Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.154
Filter
1.
Int J Biol Sci ; 20(12): 4922-4940, 2024.
Article in English | MEDLINE | ID: mdl-39309444

ABSTRACT

The thermo-sensory receptor, transient receptor potential channel 5 (TRPC5), a non-selective calcium ion (Ca2+)-permeable ion channel, has been implicated in cancer initiation and progression. However, its specific role in gastrointestinal cancer remains unclear. This study demonstrates that TRPC5 is significantly overexpressed in gastrointestinal tumors and is inversely associated with patient prognosis. TRPC5 overexpression triggers a substantial elevation in intracellular Ca2+ levels ([Ca2+]i), driving actin cytoskeleton reorganization and facilitating filopodia formation. Furthermore, kaempferol, a compound sourced from traditional Chinese medicine, is identified as a TRPC5 inhibitor that effectively suppresses its activity, thereby impeding gastrointestinal cancer metastasis. These findings underscore the potential of TRPC5 as a therapeutic target for metastasis inhibition, with kaempferol emerging as a promising natural inhibitor that could be optimized for clinical use in preventing cancer metastasis.


Subject(s)
Calcium , Gastrointestinal Neoplasms , Kaempferols , Pseudopodia , TRPC Cation Channels , Kaempferols/pharmacology , Kaempferols/therapeutic use , Humans , Pseudopodia/metabolism , Pseudopodia/drug effects , Calcium/metabolism , TRPC Cation Channels/metabolism , TRPC Cation Channels/antagonists & inhibitors , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/drug therapy , Animals , Cell Line, Tumor , Neoplasm Metastasis , Mice , Mice, Nude
2.
Dev Biol ; 516: 96-113, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39089472

ABSTRACT

The ellipsoid body (EB) of the insect brain performs pivotal functions in controlling navigation. Input and output of the EB is provided by multiple classes of R-neurons (now referred to as ER-neurons) and columnar neurons which interact with each other in a stereotypical and spatially highly ordered manner. The developmental mechanisms that control the connectivity and topography of EB neurons are largely unknown. One indispensable prerequisite to unravel these mechanisms is to document in detail the sequence of events that shape EB neurons during their development. In this study, we analyzed the development of the Drosophila EB. In addition to globally following the ER-neuron and columnar neuron (sub)classes in the spatial context of their changing environment we performed a single cell analysis using the multi-color flip out (MCFO) system to analyze the developmental trajectory of ER-neurons at different pupal stages, young adults (4d) and aged adults (∼60d). We show that the EB develops as a merger of two distinct elements, a posterior and anterior EB primordium (prEBp and prEBa, respectively. ER-neurons belonging to different subclasses form growth cones and filopodia that associate with the prEBp and prEBa in a pattern that, from early pupal stages onward, foreshadows their mature structure. Filopodia of all ER-subclasses are initially much longer than the dendritic and terminal axonal branches they give rise to, and are pruned back during late pupal stages. Interestingly, extraneous branches, particularly significant in the dendritic domain, are a hallmark of ER-neuron structure in aged brains. Aging is also associated with a decline in synaptic connectivity from columnar neurons, as well as upregulation of presynaptic protein (Brp) in ER-neurons. Our findings advance the EB (and ER-neurons) as a favorable system to visualize and quantify the development and age-related decline of a complex neuronal circuitry.


Subject(s)
Aging , Neurons , Animals , Neurons/metabolism , Aging/metabolism , Aging/physiology , Brain/metabolism , Brain/embryology , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Pseudopodia/metabolism , Pupa/metabolism , Pupa/growth & development , Drosophila/metabolism , Growth Cones/metabolism
3.
Sci Rep ; 14(1): 18384, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117762

ABSTRACT

The fundamental question of how forces are generated in a motile cell, a lamellipodium, and a comet tail is the subject of this note. It is now well established that cellular motility results from the polymerization of actin, the most abundant protein in eukaryotic cells, into an interconnected set of filaments. We portray this process in a continuum mechanics framework, claiming that polymerization promotes a mechanical swelling in a narrow zone around the nucleation loci, which ultimately results in cellular or bacterial motility. To this aim, a new paradigm in continuum multi-physics has been designed, departing from the well-known theory of Larché-Cahn chemo-transport-mechanics. In this note, we set up the theory of network growth and compare the outcomes of numerical simulations with experimental evidence.


Subject(s)
Actins , Cell Movement , Actins/metabolism , Models, Biological , Actin Cytoskeleton/metabolism , Pseudopodia/metabolism , Pseudopodia/physiology , Biomechanical Phenomena , Polymerization
4.
J Extracell Vesicles ; 13(7): e12477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988257

ABSTRACT

Extracellular vesicles (EVs) are shed from the plasma membrane, but the regulation and function of these EVs remain unclear. We found that oxidative stress induced by H2O2 in Hela cells stimulated filopodia formation and the secretion of EVs. EVs were small (150 nm) and labeled for CD44, indicating that they were derived from filopodia. Filopodia-derived small EVs (sEVs) were enriched with the sphingolipid ceramide, consistent with increased ceramide in the plasma membrane of filopodia. Ceramide was colocalized with neutral sphingomyelinase 2 (nSMase2) and acid sphingomyelinase (ASM), two sphingomyelinases generating ceramide at the plasma membrane. Inhibition of nSMase2 and ASM prevented oxidative stress-induced sEV shedding but only nSMase2 inhibition prevented filopodia formation. nSMase2 was S-palmitoylated and interacted with ASM in filopodia to generate ceramide for sEV shedding. sEVs contained nSMase2 and ASM and decreased the level of these two enzymes in oxidatively stressed Hela cells. A novel metabolic labeling technique for EVs showed that oxidative stress induced secretion of fluorescent sEVs labeled with NBD-ceramide. NBD-ceramide-labeled sEVs transported ceramide to mitochondria, ultimately inducing cell death in a proportion of neuronal (N2a) cells. In conclusion, using Hela cells we provide evidence that oxidative stress induces interaction of nSMase2 and ASM at filopodia, which leads to shedding of ceramide-rich sEVs that target mitochondria and propagate cell death.


Subject(s)
Ceramides , Extracellular Vesicles , Oxidative Stress , Pseudopodia , Sphingomyelin Phosphodiesterase , Humans , Extracellular Vesicles/metabolism , Ceramides/metabolism , Pseudopodia/metabolism , Pseudopodia/drug effects , HeLa Cells , Sphingomyelin Phosphodiesterase/metabolism , Hydrogen Peroxide/metabolism , Cell Membrane/metabolism
5.
Cancer Lett ; 601: 217145, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39084455

ABSTRACT

Metastasis is the primary stumbling block to the treatment of bladder cancer (BC). In order to spread, tumor cells must acquire increased migratory and invasive capacity, which is tightly linked with pseudopodia formation. Here, we unravel the effects of sulforaphane (SFN), an isothiocyanate in cruciferous vegetables, on the assembly of pseudopodia and BC metastasis, and its molecular mechanism in the process. Our database analysis revealed that in bladder tumor, pseudopodia-associated genes, CTTN, WASL and ACTR2/ARP2 are upregulated. SFN caused lamellipodia to collapse in BC cells by blocking the CTTN-ARP2 axis. SFN inhibited invadopodia formation and cell invasion by reducing WASL in different invasive BC cell lines. The production of ATP, essential for the assembly of pseudopodia, was significantly increased in bladder tumors and strongly inhibited by SFN. Overexpressing AKT1 reversed the downregulation of ATP in SFN-treated bladder cancer cells and restored filopodia and lamellipodia morphology and function. Bioluminescent imaging showed that SFN suppressed BC metastases to the lung of nude mice while downregulating Cttn and Arp2 expression. Our study thus reveals mechanisms of SFN action in inhibiting pseudopodia formation and highlights potential targeting options for the therapy of metastatic bladder cancer.


Subject(s)
Cell Movement , Isothiocyanates , Mice, Nude , Pseudopodia , Sulfoxides , Urinary Bladder Neoplasms , Isothiocyanates/pharmacology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Pseudopodia/drug effects , Pseudopodia/metabolism , Humans , Animals , Sulfoxides/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Xenograft Model Antitumor Assays , Actins/metabolism , Actins/genetics , Neoplasm Invasiveness , Adenosine Triphosphate/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice , Signal Transduction/drug effects , Mice, Inbred BALB C , Gene Expression Regulation, Neoplastic/drug effects
6.
Cell Death Dis ; 15(7): 537, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075049

ABSTRACT

It has been shown that the formation of filopodia is a key step in tumor cell metastasis, but there is limited research regarding its mechanism. In this study, we demonstrated that fatty acid synthase (FASN) promoted filopodia formation in liver cancer cells by regulating fascin actin-bundling protein 1 (FSCN1), a marker protein for filopodia. Mechanistically, on the one hand, the accumulation of FASN is caused by the enhanced deubiquitination of FASN mediated by UCHL5 (ubiquitin c-terminal hydrolase L5). In this pathway, low expression of SIAH1 (Seven in absentia homolog 1) can decrease the ubiquitination and degradation of ADRM1 (adhesion regulating molecule 1) thereby increasing its protein level, which will recruit and activate the deubiquitination enzyme UCHL5, leading to FASN undergo deubiquitination and escape from proteasomal degradation. On the other hand, the accumulation of FASN is related to its weakened ubiquitination, where SIAH1 directly acts as a ubiquitin ligase toward FASN, and low expression of SIAH1 reduces the ubiquitination and degradation of FASN. Both the two pathways are involved in the regulation of FASN in liver cancer. Our results reveal a novel mechanism for FASN accumulation due to the low expression of SIAH1 in human liver cancer and suggest an important role of FASN in filopodia formation in liver cancer cells.


Subject(s)
Liver Neoplasms , Microfilament Proteins , Nuclear Proteins , Pseudopodia , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Pseudopodia/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Animals , Cell Line, Tumor , Mice, Nude , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Hep G2 Cells , Mice
7.
Curr Opin Cell Biol ; 89: 102381, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905917

ABSTRACT

The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.


Subject(s)
Actin Cytoskeleton , Actins , Animals , Actins/metabolism , Actins/chemistry , Humans , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Pseudopodia/metabolism , Pseudopodia/chemistry , Cell Membrane/metabolism , Cell Membrane/chemistry
8.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38705228

ABSTRACT

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Subject(s)
Actin-Related Protein 2-3 Complex , Cell Movement , Colorectal Neoplasms , Cytoskeleton , Pseudopodia , SOXC Transcription Factors , Wiskott-Aldrich Syndrome Protein, Neuronal , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Cell Movement/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Cytoskeleton/metabolism , Pseudopodia/metabolism , Caco-2 Cells , Signal Transduction , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , HCT116 Cells , Actin Cytoskeleton/metabolism
9.
Elife ; 132024 May 31.
Article in English | MEDLINE | ID: mdl-38819913

ABSTRACT

Development of the mammalian oocyte requires physical contact with the surrounding granulosa cells of the follicle, which provide it with essential nutrients and regulatory signals. This contact is achieved through specialized filopodia, termed transzonal projections (TZPs), that extend from the granulosa cells to the oocyte surface. Transforming growth factor (TGFß) family ligands produced by the oocyte increase the number of TZPs, but how they do so is unknown. Using an inducible Cre recombinase strategy together with expression of green fluorescent protein to verify Cre activity in individual cells, we examined the effect of depleting the canonical TGFß mediator, SMAD4, in mouse granulosa cells. We observed a 20-50% decrease in the total number of TZPs in SMAD4-depleted granulosa cell-oocyte complexes, and a 50% decrease in the number of newly generated TZPs when the granulosa cells were reaggregated with wild-type oocytes. Three-dimensional image analysis revealed that TZPs of SMAD4-depleted cells were longer than controls and more frequently oriented towards the oocyte. Strikingly, the transmembrane proteins, N-cadherin and Notch2, were reduced by 50% in SMAD4-depleted cells. SMAD4 may thus modulate a network of cell adhesion proteins that stabilize the attachment of TZPs to the oocyte, thereby amplifying signalling between the two cell types.


Subject(s)
Granulosa Cells , Oocytes , Smad4 Protein , Animals , Smad4 Protein/metabolism , Smad4 Protein/genetics , Oocytes/metabolism , Oocytes/growth & development , Mice , Female , Granulosa Cells/metabolism , Granulosa Cells/physiology , Receptor, Notch2/metabolism , Receptor, Notch2/genetics , Cadherins/metabolism , Cadherins/genetics , Pseudopodia/metabolism , Pseudopodia/physiology
10.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719752

ABSTRACT

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Subject(s)
Cell Adhesion , Cell Movement , Fibroblasts , Focal Adhesions , LIM Domain Proteins , Septins , Humans , Septins/metabolism , Septins/genetics , Cell Movement/genetics , Fibroblasts/metabolism , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Focal Adhesions/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Pseudopodia/metabolism , Actin Cytoskeleton/metabolism , Cell Line , Actins/metabolism , Stress Fibers/metabolism
11.
J Cell Biol ; 223(6)2024 06 03.
Article in English | MEDLINE | ID: mdl-38748453

ABSTRACT

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Subject(s)
Actin Cytoskeleton , Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actins/metabolism , Pseudopodia/metabolism , Humans , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics
12.
Stem Cells ; 42(7): 607-622, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38717908

ABSTRACT

Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.


Subject(s)
Actin-Related Protein 2-3 Complex , Liposomes , Pseudopodia , Liposomes/metabolism , Humans , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Pseudopodia/metabolism , Pseudopodia/drug effects , DNA/metabolism , Transfection , Endocytosis/drug effects
13.
Commun Biol ; 7(1): 549, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724689

ABSTRACT

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Subject(s)
Adaptor Proteins, Signal Transducing , Nerve Tissue Proteins , Nuclear Proteins , Pseudopodia , Tumor Suppressor Proteins , Humans , Animals , HeLa Cells , Cell Line , Actins/metabolism , Pseudopodia/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism , Cell Membrane/metabolism
14.
Oncogene ; 43(23): 1779-1795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649438

ABSTRACT

Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.


Subject(s)
Actinin , Actins , Cell Movement , Kruppel-Like Transcription Factors , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Animals , Actinin/genetics , Actinin/metabolism , Cell Movement/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Cell Line, Tumor , Actins/metabolism , Actins/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Pseudopodia/metabolism , Pseudopodia/pathology , Mice, Nude
15.
Proc Natl Acad Sci U S A ; 121(18): e2320609121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652739

ABSTRACT

Regulation of subcellular messenger (m)RNA localization is a fundamental biological mechanism, which adds a spatial dimension to the diverse layers of post-transcriptional control of gene expression. The cellular compartment in which mRNAs are located may define distinct aspects of the encoded proteins, ranging from production rate and complex formation to localized activity. Despite the detailed roles of localized mRNAs that have emerged over the past decades, the identity of factors anchoring mRNAs to subcellular domains remains ill-defined. Here, we used an unbiased method to profile the RNA-bound proteome in migrating endothelial cells (ECs) and discovered that the plasma membrane (PM)-associated scaffolding protein A-kinase anchor protein (AKAP)12 interacts with various mRNAs, including transcripts encoding kinases with Actin remodeling activity. In particular, AKAP12 targets a transcript coding for the kinase Abelson Tyrosine-Protein Kinase 2 (ABL2), which we found to be necessary for adequate filopodia formation and angiogenic sprouting. Moreover, we demonstrate that AKAP12 is necessary for anchoring ABL2 mRNA to the PM and show that in the absence of AKAP12, the translation efficiency of ABL2 mRNA is reduced. Altogether, our work identified a unique post-transcriptional function for AKAP12 and sheds light into mechanisms of spatial control of gene expression.


