes, primarily apoptosis and lysosomal functions. Additionally, PLP2 expression showed a strong association with immune cell infiltration, particularly monocytes. In vitro, the knockdown of PLP2 enhanced endoplasmic reticulum stress-related apoptosis and increased drug sensitivity in THP-1 cells. CONCLUSIONS: PLP2 could be a novel therapeutic target in AML, in addition, PLP2 is a potential endoplasmic reticulum stress regulatory gene in AML.


Subject(s)
Apoptosis , Leukemia, Myeloid, Acute , Humans , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Proteolipids/genetics , Proteolipids/metabolism , Proteolipids/pharmacology
18.
Elife ; 122023 05 30.
Article in English | MEDLINE | ID: mdl-37249575

ABSTRACT

The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.


Subject(s)
Muscle, Skeletal , Thermogenesis , Mice , Humans , Animals , Muscle, Skeletal/metabolism , Thermogenesis/genetics , Energy Metabolism/physiology , Proteolipids/metabolism , Cytoplasm/metabolism , Chromosomes, Human/metabolism , Calcium/metabolism
19.
Am J Physiol Gastrointest Liver Physiol ; 324(2): G115-G130, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36511517

ABSTRACT

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability. To interrogate the role of Plp1 in enteric glia, we investigated gut motility, secretomotor function and permeability, and evaluated the ENS in mice lacking Plp1. We studied two time points: ∼3 mo (young) and >1 yr (old). Old Plp1 null mice exhibited increased fecal output, decreased fecal water content, faster whole gut transit times, reduced intestinal permeability, and faster colonic migrating motor complexes. Interestingly, in both young and old mice, the ENS exhibited normal glial and neuronal numbers as well as glial arborization density in the absence of Plp1. As Plp1-associated functions involve mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Mapk/Erk1/2) signaling and Mapk/Erk1/2 are reported to have a regulatory role in intestinal motility, we measured protein expression of Erk1/2 and its active form in the small intestine. Old Plp1 null mice had reduced levels of phosphorylated-Erk1/2. Although Plp1 is not required for the normal appearance of enteric glial cells, it has a regulatory role in intestinal motility and barrier function. Our results suggest that functional changes mediated by Plp1-expressing enteric glia may involve Erk1/2 activation.NEW & NOTEWORTHY Here, we describe that Plp1 regulates gut motility and barrier function. The functional effects of Plp1 eradication are only seen in old mice, not young. The effects of Plp1 appear to be mediated through the Erk1/2 pathway.


Subject(s)
Gastrointestinal Motility , Intestinal Mucosa , Myelin Proteolipid Protein , Animals , Mice , Enteric Nervous System/physiology , Gastrointestinal Motility/physiology , Mice, Knockout , Neuroglia/metabolism , Neurons/metabolism , Proteolipids/metabolism , Proteolipids/pharmacology , Myelin Proteolipid Protein/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology
20.
Genes (Basel) ; 13(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36360222

ABSTRACT

As an antimicrobial peptide, NK-lysin (NKL) plays an important role in the innate immune system of organisms. In this study, 300 piglets (68 Landrace pigs, 158 Large White pigs and 74 Songliao Black pigs) were used to further explore the function of NLK gene in porcine immune system. The quantitative real-time PCR analysis detected the NKL gene's expression, and the result demonstrated that NKL mRNA was expressed in lung, spleen, stomach, kidney, liver and heart, and the expression level decreased sequentially. A single-nucleotide polymorphism (SNP, g.59070355 G > A) in intron 3 of the NKL gene was detected by PCR amplification and sequencing. The results of the Chi-square (χ2) test showed that the genotype of the SNP was consistent with the Hardy-Weinberg equilibrium. What's more, association analysis results showed the SNP in NKL gene was significantly associated with T lymphocyte subpopulations. Different genotypes had significant effects on the proportion of CD4-CD8-, CD4-CD8+, CD4+CD8+, CD8+, CD4+/CD8+ in peripheral blood (p < 0.05). These results further suggested that NKL could be recognized as a promising immune gene for swine disease resistance breeding.


Subject(s)
Lymphocyte Subsets , Proteolipids , Swine/genetics , Animals , Proteolipids/genetics , Proteolipids/chemistry , Proteolipids/metabolism , Lymphocyte Subsets/metabolism , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL