Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.173
Filter
1.
Front Immunol ; 15: 1401626, 2024.
Article in English | MEDLINE | ID: mdl-38868779

ABSTRACT

Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.


Subject(s)
Fish Proteins , Macrophages , Necroptosis , Perciformes , Animals , Perciformes/immunology , Macrophages/immunology , Macrophages/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Necroptosis/immunology , Phylogeny , Macrophage Activation/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Acyltransferases/genetics , Acyltransferases/immunology , Pseudomonas/physiology , Cytokines/metabolism
2.
Curr Microbiol ; 81(7): 184, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771325

ABSTRACT

Agriculture and livestock management practices known as organic farming rely more on internal processes than external inputs. Natural environments depend heavily on diversity, and organic farming incorporates both the stated purpose of fostering diversity as well as the use of diversity as a management tool. A more complete understanding of agriculture in terms of agro-ecology has begun to be questioned by the traditional reductionist approach to the study of agriculture. Therefore it is necessary to be aware more about the significance of microbes in processes including soil growth, plant nourishment, and the eradication of plant disease, pest, and weeds. In this study, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were studied for antifungal and antibacterial activity against four common root rot fungi and four common laboratory bacteria in vitro experiments. Furthermore, soil-borne disease surveillance and nutritional quality of Lagenaria siceraria, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were combined with neem cake and cotton cake to check their efficacy. Through the application of organic soil amendments in combination with biocontrol agents improved the quality of vegetables and their nutritional value by raising their polyphenol, carbohydrate, and protein content as well as enhancing antioxidant scavenging status. The experiments were conducted in pots and in fields to confirm their efficacy rate. The final outcomes also revealed greater induction of defense system, disease lessening and enriched fruit quality. Consortium of neem cake and cotton cake with bio-stimulants can regulate biotic as well as abiotic stress.


Subject(s)
Endophytes , Pseudomonas , Soil Microbiology , Endophytes/physiology , Pseudomonas/physiology , Cucurbitaceae/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hypocreales/physiology , Fungi/physiology , Fungi/drug effects , Bacteria/classification , Bacteria/drug effects , Biological Control Agents , Plant Roots/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism
3.
Appl Environ Microbiol ; 90(6): e0061924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38757977

ABSTRACT

Host-associated microbial communities, like other ecological communities, may be impacted by the colonization order of taxa through priority effects. Developing embryos and their associated microbiomes are subject to stochasticity during colonization by bacteria. For amphibian embryos, often developing externally in bacteria-rich environments, this stochasticity may be particularly impactful. For example, the amphibian microbiome can mitigate lethal outcomes from disease for their hosts; however, this may depend on microbiome composition. Here, we examined the assembly of the bacterial community in spring peeper (Pseudacris crucifer) embryos and tadpoles. First, we reared embryos from identified mating pairs in either lab or field environments to examine the relative impact of environment and parentage on embryo and tadpole bacterial communities. Second, we experimentally inoculated embryos to determine if priority effects (i) could be used to increase the relative abundance of Janthinobacterium lividum, an amphibian-associated bacteria capable of preventing fungal infection, and (ii) would lead to observed differences in the relative abundances of two closely related bacteria from the genus Pseudomonas. Using 16S rRNA gene amplicon sequencing, we observed differences in community composition based on rearing location and parentage in embryos and tadpoles. In the inoculation experiment, we found that priority inoculation could increase the relative abundance of J. lividum, but did not find that either Pseudomonas isolate was able to prevent colonization by the other when given priority. These results highlight the importance of environmental source pools and parentage in determining microbiome composition, while also providing novel methods for the administration of a known amphibian probiotic. IMPORTANCE: Harnessing the functions of host-associated bacteria is a promising mechanism for managing disease outcomes across different host species. In the case of amphibians, certain frog-associated bacteria can mitigate lethal outcomes of infection by the fungal pathogen Batrachochytrium dendrobatidis. Successful probiotic applications require knowledge of community assembly and an understanding of the ecological mechanisms that structure these symbiotic bacterial communities. In our study, we show the importance of environment and parentage in determining bacterial community composition and that community composition can be influenced by priority effects. Further, we provide support for the use of bacterial priority effects as a mechanism to increase the relative abundance of target probiotic taxa in a developing host. While our results show that priority effects are not universally effective across all host-associated bacteria, our ability to increase the relative abundance of specific probiotic taxa may enhance conservation strategies that rely on captive rearing of endangered vertebrates.


Subject(s)
Anura , Larva , Microbiota , Probiotics , RNA, Ribosomal, 16S , Animals , Larva/microbiology , Larva/growth & development , Anura/microbiology , Probiotics/administration & dosage , Probiotics/pharmacology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Oxalobacteraceae/physiology , Pseudomonas/physiology , Embryo, Nonmammalian/microbiology
4.
Appl Environ Microbiol ; 90(6): e0045524, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38809045

ABSTRACT

Phytopathogenic Fusarium graminearum poses significant threats to crop health and soil quality. Although our laboratory-cultivated Pseudomonas sp. P13 exhibited potential biocontrol capacities, its effectiveness against F. graminearum and underlying antifungal mechanisms are still unclear. In light of this, our study investigated a significant inhibitory effect of P13 on F. graminearum T1, both in vitro and in a soil environment. Conducting genomic, metabolomic, and transcriptomic analyses of P13, we sought to identify evidence supporting its antagonistic effects on T1. The results revealed the potential of P13, a novel Pseudomonas species, to produce active antifungal components, including phenazine-1-carboxylate (PCA), hydrogen cyanide (HCN), and siderophores [pyoverdine (Pvd) and histicorrugatin (Hcs)], as well as the dynamic adaptive changes in the metabolic pathways of P13 related to these active ingredients. During the logarithmic growth stage, T1-exposed P13 strategically upregulated PCA and HCN biosynthesis, along with transient inhibition of the tricarboxylic acid (TCA) cycle. However, with growth stabilization, upregulation of PCA and HCN synthesis ceased, whereas the TCA cycle was enhanced, increasing siderophores secretion (Pvd and Hcs), suggesting that this mechanism might have caused continuous inhibition of T1. These findings improved our comprehension of the biocontrol mechanisms of P13 and provided the foundation for potential application of Pseudomonas strains in the biocontrol of phytopathogenic F. graminearum. IMPORTANCE: Pseudomonas spp. produces various antifungal substances, making it an effective natural biocontrol agent against pathogenic fungi. However, the inhibitory effects and the associated antagonistic mechanisms of Pseudomonas spp. against Fusarium spp. are unclear. Multi-omics integration analyses of the in vitro antifungal effects of novel Pseudomonas species, P13, against F. graminearum T1 revealed the ability of P13 to produce antifungal components (PCA, HCN, Pvd, and Hcs), strategically upregulate PCA and HCN biosynthesis during logarithmic growth phase, and enhance the TCA cycle during stationary growth phase. These findings improved our understanding of the biocontrol mechanisms of P13 and its potential application against pathogenic fungi.


Subject(s)
Fusarium , Phenazines , Plant Diseases , Pseudomonas , Fusarium/physiology , Fusarium/growth & development , Pseudomonas/physiology , Pseudomonas/metabolism , Pseudomonas/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Phenazines/metabolism , Siderophores/metabolism , Hydrogen Cyanide/metabolism , Antibiosis , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Pest Control, Biological , Biological Control Agents , Metabolomics , Soil Microbiology , Multiomics
5.
Appl Microbiol Biotechnol ; 108(1): 344, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801472

ABSTRACT

Modulating the soil microbiome by applying microbial inoculants has gained increasing attention as eco-friendly option to improve soil disease suppressiveness. Currently, studies unraveling the interplay of inoculants, root-associated microbiome, and plant response are lacking for apple trees. Here, we provide insights into the ability of Bacillus velezensis FZB42 or Pseudomonas sp. RU47 to colonize apple root-associated microhabitats and to modulate their microbiome. We applied the two strains to apple plants grown in soils from the same site either affected by apple replant disease (ARD) or not (grass), screened their establishment by selective plating, and measured phytoalexins in roots 3, 16, and 28 days post inoculation (dpi). Sequencing of 16S rRNA gene and ITS fragments amplified from DNA extracted 28 dpi from different microhabitat samples revealed significant inoculation effects on fungal ß-diversity in root-affected soil and rhizoplane. Interestingly, only in ARD soil, most abundant bacterial amplicon sequence variants (ASVs) changed significantly in relative abundance. Relative abundances of ASVs affiliated with Enterobacteriaceae were higher in rhizoplane of apple grown in ARD soil and reduced by both inoculants. Bacterial communities in the root endosphere were not affected by the inoculants but their presence was indicated. Interestingly and previously unobserved, apple plants responded to the inoculants with increased phytoalexin content in roots, more pronounced in grass than ARD soil. Altogether, our results indicate that FZB42 and RU47 were rhizosphere competent, modulated the root-associated microbiome, and were perceived by the apple plants, which could make them interesting candidates for an eco-friendly mitigation strategy of ARD. KEY POINTS: • Rhizosphere competent inoculants modulated the microbiome (mainly fungi) • Inoculants reduced relative abundance of Enterobacteriaceae in the ARD rhizoplane • Inoculants increased phytoalexin content in roots, stronger in grass than ARD soil.


Subject(s)
Bacillus , Malus , Microbiota , Phytoalexins , Plant Roots , Pseudomonas , RNA, Ribosomal, 16S , Rhizosphere , Sesquiterpenes , Soil Microbiology , Malus/microbiology , Plant Roots/microbiology , Bacillus/genetics , Bacillus/metabolism , RNA, Ribosomal, 16S/genetics , Sesquiterpenes/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas/physiology , Agricultural Inoculants/physiology , Agricultural Inoculants/genetics , Fungi/genetics , Fungi/classification , Fungi/metabolism , Fungi/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control
6.
Chemosphere ; 360: 142418, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795913

ABSTRACT

Microbial-assisted rhizoengineering is a promising biotechnology for improving crop productivity. In this study, lettuce roots were bacterized with two lead (Pb) tolerant rhizobacteria including Pseudomonas azotoformans ESR4 and P. poae ESR6, and a consortium consisted of ESR4 and ESR6 to increase productivity, physiology and antioxidants, and reduce Pb accumulation grown in Pb-contaminated soil i.e., 80 (Pb in native soil), 400 and 800 mg kg-1 Pb. In vitro studies showed that these strains and the consortium produced biofilms, synthesized indole-3-acetic acid and NH3, and solubilized phosphate challenging to 0, 100, 200 and 400 mg L-1 of Pb. In static conditions and 400 mg L-1 Pb, ESR4, ESR6 and the consortium adsorbed 317.0, 339.5 and 357.4 mg L-1 Pb, respectively, while 384.7, 380.7 and 373.2 mg L-1 Pb, respectively, in shaking conditions. Fourier transform infrared spectroscopy results revealed that several functional groups [Pb-S, M - O, O-M-O (M = metal ions), S-S, PO, CO, -NH, -NH2, C-C-O, and C-H] were involved in Pb adsorption. ESR4, ESR6 and the consortium-assisted rhizoengineering (i) increased leaf numbers and biomass production, (ii) reduced H2O2 production, malondialdehyde, electrolyte leakages, and transpiration rate, (iii) augmented photosynthetic pigments, photosynthetic rate, water use efficiency, total antioxidant capacity, total flavonoid content, total phenolic content, and minerals like Ca2+ and Mg2+ in comparison to non-rhizoengineering plants grown in Pb-contaminated soil. Principal component analysis revealed that higher pigment production and photosynthetic rate, improved water use efficiency and increased uptake of Ca2+ were interlinked to increased productivity by bacterial rhizoengineering of lettuce grown in different levels of Pb exposures. Surprisingly, Pb accumulation in lettuce roots and shoots was remarkably decreased by rhizoengineering than in non-rhizoengineering. Thus, these bacterial strains and this consortium could be utilized to improve productivity and reduce Pb accumulation in lettuce.


Subject(s)
Lactuca , Lead , Plant Roots , Soil Pollutants , Lactuca/growth & development , Lactuca/metabolism , Lead/metabolism , Soil Pollutants/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Soil Microbiology , Biodegradation, Environmental , Soil/chemistry , Pseudomonas/metabolism , Pseudomonas/physiology , Antioxidants/metabolism
7.
Microbiol Res ; 285: 127761, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761488

ABSTRACT

The root microbiota plays a crucial role in plant performance. The use of microbial consortia is considered a very useful tool for studying microbial interactions in the rhizosphere of different agricultural crop plants. Thus, a consortium of 3 compatible beneficial rhizospheric Pseudomonas strains previously isolated from the avocado rhizosphere, was constructed. The consortium is composed of two compatible biocontrol P. chlororaphis strains (PCL1601 and PCL1606), and the biocontrol rhizobacterium Pseudomonas alcaligenes AVO110, which are all efficient root colonizers of avocado and tomato plants. These three strains were compatible with each other and reached stable levels both in liquid media and on plant roots. Bacterial strains were fluorescent tagged, and colonization-related traits were analyzed in vitro, revealing formation of mixed biofilm networks without exclusion of any of the strains. Additionally, bacterial colonization patterns compatible with the different strains were observed, with high survival traits on avocado and tomato roots. The bacteria composing the consortium shared the same root habitat and exhibited biocontrol activity against soil-borne fungal pathogens at similar levels to those displayed by the individual strains. As expected, because these strains were isolated from avocado roots, this Pseudomonas-based consortium had more stable bacterial counts on avocado roots than on tomato roots; however, inoculation of tomato roots with this consortium was shown to protect tomato plants under high-temperature stress. The results revealed that this consortium has side beneficial effect for tomato plants under high-temperature stress, thus improving the potential performance of the individual strains. We concluded that this rhizobacterial consortium do not improve the plant protection against soil-borne phytopathogenic fungi displayed by the single strains; however, its inoculation can show an specific improvement of plant performance on a horticultural non-host plant (such as tomato) when the plant was challenged by high temperature stress, thus extending the beneficial role of this bacterial consortium.


Subject(s)
Microbial Consortia , Persea , Plant Roots , Pseudomonas , Rhizosphere , Soil Microbiology , Solanum lycopersicum , Plant Roots/microbiology , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Pseudomonas/physiology , Persea/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Biofilms/growth & development , Hot Temperature , Biological Control Agents , Stress, Physiological
8.
Sci Rep ; 14(1): 12189, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806526

ABSTRACT

In the present study, ten (10) selected bacteria isolated from chasmophytic wild Chenopodium were evaluated for alleviation of drought stress in chickpea. All the bacterial cultures were potential P, K and Zn solubilizer. About 50% of the bacteria could produce Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The bacteria showed wide range of tolerance towards pH, salinity, temperature and osmotic stress. Bacillus paralicheniformis L38, Pseudomonas sp. LN75, Enterobacter hormachei subsp. xiangfengensis LJ89, B. paramycoides L17 and Micrococcus luteus LA9 significantly improved growth and nutrient (N, P, K, Fe and Zn) content in chickpea under water stress during a green house experiment conducted following a completely randomized design (CRD). Application of Microbacterium imperiale LJ10, B. stercoris LN74, Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 reduced the antioxidant enzymes under water stress. During field experiments conducted following randomized block design (RBD), all the bacterial inoculations improved chickpea yield under water stress. Highest yield (1363 kg ha-1) was obtained in plants inoculated with Pseudomonas sp. LN75. Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 have potential as microbial stimulants to alleviate the water stress in chickpea. To the best of our knowledge this is the first report of using chasmophyte associated bacteria for alleviation of water stress in a crop plant.


Subject(s)
Cicer , Droughts , Stress, Physiological , Cicer/microbiology , Cicer/physiology , Cicer/growth & development , Bacteria/metabolism , Indoleacetic Acids/metabolism , Nutrients/metabolism , Carbon-Carbon Lyases/metabolism , Enterobacter/physiology , Enterobacter/metabolism , Pseudomonas/physiology , Antioxidants/metabolism
9.
Chemosphere ; 358: 142136, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692363

ABSTRACT

The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.


Subject(s)
Biofilms , Ferric Compounds , Nitrates , Ferric Compounds/metabolism , Ferric Compounds/chemistry , Nitrates/metabolism , Oxidative Stress , Pseudomonas/physiology , Pseudomonas/metabolism
10.
PLoS Biol ; 22(4): e3002232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662644

ABSTRACT

Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.


Subject(s)
Genotype , Hordeum , Microbiota , Plant Roots , Pseudomonas , Rhizosphere , Hordeum/microbiology , Hordeum/genetics , Hordeum/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Microbiota/physiology , Microbiota/genetics , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas/physiology , Soil Microbiology , Plant Exudates/metabolism
11.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38632051

ABSTRACT

AIMS: We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS: In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS: XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.


Subject(s)
Bacillus , Citrullus , Disease Resistance , Fusarium , Plant Diseases , Pseudomonas , Fusarium/growth & development , Citrullus/microbiology , Citrullus/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus/physiology , Bacillus/genetics , Bacillus/growth & development , Pseudomonas/growth & development , Pseudomonas/physiology , Antibiosis , Pseudomonas fluorescens/growth & development , Seedlings/growth & development , Seedlings/microbiology , Antifungal Agents/pharmacology
12.
Microb Ecol ; 87(1): 62, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683223

ABSTRACT

Here, we demonstrate the beneficial effect of surfactant-producing pseudomonads on Pantoea eucalypti 299R. We conducted a series of experiments in environments of increasing complexity. P. eucalypti 299R (Pe299R), and Pseudomonas sp. FF1 (Pff1) or Pe299R and surfactant-production deficient Pseudomonas sp. FF1::ΔviscB (Pff1ΔviscB) were co-inoculated in broth, on swarming agar plates, and on plants. In broth, there were no differences in the growth dynamics of Pe299R when growing in the presence of Pff1 or Pff1ΔviscB. By contrast, on swarming agar plates, Pe299R was able to co-swarm with Pff1 which led to a significant increase in Pe299R biomass compared to Pe299R growing with Pff1ΔviscB or in monoculture. Finally in planta, and using the single-cell bioreporter for reproductive success (CUSPER), we found a temporally distinct beneficial effect of Pff1 on co-inoculated Pe299R subpopulations that did not occur in the presence of Pff1ΔviscB. We tested three additional surfactant-producing pseudomonads and their respective surfactant knockout mutants on PE299R on swarming agar showing similar results. This led us to propose a model for the positive effect of surfactant production during leaf colonization. Our results indicate that co-motility might be common during leaf colonization and adds yet another facet to the already manyfold roles of surfactants.


Subject(s)
Pantoea , Pseudomonas , Surface-Active Agents , Pantoea/genetics , Pantoea/metabolism , Pantoea/physiology , Pantoea/growth & development , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/growth & development , Pseudomonas/physiology , Surface-Active Agents/metabolism
13.
Plant Dis ; 108(4): 996-1004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613135

ABSTRACT

Bacterial wilt caused by Ralstonia solanacearum (RS) is one of the most devastating diseases in patchouli (Pogostemon cablin [Blanco] Benth.), which results in low yield and quality of patchouli. However, no stable and effective control methods have been developed yet. To evaluate the potential of dominant bacterial endophytes in biocontrol, the endophytic bacterial diversity of patchouli was investigated based on Illumina sequencing analysis, and the ability of isolates belonging to the dominant bacterial genera to control RS wilt of patchouli was explored in pot experiments. A total of 245 bacterial genera were detected in patchouli plants, with the highest relative abundance of operational taxonomic units belonging to the genus Pseudomonas detected in roots, leaves, and stems. The Pseudomonas isolates S02, S09, and S26 showed antagonistic activity against RS in vitro and displayed many plant growth-promoting characteristics, including production of indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase and phosphate- and potassium-solubilizing capability. Inoculation of patchouli plants with the isolates S02, S09, and S26 significantly improved shoot growth and decreased the incidence of bacterial wilt caused by RS. The results suggest that screening of dominant bacterial endophytes for effective biocontrol agents based on Illumina sequencing analysis is more efficient than random isolation and screening procedures.


Subject(s)
Endophytes , Plant Diseases , Ralstonia solanacearum , Ralstonia solanacearum/physiology , Ralstonia solanacearum/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Endophytes/genetics , Endophytes/physiology , Endophytes/isolation & purification , Pseudomonas/genetics , Pseudomonas/physiology , High-Throughput Nucleotide Sequencing , Phylogeny , Biological Control Agents
14.
Fish Shellfish Immunol ; 149: 109584, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670411

ABSTRACT

Pseudomonas plecoglossicida, the causative agent of Visceral White Spot Disease, poses substantial risks to large yellow croaker (Larimichthys crocea) aquaculture. Previous genome-wide association studies (GWAS), directed towards elucidating the resistance mechanisms of large yellow croaker against this affliction, suggested that the transmembrane protein 208 (named Lctmem208) may confer a potential advantage. TMEM proteins, particularly TMEM208 located in the endoplasmic reticulum, plays significant roles in autophagy, ER stress, and dynamics of cancer cell. However, research on TMEM's function in teleost fish immunity remains sparse, highlighting a need for further study. This study embarks on a comprehensive examination of LcTmem208, encompassing cloning, molecular characterization, and its dynamics in immune function in response to Pseudomonas plecoglossicida infection. Our findings reveal that LcTmem208 is highly conserved across teleost species, exhibiting pronounced expression in immune-relevant tissues, which escalates significantly upon pathogenic challenge. Transcriptome analysis subsequent to LcTmem208 overexpression in kidney cells unveiled its pivotal role in modulating immune-responsive processes, notably the p53 signaling pathway and cytokine-mediated interactions. Enhanced phagocytic activity in macrophages overexpressing LcTmem208 underscores its importance in innate immunity. Taken together, this is the first time reported the critical involvement of LcTmem208 in regulating innate immune responses of defensing P. plecoglossicida, thereby offering valuable insights into teleost fish immunity and potential strategies for the selective breeding of disease-resistant strains of large yellow croaker in aquaculture practices.


Subject(s)
Fish Diseases , Fish Proteins , Gene Expression Profiling , Immunity, Innate , Perciformes , Pseudomonas Infections , Pseudomonas , Animals , Fish Diseases/immunology , Perciformes/immunology , Perciformes/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Pseudomonas/physiology , Immunity, Innate/genetics , Gene Expression Profiling/veterinary , Pseudomonas Infections/immunology , Pseudomonas Infections/veterinary , Gene Expression Regulation/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Transcriptome , Phylogeny , Sequence Alignment/veterinary , Cloning, Molecular
15.
Can J Microbiol ; 70(7): 275-288, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38507780

ABSTRACT

The ecologically and economically vital symbiosis between nitrogen-fixing rhizobia and leguminous plants is often thought of as a bi-partite interaction, yet studies increasingly show the prevalence of non-rhizobial endophytes (NREs) that occupy nodules alongside rhizobia. Yet, what impact these NREs have on plant or rhizobium fitness remains unclear. Here, we investigated four NRE strains found to naturally co-occupy nodules of the legume Medicago truncatula alongside Sinorhizobium meliloti in native soils. Our objectives were to (1) examine the direct and indirect effects of NREs on M. truncatula and S. meliloti fitness, and (2) determine whether NREs can re-colonize root and nodule tissues upon reinoculation. We identified one NRE strain (522) as a novel Paenibacillus species, another strain (717A) as a novel Bacillus species, and the other two (702A and 733B) as novel Pseudomonas species. Additionally, we found that two NREs (Bacillus 717A and Pseudomonas 733B) reduced the fitness benefits obtained from symbiosis for both partners, while the other two (522, 702A) had little effect. Lastly, we found that NREs were able to co-infect host tissues alongside S. meliloti. This study demonstrates that variation of NREs present in natural populations must be considered to better understand legume-rhizobium dynamics in soil communities.


Subject(s)
Medicago truncatula , Root Nodules, Plant , Sinorhizobium meliloti , Symbiosis , Medicago truncatula/microbiology , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Soil Microbiology , Endophytes/physiology , Endophytes/genetics , Endophytes/isolation & purification , Endophytes/classification , Pseudomonas/genetics , Pseudomonas/physiology , Paenibacillus/physiology , Paenibacillus/genetics , Bacillus/physiology , Bacillus/genetics , Bacillus/isolation & purification , Nitrogen Fixation
16.
Microbiol Spectr ; 12(5): e0417923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511955

ABSTRACT

A common feature of N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems is that the AHL signal is autoinducing. Once induced, a cell will further amplify the signal via a positive feedback loop. Pseudomonas fuscovaginae UPB0736 has two fully functional AHL QS systems, called PfsI/R and PfvI/R, which are inactive in a standard laboratory setting. In this work, we induce the QS systems with exogenous AHL signals and characterize the AHL signal amplification effect and QS activation dynamics at community and single-cell level. While the cognate signal is in both cases significantly further amplified to physiologically relevant levels, we observe only a limited response in terms of AHL synthase gene promoter activity. Additionally, the PfsI/R QS system exhibits a unique dramatic phenotypic heterogeneity, where only up to 5% of all cells amplify the signal further and are, thus, considered to be QS active. IMPORTANCE: Bacteria use N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems for population-wide phenotypic coordination. The QS configuration in Pseudomonas fuscovaginae is dramatically different from other model examples of AHL QS signaling and, thus, represents an important exception to the norm, which usually states that QS triggers population-wide phenotypic transitions in relation to cell density. We argue that the differences in QS dynamics of P. fuscovaginae highlight its different evolutionary purpose, which is ultimately dictated by the selective pressures of its natural habitat. We hope that this example will further expand our understanding of the complex and yet unknown QS-enabled sociomicrobiology. Furthermore, we argue that exemptions to the QS norm will be found in other plant-pathogenic bacterial strains that grow in similar environments and that molecularly similar QS systems do not necessarily share a similar evolutionary purpose; therefore, generalizations about bacterial cell-to-cell signaling systems function should be avoided.


Subject(s)
Acyl-Butyrolactones , Ligases , Pseudomonas , Quorum Sensing , Pseudomonas/genetics , Pseudomonas/physiology , Acyl-Butyrolactones/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic
17.
Plant Physiol Biochem ; 203: 108080, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37812990

ABSTRACT

Although amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.


Subject(s)
Pseudomonas , Solanum lycopersicum , Pseudomonas/physiology , Transcriptome , Drought Resistance , Solanum lycopersicum/genetics , Metabolome , Droughts , Stress, Physiological/genetics
18.
Sci Rep ; 12(1): 13309, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922642

ABSTRACT

As a highly infectious epidemic in aquaculture, Pseudomonas plecoglossicida infection results in high mortality of teleosts and serious economic losses. Host-pathogen interactions shape the outcome of an infection, yet we still understand little about the molecular mechanism of these pathogen-mediated processes. Here, a P. plecoglossicida strain (NZBD9) and Epinephelus coioides were investigated as a model system to characterize pathogen-induced host metabolic remodeling over the course of infection. We present a non-targeted metabolomics profiling of E. coioides spleens from uninfected E. coioides and those infected with wild-type and clpV-RNA interference (RNAi) strains. The most significant changes of E. coioides upon infection were associated with amino acids, lysophospatidylcholines, and unsaturated fatty acids, involving disturbances in host nutritional utilization and immune responses. Dihydrosphingosine and fatty acid 16:2 were screened as potential biomarkers for assessing P. plecoglossicida infection. The silencing of the P. plecoglossicida clpV gene significantly recovered the lipid metabolism of infected E. coioides. This comprehensive metabolomics study provides novel insights into how P. plecoglossicida shape host metabolism to support their survival and replication and highlights the potential of the virulence gene clpV in the treatment of P. plecoglossicida infection in aquaculture.


Subject(s)
Bass , Fish Diseases , Pseudomonas Infections , Animals , Bacterial Proteins/metabolism , Bass/genetics , Fish Diseases/genetics , Pseudomonas/physiology , Pseudomonas Infections/genetics
19.
Invest Ophthalmol Vis Sci ; 63(2): 21, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35142786

ABSTRACT

Purpose: To determine the possible microbiome related to Vogt-Koyanagi-Harada (VKH) disease in comparison to patients with noninfectious anterior scleritis and healthy people. Methods: Fecal samples were extracted from 42 individuals, including 11 patients with active VKH, 11 healthy people, and 20 patients with noninfectious anterior scleritis. We amplified the V3 to V4 16S ribosomal DNA (rDNA) region to obtain the target sequence. Then, the target sequence was amplified by polymerase chain reaction. The obtained target sequences were sequenced by high-throughput 16S rDNA analysis. Results: At the genus level, there were three enriched (Stomatobaculum, Pseudomonas, Lachnoanaerobaculum) and two depleted (Gordonibacter, Slackia) microbes that were detected only in patients with VKH. There were 10 enriched and 12 depleted microbes that were observed in both patients with VKH disease and noninfectious anterior scleritis (P < 0.05). The interactions of these microbes were graphed. Tyzzerella and Eggerthella were the nodes of interaction between these microorganisms, which were regulated by both positive and negative aspects, but the expression level in patients with active VKH was upregulated. Conclusions: Special or nonspecial enrichment and decreased intestinal microbes were observed in patients with active VKH. The action mechanism of these microbes needs further study.


Subject(s)
Actinobacteria/physiology , Clostridiales/physiology , Gastrointestinal Microbiome/physiology , Pseudomonas/physiology , Uveomeningoencephalitic Syndrome/microbiology , Adult , Case-Control Studies , DNA, Bacterial/genetics , Dysbiosis/microbiology , Feces/microbiology , Female , Genotyping Techniques , Healthy Volunteers , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Scleritis/microbiology
20.
Cells ; 10(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34943828

ABSTRACT

Drosophila suzukii is a neobiotic invasive pest that causes extensive damage to fruit crops worldwide. The biological control of this species has been unsuccessful thus far, in part because of its robust cellular innate immune system, including the activity of professional phagocytes known as hemocytes and plasmatocytes. The in vitro cultivation of primary hemocytes isolated from D. suzukii third-instar larvae is a valuable tool for the investigation of hemocyte-derived effector mechanisms against pathogens such as wasp parasitoid larvae, bacteria, fungi and viruses. Here, we describe the morphological characteristics of D. suzukii hemocytes and evaluate early innate immune responses, including extracellular traps released against the entomopathogen Pseudomonas entomophila and lipopolysaccharides. We show for the first time that D. suzukii plasmatocytes cast extracellular traps to combat P. entomophila, along with other cell-mediated reactions, such as phagocytosis and the formation of filopodia.


Subject(s)
Drosophila/immunology , Drosophila/microbiology , Extracellular Traps/metabolism , Immunity, Innate , Introduced Species , Pseudomonas/physiology , Animals , Cell Survival/drug effects , Drosophila/ultrastructure , Extracellular Traps/drug effects , Hemocytes/drug effects , Hemocytes/ultrastructure , Immunity, Innate/drug effects , Larva/cytology , Lipopolysaccharides/pharmacology , Phagocytes/drug effects , Phagocytes/microbiology , Pseudomonas/drug effects , Pseudopodia/drug effects , Pseudopodia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...