Subject(s)
A Kinase Anchor Proteins , Protein Biosynthesis , RNA, Messenger , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans , Animals , Endothelial Cells/metabolism , Pseudopodia/metabolism , Pseudopodia/genetics , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Membrane/metabolism , Cell Movement
16.
Open Biol ; 14(3): 230376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38503329

ABSTRACT

Fascin-1-mediated actin-bundling activity is central to the generation of plasma membrane protrusions required for cell migration. Dysregulated formation of cellular protrusions is observed in metastatic cancers, where they are required for increased invasiveness, and is often correlated with increased Fascin-1 abundance. Therefore, there is interest in generating therapeutic Fascin-1 inhibitors. We present the identification of Nb 3E11, a nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. The crystal structure of the Fascin-1/Nb 3E11 complex reveals the structural mechanism of inhibition. Nb 3E11 occludes an actin-binding site on the third ß-trefoil domain of Fascin-1 that is currently not targeted by chemical inhibitors. Binding of Nb 3E11 to Fascin-1 induces a conformational change in the adjacent domains to stabilize Fascin-1 in an inhibitory state similar to that adopted in the presence of small-molecule inhibitors. Nb 3E11 could be used as a tool inhibitor molecule to aid in the development of Fascin-1 targeted therapeutics.


Subject(s)
Actins , Carrier Proteins , Microfilament Proteins , Pseudopodia , Actins/metabolism , Pseudopodia/metabolism , Protein Binding , Cell Movement
17.
Biophys J ; 123(9): 1069-1084, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38532625

ABSTRACT

Macrophage phagocytosis is critical for the immune response, homeostasis regulation, and tissue repair. This intricate process involves complex changes in cell morphology, cytoskeletal reorganization, and various receptor-ligand interactions controlled by mechanical constraints. However, there is a lack of comprehensive theoretical and computational models that investigate the mechanical process of phagocytosis in the context of cytoskeletal rearrangement. To address this issue, we propose a novel coarse-grained mesoscopic model that integrates a fluid-like cell membrane and a cytoskeletal network to study the dynamic phagocytosis process. The growth of actin filaments results in the formation of long and thin pseudopods, and the initial cytoskeleton can be disassembled upon target entry and reconstructed after phagocytosis. Through dynamic changes in the cytoskeleton, our macrophage model achieves active phagocytosis by forming a phagocytic cup utilizing pseudopods in two distinct ways. We have developed a new algorithm for modifying membrane area to prevent membrane rupture and ensure sufficient surface area during phagocytosis. In addition, the bending modulus, shear stiffness, and cortical tension of the macrophage model are investigated through computation of the axial force for the tubular structure and micropipette aspiration. With this model, we simulate active phagocytosis at the cytoskeletal level and investigate the mechanical process during the dynamic interplay between macrophage and target particles.


Subject(s)
Macrophages , Models, Biological , Phagocytosis , Pseudopodia , Macrophages/cytology , Macrophages/metabolism , Pseudopodia/metabolism , Cell Membrane/metabolism , Biomechanical Phenomena , Cytoskeleton/metabolism
18.
J Cell Sci ; 137(6)2024 03 15.
Article in English | MEDLINE | ID: mdl-38323924

ABSTRACT

Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.


Subject(s)
Actins , Pseudopodia , Actins/metabolism , Pseudopodia/metabolism , Carrier Proteins/metabolism , Neurons/metabolism , Formins/metabolism
19.
J Cell Sci ; 137(4)2024 02 15.
Article in English | MEDLINE | ID: mdl-38264939

ABSTRACT

Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.


Subject(s)
Actins , Deep Learning , Animals , Actins/metabolism , Pseudopodia/metabolism , Mammals/metabolism
20.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38171360

ABSTRACT

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Subject(s)
Cell Membrane Structures , Myosins , Neural Tube , Signal Transduction , Animals , Mice , Biological Transport , Cell Membrane Structures/metabolism , Hedgehog Proteins/metabolism , Myosins/metabolism , Pseudopodia/metabolism , Neural Tube/cytology , Neural Tube/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL