Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.205
Filter
1.
J Biomed Mater Res B Appl Biomater ; 112(7): e35436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961592

ABSTRACT

Submicron-textured surfaces have been a promising approach to mitigate biofilm development and control microbial infection. However, the use of the single surface texturing approach is still far from ideal for achieving complete control of microbial infections on implanted biomedical devices. The use of a surface topographic modification that might improve the utility of standard antibiotic therapy could alleviate the complications of biofilms on devices. In this study, we characterized the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa on smooth and submicron-textured polyurethane surfaces after 1, 2, 3, and 7 days, and measured the efficacy of common antibiotics against these biofilms. Results show that the submicron-textured surfaces significantly reduced biofilm formation and growth, and that the efficacy of antibiotics against biofilms grown on textured surfaces was improved compared with smooth surfaces. The antibiotic efficacy appears to be related to the degree of biofilm development. At early time points in biofilm formation, antibiotic treatment reveals reasonably good antibiotic efficacy against biofilms on both smooth and textured surfaces, but as biofilms mature, the efficacy of antibiotics drops dramatically on smooth surfaces, with lesser decreases seen for the textured surfaces. The results demonstrate that surface texturing with submicron patterns is able to improve the use of standard antibiotic therapy to treat device-centered biofilms by slowing the development of the biofilm, thereby offering less resistance to antibiotic delivery to the bacteria within the biofilm community.


Subject(s)
Anti-Bacterial Agents , Biofilms , Pseudomonas aeruginosa , Staphylococcus aureus , Surface Properties , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyurethanes/chemistry , Polyurethanes/pharmacology
2.
Microbiol Spectr ; 12(7): e0014324, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38860784

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous, opportunistic human pathogen. Since it often expresses multidrug resistance, new treatment options are urgently required. Such new treatments are usually assessed with one of the canonical laboratory strains, PAO1 or PA14. However, these two strains are unlikely representative of the strains infecting patients, because they have adapted to laboratory conditions and do not capture the enormous genomic diversity of the species. Here, we characterized the major P. aeruginosa clone type (mPact) panel. This panel consists of 20 strains, which reflect the species' genomic diversity, cover all major clone types, and have both patient and environmental origins. We found significant strain variation in distinct responses toward antibiotics and general growth characteristics. Only few of the measured traits are related, suggesting independent trait optimization across strains. High resistance levels were only identified for clinical mPact isolates and could be linked to known antimicrobial resistance (AMR) genes. One strain, H01, produced highly unstable AMR combined with reduced growth under drug-free conditions, indicating an evolutionary cost to resistance. The expression of microcolonies was common among strains, especially for strain H15, which also showed reduced growth, possibly indicating another type of evolutionary trade-off. By linking isolation source, growth, and virulence to life history traits, we further identified specific adaptive strategies for individual mPact strains toward either host processes or degradation pathways. Overall, the mPact panel provides a reasonably sized set of distinct strains, enabling in-depth analysis of new treatment designs or evolutionary dynamics in consideration of the species' genomic diversity. IMPORTANCE: New treatment strategies are urgently needed for high-risk pathogens such as the opportunistic and often multidrug-resistant pathogen Pseudomonas aeruginosa. Here, we characterize the major P. aeruginosa clone type (mPact) panel. It consists of 20 strains with different origins that cover the major clone types of the species as well as its genomic diversity. This mPact panel shows significant variation in (i) resistance against distinct antibiotics, including several last resort antibiotics; (ii) related traits associated with the response to antibiotics; and (iii) general growth characteristics. We further developed a novel approach that integrates information on resistance, growth, virulence, and life-history characteristics, allowing us to demonstrate the presence of distinct adaptive strategies of the strains that focus either on host interaction or resource processing. In conclusion, the mPact panel provides a manageable number of representative strains for this important pathogen for further in-depth analyses of treatment options and evolutionary dynamics.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/classification , Anti-Bacterial Agents/pharmacology , Humans , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation , Virulence/genetics , Genome, Bacterial/genetics , Drug Resistance, Bacterial/genetics
3.
J Biomed Mater Res B Appl Biomater ; 112(7): e35442, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923117

ABSTRACT

The development of drug-resistant microorganisms is taking a heavy toll on the biomedical world. Clinical infections are costly and becoming increasingly dangerous as bacteria that once responded to standard antibiotic treatment are developing resistance mechanisms that require innovative treatment strategies. Nitric oxide (NO) is a gaseous molecule produced endogenously that has shown potent antibacterial capabilities in numerous research studies. Its multimechanistic antibacterial methods prevent the development of resistance and have shown potential as an alternative to antibiotics. However, there has yet to be a direct comparison study evaluating the antibacterial properties of NO against antibiotic susceptible and antibiotic-resistant clinically isolated bacterial strains. Herein, standardized lab and clinically isolated drug-resistant bacterial strains are compared side-by-side for growth and viability following treatment with NO released from S-nitrosoglutathione (GSNO), an NO donor molecule. Evaluation of growth kinetics revealed complete killing of E. coli lab and clinical strains at 17.5 mM GSNO, though 15 mM displayed >50% killing and significantly reduced metabolic activity, with greater dose dependence for membrane permeability. Clinical P. aeruginosa showed greater susceptibility to GSNO during growth curve studies, but metabolic activity and membrane permeability demonstrated similar effects for 12.5 mM GSNO treatment of lab and clinical strains. MRSA lab and clinical strains exhibited total killing at 17.5 mM treatment, though metabolic activity was decreased, and membrane permeation began at 12.5 mM for both strains. Lastly, both S. epidermidis strains were killed by 15 mM GSNO, with sensitivities in metabolic activity and membrane permeability at 12.5 mM GSNO. The mirrored antibacterial effects seen by the lab and clinical strains of two Gram-negative and two Gram-positive bacteria reveal the translational success of NO as an antibacterial therapy and potential alternative to standard antibiotic treatment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nitric Oxide , Nitric Oxide/pharmacology , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , S-Nitrosoglutathione/pharmacology , S-Nitrosoglutathione/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development
4.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739119

ABSTRACT

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Disease Models, Animal , Keratitis , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Anti-Bacterial Agents/pharmacology , Swine , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Biofilms/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Meropenem/pharmacology
5.
Microbiol Spectr ; 12(6): e0034724, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38700333

ABSTRACT

We have evaluated the inhibitory effects of supernatants and lysates derived from several candidate probiotics, on the growth and biofilm formation of wound pathogens, and their ability to protect human primary epidermal keratinocytes from the toxic effects of pathogens. Supernatants (neutralized and non-neutralized) and lysates (via sonication) from Lactiplantibacillus plantarum, Limosilactobacillus reuteri, Bifidobacterium longum, Lacticaseibacillus rhamnosus GG, and Escherichia coli Nissle 1917 were tested for their inhibitory effects against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumanni. The supernatants of L. plantarum, L. rhamnosus, B. longum, and L. rhamnosus GG reduced the growth of S. aureus, E. coli, and A. baumanni. B. longum additionally inhibited P. aeruginosa growth. However, neutralized Lactobacillus supernatants did not inhibit growth and in some cases were stimulatory. Lysates of L. plantarum and L. reuteri inhibited S. pyogenes while B. longum lysates inhibited E. coli and S. aureus growth. E. coli Nissle 1917 lysates enhanced the growth of S. pyogenes and P. aeruginosa. Biofilm formation by E. coli was reduced by lysates of L. reuteri and neutralized supernatants of all candidate probiotics. P. aeruginosa biofilm formation was reduced by E. coli Nissle supernatant but increased by L. plantarum, L. reuteri, and Bifidobacterium longum lysates. L. reuteri decreased the toxic effects of S. aureus on keratinocytes while E. coli Nissle 1917 lysates protected keratinocytes from S. pyogenes toxicity. In conclusion, lactobacilli and E. coli Nissle lysates confer inhibitory effects on pathogenic growth independently of acidification and may beneficially alter the outcome of interactions between host cell-pathogen in a species-specific manner.IMPORTANCEOne of the attributes of probiotics is their ability to inhibit pathogens. For this reason, many lactobacilli have been investigated for their effects as potential topical therapeutics against skin pathogens. However, this field is in its infancy. Even though probiotics are known to be safe when taken orally, the potential safety concerns when applied to potentially compromised skin are unknown. For this reason, we believe that extracts of probiotics will offer advantages over the use of live bacteria. In this study, we have surveyed five candidate probiotics, when used as extracts, in terms of their effects against common wound pathogens. Our data demonstrate that some probiotic extracts promote the growth of pathogens and highlight the need for careful selection of species and strains when probiotics are to be used topically.


Subject(s)
Biofilms , Escherichia coli , Keratinocytes , Probiotics , Pseudomonas aeruginosa , Staphylococcus aureus , Humans , Keratinocytes/microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/physiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/physiology , Acinetobacter baumannii/growth & development , Wound Infection/microbiology
6.
Sci Rep ; 14(1): 10224, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702368

ABSTRACT

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.


Subject(s)
Anti-Bacterial Agents , Bacillus , Lactobacillus , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Silver/chemistry , Silver/pharmacology , Bacillus/metabolism , Lactobacillus/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Z Naturforsch C J Biosci ; 79(5-6): 137-148, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38820053

ABSTRACT

Antimicrobial resistance (AMR) has emerged as a significant and pressing public health concern, posing serious challenges to effectively preventing and treating persistent diseases. Despite various efforts made in recent years to address this problem, the global trends of AMR continue to escalate without any indication of decline. As AMR is well-known for antibiotics, developing new materials such as metal containing compounds with different mechanisms of action is crucial to effectively address this challenge. Copper, silver, and chitosan in various forms have demonstrated significant biological activities and hold promise for applications in medicine and biotechnology. Exploring the biological properties of these nanoparticles is essential for innovative therapeutic approaches in treating bacterial and fungal infections, cancer, and other diseases. To this end, the present study aimed to synthesize silver@copper oxide (Ag@CuO) nanoparticles and its chitosan nanocomposite (Chi-Ag@CuO) to investigate their antimicrobial efficacy. Various established spectroscopic and microscopic methods were employed for characterization purposes, encompassing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Subsequently, the antimicrobial activity of the nanoparticles was assessed through MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration), and well-disk diffusion assays against Pseudomonas aeruginosa, Acinetobacter baumannii Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans. The size of the CuO-NPs, Ag@CuO, and Chi-Ag@CuO NPs was found to be 70-120 nm with a spherical shape and an almost uniform distribution. The nanocomposites were found to possess a minimum inhibitory concentration (MIC) of 5 µg/mL and a minimum bactericidal concentration (MBC) of 250 µg/mL. Moreover, these nanocomposites generated varying clear inhibition zones, with diameters ranging from a minimum of 9 ± 0.5 mm to a maximum of 25 ± 0.5 mm. Consequently, it is evident that the amalgamation of copper-silver-chitosan nanoparticles has exhibited noteworthy antimicrobial properties in the controlled laboratory environment, surpassing the performance of other types of nanoparticles.


Subject(s)
Anti-Infective Agents , Chitosan , Copper , Metal Nanoparticles , Microbial Sensitivity Tests , Nanocomposites , Silver , Chitosan/chemistry , Chitosan/pharmacology , Copper/chemistry , Copper/pharmacology , Nanocomposites/chemistry , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Microscopy, Electron, Scanning , Bacteria/drug effects , Bacteria/growth & development
8.
Microbiol Spectr ; 12(6): e0004024, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687120

ABSTRACT

The growth of pathogenic bacteria in moist and wet surfaces and tubing of medically relevant devices results in serious infections in immunocompromised patients. In this study, we investigated and demonstrated the successful implementation of a UV-C side-emitting optical fiber in disinfecting medically relevant pathogenic bacteria (Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus [MRSA]) within tight channels of polytetrafluoroethylene (PTFE). PTFE is a commonly used material both in point-of-use (POU) water treatment technologies and medical devices (dental unit water line [DUWL], endoscope). For a 1-m-long PTFE channel, up to ≥6 log inactivation was achieved using a 1-m-long UV side-emitting optical fiber (SEOF) with continuous 16-h exposure of low UV-C radiation ranging from ~0.23 to ~29.30 µW/cm2. Furthermore, a linear model was used to calculate the inhibition zone constant (k`), which enables us to establish a correlation between UV dosage and the extent of inactivated surface area (cm2) for surface-bound Escherichia coli on a nutrient-rich medium. The k` value for an irradiance ranging from ~150 to ~271.50 µW/cm2 was calculated to be 0.564 ± 0.6 cm·cm2/mJ. This study demonstrated the efficacy of SEOFs for disinfection of medically relevant microorganisms present in medically and domestically relevant tight channels. The impact of the results in this study extends to the optimization of operational efficiency in pre-existing UV surface disinfection setups that currently operate at UV dosages exceeding the optimal levels.IMPORTANCEGermicidal UV radiation has gained global recognition for its effectiveness in water and surface disinfection. Recently, various works have illustrated the benefit of using UV-C side-emitting optical fibers (SEOFs) for the disinfection of tight polytetrafluoroethylene (PTFE) channels. This study now demonstrates its impact for disinfection of medically relevant organisms and introduces critical design calculations needed for its implementation. The flexible geometry and controlled emission of light in these UV-SEOFs make them ideal for light distribution in tight channels. Moreover, the results presented in this manuscript provide a novel framework that can be employed in various applications, addressing microbial contamination and the disinfection of tight channels.


Subject(s)
Disinfection , Methicillin-Resistant Staphylococcus aureus , Optical Fibers , Pseudomonas aeruginosa , Ultraviolet Rays , Disinfection/methods , Disinfection/instrumentation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/radiation effects , Pseudomonas aeruginosa/growth & development , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/radiation effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Polytetrafluoroethylene/chemistry , Humans , Infection Control/methods
9.
Microbiology (Reading) ; 170(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687006

ABSTRACT

Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/growth & development , Anti-Bacterial Agents/pharmacology , Quorum Sensing/drug effects , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Animals , Virulence/drug effects , Drug Resistance, Bacterial , Humans , Mice , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
10.
J Bacteriol ; 206(5): e0027823, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38624234

ABSTRACT

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that induces virulence gene expression in response to host-mediated iron starvation. Recently, our laboratory showed that some virulence factors are responsive to iron limitation in static but not shaking growth conditions. One of these is the HSI-2-type six secretion system (T6SS), which is also induced during chronic infection. Iron regulation of T6SS was partially impacted by the iron-responsive PrrF sRNA and completely dependent upon the Pseudomonas quinolone signal (PQS) biosynthetic gene pqsA. Here, we analyzed the impact of iron on the expression of two small regulatory RNAs (sRNAs), RsmY and RsmZ, that activate the expression of T6SS by sequestering the RsmA translation inhibitor. Our results demonstrate that iron starvation induces the expression of RsmY and RsmZ in static but not shaking cultures. We further show that this induction occurs through the rsmY and rsmZ promoters and is dependent upon PqsA. Disruption of either the pqsR gene also eliminated iron-dependent regulation of rsmY and rsmZ promoter activity. Taken together, our results show novel targets of iron regulation that are specific to static growth, highlighting the importance of studying regulatory mechanisms in static communities that may be more representative of growth during chronic infection.IMPORTANCEIron is a central component of various bacterial metabolic pathways making it an important host-acquired nutrient for pathogens to establish infection. Previous iron regulatory studies primarily relied on shaking bacterial cultures; while these ensure cultural homogeneity, they do not reflect growth conditions during infection. We recently showed that static growth of Pseudomonas aeruginosa promotes iron-dependent regulation of a type six secretion system (T6SS), a virulence factor that is induced during chronic infections. In the current study, we found that static growth also promotes iron-dependent regulation of the RsmY and RsmZ sRNAs, which are global regulators that affect T6SS during chronic P. aeruginosa lung infection. Hence, our work demonstrates the Rsm sRNAs as potential effectors of iron regulation during static growth that may also be relevant in chronic infection.


Subject(s)
Gene Expression Regulation, Bacterial , Iron , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/growth & development , Iron/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
11.
PLoS One ; 18(2): e0281768, 2023.
Article in English | MEDLINE | ID: mdl-36795683

ABSTRACT

OBJECTIVE: To determine whether bupivacaine liposomal injectable suspension (BLIS) supports microbial growth when artificially inoculated and to evaluate liposomal stability in the face of this extrinsic contamination as evidenced by changes in free bupivacaine concentrations. STUDY DESIGN: A randomized, prospective in vitro study in which three vials of each BLIS, bupivacaine 0.5%, and propofol were individually inoculated with known concentrations of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans (n = 36) to quantify bacterial and fungal growth was conducted. Over 120 hours, aliquots from contaminated vials were withdrawn, plated, and incubated to determine microbial concentrations. High-pressure liquid chromatography (HPLC) was used to evaluate free bupivacaine concentrations over time in BLIS. Data were analyzed using a mixed effects model with multiple comparisons. SAMPLE POPULATION: Twelve vials of each BLIS, bupivacaine 0.5%, and propofol. RESULTS: BLIS did not support significant growth of Staphylococcus aureus or Candida albicans at any time. BLIS supported significant growth of Escherichia coli and Pseudomonas aeruginosa beginning at the 24 hour time point. Bupivacaine 0.5% did not support significant growth of any organisms. Propofol supported significant growth of all organisms. Free bupivacaine concentrations changed minimally over time. CONCLUSION: Bacterial and fungal contaminant growth in artificially inoculated BLIS is organism dependent. BLIS supports significant growth of Escherichia coli and Pseudomonas aeruginosa. Extra-label handling of BLIS should only be undertaken with caution and with adherence to strict aseptic technique.


Subject(s)
Anesthetics , Drug Contamination , Propofol , Anesthetics, Local/administration & dosage , Bupivacaine/administration & dosage , Escherichia coli/growth & development , Escherichia coli/isolation & purification , Propofol/administration & dosage , Prospective Studies , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/isolation & purification
12.
Am J Infect Control ; 51(7): 772-778, 2023 07.
Article in English | MEDLINE | ID: mdl-36130627

ABSTRACT

BACKGROUND: Alcohol is perceived to aid flexible endoscope channel drying, however we previously showed alcohol increased the time required to dry some channels with forced air versus water alone. Yet, alcohol may prevent microorganism outgrowth during storage. Drying endoscope channels has been shown to prevent outgrowth, but it is unknown if incomplete drying (<10 µL remaining) provides similar protection. METHODS: Endoscope channel test articles were used to determine the efficacy of 70%-30% alcohol flush for prevention of Pseudomonas aeruginosa outgrowth and drying efficiency. For non-alcohol flushed channels, the impact of forced air drying on outgrowth of P. aeruginosa was determined. RESULTS: Alcohol flush (70%-30%) prevented outgrowth with little to no recovery of P. aeruginosa during ambient storage. 70% alcohol increased channel drying time by 1.5 or 3-fold compared to 50% alcohol or water, respectively. Forced air drying of non-alcohol flushed channels greatly reduced the initial contamination level and prevented outgrowth. Incomplete drying of contaminated channels was akin to no application of forced air. Applying forced air for more time than necessary to remove residual liquid did not completely eliminate the low level recovery of P. aeruginosa. CONCLUSIONS: Flushing with reduced concentrations of alcohol may provide a strategy to prevent microbial outgrowth while reducing drying time.


Subject(s)
Disinfection , Endoscopes , Disinfection/methods , Disinfection/standards , Endoscopes/microbiology , Equipment Contamination/prevention & control , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , 2-Propanol/pharmacology , Anti-Infective Agents/pharmacology , Air , Time Factors
13.
Mar Drugs ; 20(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35323468

ABSTRACT

Volatile compounds from the marine cyanolichen Lichina pygmaea, collected from the Moroccan Atlantic coast, were extracted by hydrodistillation and their putative chemical composition was investigated by gas chromatography coupled to mass spectrometry (GC/MS). Based on the obtained results, Lichina pygmaea volatile compounds (LPVCs) were mainly dominated by sesquiterpenes compounds, where γ-himachalene, ß-himachalene, (2E,4E)-2,4 decadienal and α-himachalene were assumed to be the most abundant constituents, with percentage of 37.51%, 11.71%, 8.59% and 7.62%, respectively. LPVCs depicted significant antimicrobial activity against all tested strains (Staphylococcus aureus CCMM B3, Pseudomonas aeruginosa DSM 50090, Escherichia coli ATCC 8739 and Candida albicans CCMM-L4) with minimum inhibitory concentration (MIC) values within the range of 1.69-13.5 mg/mL. Moreover, this LPVC showed interesting scavenging effects on the 2,2-diphenyl-1-picrylhydrazyl radical with an IC50 of 0.21 mg/mL. LPVCs could be an approving resource with moderate antimicrobial potential and interesting antioxidant activity for cosmetics and pharmaceutical applications.


Subject(s)
Anti-Infective Agents , Antioxidants , Ascomycota/chemistry , Sesquiterpenes , Volatile Organic Compounds , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Picrates/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Sesquiterpenes/analysis , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Volatile Organic Compounds/pharmacology
14.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208949

ABSTRACT

Nanotechnology has become a dire need of the current era and the green synthesis of nanoparticles offers several advantages over other methods. Nanobiotechnology is an emerging field that contributes to many domains of human life, such as the formulation of nanoscale drug systems or nanomedicine for the diagnosis and treatment of diseases. Medicinal plants are the main sources of lead compounds, drug candidates and drugs. This work reports the green synthesis of Ag nanoparticles (AgNPs) using the aqueous bark extract of Zanthozylum armatum, which was confirmed by a UV absorption at 457 nm. XRD analysis revealed an average size of 18.27 nm and SEM showed the particles' spherical shape, with few irregularly shaped particles due to the aggregation of the AgNPs. FT-IR revealed the critical functional groups of phytochemicals which acted as reducing and stabilizing agents. The bark extract showed rich flavonoids (333 mg RE/g) and phenolic contents (82 mg GAE/g), which were plausibly responsible for its high antioxidant potency (IC50 = 14.61 µg/mL). Extract-loaded AgNPs exhibited the highest but equal inhibition against E. coli and P. aeruginosa (Z.I. 11.0 mm), whereas methanolic bark extract inhibited to a lesser extent, but equally to both pathogens (Z.I. 6.0 mm). The aqueous bark extract inhibited P. aeruginosa (Z.I. 9.0 mm) and (Z.I. 6.0 mm) E. coli. These findings-especially the biosynthesis of spherical AgNPs of 18.27 nm-provide promise for further investigation and for the development of commercializable biomedical products.


Subject(s)
Anti-Bacterial Agents , Escherichia coli/growth & development , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Pseudomonas aeruginosa/growth & development , Silver , Zanthoxylum/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Silver/chemistry , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared
15.
Nat Commun ; 13(1): 721, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132084

ABSTRACT

Much of our understanding of bacterial behavior stems from studies in liquid culture. In nature, however, bacteria frequently live in densely packed spatially-structured communities. How does spatial structure affect bacterial cooperative behaviors? In this work, we examine rhamnolipid production-a cooperative and virulent behavior of Pseudomonas aeruginosa. Here we show that, in striking contrast to well-mixed liquid culture, rhamnolipid gene expression in spatially-structured colonies is strongly associated with colony specific growth rate, and is impacted by perturbation with diffusible quorum signals. To interpret these findings, we construct a data-driven statistical inference model which captures a length-scale of bacterial interaction that develops over time. Finally, we find that perturbation of P. aeruginosa swarms with quorum signals preserves the cooperating genotype in competition, rather than creating opportunities for cheaters. Overall, our data demonstrate that the complex response to spatial localization is key to preserving bacterial cooperative behaviors.


Subject(s)
Microbial Interactions/physiology , Models, Biological , Bacterial Proteins/genetics , Biomass , Colony Count, Microbial , Gene Expression Regulation, Bacterial , Glycolipids/genetics , Glycolipids/metabolism , Locomotion , Microbial Interactions/genetics , Mutation , Optical Imaging , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/physiology , Quorum Sensing , Spatio-Temporal Analysis
16.
Cell Rep ; 38(7): 110372, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172131

ABSTRACT

The Pseudomonas quinolone signal (PQS) is a multifunctional quorum sensing molecule of key importance to P. aeruginosa. Here, we report that the lytic Pseudomonas bacterial virus LUZ19 targets this population density-dependent signaling system by expressing quorum sensing targeting protein (Qst) early during infection. We demonstrate that Qst interacts with PqsD, a key host quinolone signal biosynthesis pathway enzyme, resulting in decreased levels of PQS and its precursor 2-heptyl-4(1H)-quinolone. The lack of a functional PqsD enzyme impairs LUZ19 infection but is restored by external supplementation of 2-heptyl-4(1H)-quinolone, suggesting that LUZ19 exploits the PQS system for successful infection. We establish a broad functional interaction network of Qst, which includes enzymes of cofactor biosynthesis pathways (CoaC/ThiD) and a non-ribosomal peptide synthetase pathway (PA1217). Qst therefore represents an exquisite example of intricate reprogramming of the bacterium by a phage, which may be further exploited as tool to combat antibiotic resistant bacterial pathogens.


Subject(s)
Bacteriophages/metabolism , Pseudomonas aeruginosa/metabolism , Quorum Sensing , Acetyltransferases/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Carbon/metabolism , Metabolic Networks and Pathways , Metabolome , Metabolomics , Models, Biological , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/virology , Quinolones/metabolism , Secondary Metabolism , Viral Proteins/metabolism
17.
Int J Mol Sci ; 23(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35163794

ABSTRACT

The search for new microbicide compounds is of an urgent need, especially against difficult-to-eradicate biofilm-forming bacteria. One attractive option is the application of cationic multivalent dendrimers as antibacterials and also as carriers of active molecules. These compounds require an adequate hydrophilic/hydrophobic structural balance to maximize the effect. Herein, we evaluated the antimicrobial activity of cationic carbosilane (CBS) dendrimers unmodified or modified with polyethylene glycol (PEG) units, against planktonic and biofilm-forming P. aeruginosa culture. Our study revealed that the presence of PEG destabilized the hydrophilic/hydrophobic balance but reduced the antibacterial activity measured by microbiological cultivation methods, laser interferometry and fluorescence microscopy. On the other hand, the activity can be improved by the combination of the CBS dendrimers with endolysin, a bacteriophage-encoded peptidoglycan hydrolase. This enzyme applied in the absence of the cationic CBS dendrimers is ineffective against Gram-negative bacteria because of the protective outer membrane shield. However, the endolysin-CBS dendrimer mixture enables the penetration through the membrane and then deterioration of the peptidoglycan layer, providing a synergic antimicrobial effect.


Subject(s)
Anti-Bacterial Agents/pharmacology , Endopeptidases/pharmacology , Polyethylene Glycols/chemistry , Pseudomonas aeruginosa/growth & development , Silanes/pharmacology , Anti-Bacterial Agents/chemistry , Bacteriophages/metabolism , Biofilms/drug effects , Dendrimers , Drug Compounding , Drug Synergism , Interferometry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Fluorescence , Plankton/drug effects , Pseudomonas aeruginosa/drug effects , Silanes/chemistry
18.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35163819

ABSTRACT

While blue LED (b-LED) light is increasingly being studied for its cytotoxic activity towards bacteria in therapy of skin-related infections, its effects on eukaryotic cells plasticity are less well characterized. Moreover, since different protocols are often used, comparing the effect of b-LED towards both microorganisms and epithelial surfaces may be difficult. The aim of this study was to analyze, in the same experimental setting, both the bactericidal activity and the effects on human keratinocytes. Exposure to b-LED induced an intense cytocidal activity against Gram-positive (i.e, Staphylococcus aureus) and Gram-negative (i.e., Pseudomonas aeruginosa) bacteria associated with catheter-related infections. Treatment with b-LED of a human keratinocyte cell line induced a transient cell cycle arrest. At the molecular level, exposure to b-LED induced a transient downregulation of Cyclin D1 and an upregulation of p21, but not signs of apoptosis. Interestingly, a transient induction of phosphor-histone γ-H2Ax, which is associated with genotoxic damages, was observed. At the same time, keratinocytes underwent a transient epithelial to mesenchymal transition (EMT)-like phenotype, characterized by E-cadherin downregulation and SNAIL/SLUG induction. As a functional readout of EMT induction, a scratch assay was performed. Surprisingly, b-LED treatment provoked a delay in the scratch closure. In conclusion, we demonstrated that b-LED microbicidal activity is associated with complex responses in keratinocytes that certainly deserve further analysis.


Subject(s)
Cell Cycle Checkpoints/radiation effects , Keratinocytes/cytology , Light/adverse effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development , Antigens, CD/metabolism , Cadherins/metabolism , Cell Proliferation , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down Syndrome , Epithelial-Mesenchymal Transition/radiation effects , Gene Expression Regulation/drug effects , HaCaT Cells , Humans , Keratinocytes/metabolism , Keratinocytes/radiation effects , Microbial Viability/radiation effects , Pseudomonas aeruginosa/radiation effects , Snail Family Transcription Factors/metabolism , Staphylococcus aureus/radiation effects
19.
Molecules ; 27(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35164333

ABSTRACT

BACKGROUND: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. METHODS: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. RESULTS: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P. aeruginosa and E. coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6-17-fold) and ketoconazole (13-52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. CONCLUSION: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Fungi/growth & development , Thiazolidines/chemical synthesis , Ampicillin/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Fungi/drug effects , Imidazoles/pharmacology , Ketoconazole/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Docking Simulation , Molecular Structure , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Structure-Activity Relationship , Thiazolidines/chemistry , Thiazolidines/pharmacology
20.
Viruses ; 14(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-35062325

ABSTRACT

Outer membrane vesicles (OMVs) released from gram-negative bacteria are key elements in bacterial physiology, pathogenesis, and defence. In this study, we investigated the role of Pseudomonas aeruginosa OMVs in the anti-phage defence as well as in the potential sensitization to LPS-specific phages. Using transmission electron microscopy, virion infectivity, and neutralization assays, we have shown that both phages efficiently absorb on free vesicles and are unable to infect P. aeruginosa host. Nevertheless, the accompanying decrease in PFU titre (neutralization) was only observed for myovirus KT28 but not podovirus LUZ7. Next, we verified whether OMVs derived from wild-type PAO1 strain can sensitize the LPS-deficient mutant (Δwbpl PAO1) resistant to tested phages. The flow cytometry experiments proved a quite effective and comparable association of OMVs to Δwbpl PAO1 and wild-type PAO1; however, the growth kinetic curves and one-step growth assay revealed no sensitization event of the OMV-associated phage-resistant P. aeruginosa deletant to LPS-specific phages. Our findings for the first time identify naturally formed OMVs as important players in passive resistance (protection) of P. aeruginosa population to phages, but we disproved the hypothesis of transferring phage receptors to make resistant strains susceptible to LPS-dependent phages.


Subject(s)
Cytoplasmic Vesicles/virology , Lipopolysaccharides , Pseudomonas Phages , Pseudomonas aeruginosa/virology , Bacterial Outer Membrane , Bacteriophages , Gram-Negative Bacteria , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...