Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.830
1.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834617

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Cell Differentiation , Cell Proliferation , Fructose-Bisphosphatase , Histones , Keratinocytes , Psoriasis , Psoriasis/pathology , Psoriasis/metabolism , Psoriasis/genetics , Animals , Keratinocytes/metabolism , Keratinocytes/pathology , Humans , Acetylation , Histones/metabolism , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/genetics , Mice , Glycolysis , Mice, Inbred C57BL , Acetyl Coenzyme A/metabolism , Disease Models, Animal
2.
Front Immunol ; 15: 1360618, 2024.
Article En | MEDLINE | ID: mdl-38827737

Psoriasis is a chronic inflammatory disease affecting skin and joints characterized by a chronically altered immune and inflammatory response. Several factors occur from the onset to the development of this disease due to different types of cells spatially and temporally localized in the affected area, such as, keratinocytes, macrophages, neutrophils and T helper lymphocytes. This scenario leads to the chronic release of high levels of inflammatory mediators (i.e., IL-17, IL-23, IL-22, TNF-α, S100 proteins, Defensins) and lastly parakeratosis and thickening of the stratum spinosum. Extracellular vesicles (EVs) are small double membraned biological nanoparticles that are secreted by all cell types and classified, based on dimension and biogenesis, into exosomes, microvesicles and apoptotic bodies. Their role as vessels for long range molecular signals renders them key elements in the pathogenesis of psoriasis, as well as innovative platforms for potential biomarker discovery and delivery of fine-tuned anti-inflammatory therapies. In this review, the role of EVs in the pathogenesis of psoriasis and the modulation of cellular microenvironment has been summarized. The biotechnological implementation of EVs for therapy and research for new biomarkers has been also discussed.


Biomarkers , Extracellular Vesicles , Psoriasis , Humans , Psoriasis/immunology , Psoriasis/metabolism , Psoriasis/etiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Animals , Skin/pathology , Skin/immunology , Skin/metabolism , Cellular Microenvironment/immunology
3.
Folia Biol (Praha) ; 70(1): 53-61, 2024.
Article En | MEDLINE | ID: mdl-38830123

Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.


Apoptosis , Cell Cycle Proteins , Cell Movement , Cell Proliferation , Gallic Acid , Inflammation , Keratinocytes , Psoriasis , Transcription Factors , Humans , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/drug therapy , Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gallic Acid/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Apoptosis/drug effects , Inflammation/pathology , Cell Proliferation/drug effects , Cell Movement/drug effects , Interleukin-17/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , HaCaT Cells , Female , Gene Expression Regulation/drug effects , Cell Line , Bromodomain Containing Proteins
4.
Lipids Health Dis ; 23(1): 143, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760661

BACKGROUND: Lipid accumulation product (LAP) is an accessible and relatively comprehensive assessment of obesity that represents both anatomical and physiological lipid accumulation. Obesity and psoriasis are potentially related, according to previous research. Investigating the relationship between adult psoriasis and the LAP index was the goal of this study. METHODS: This is a cross-sectional study based on data from the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2009-2014. The association between LAP and psoriasis was examined using multivariate logistic regression and smoothed curve fitting. To verify whether this relationship was stable across populations, subgroup analyses and interaction tests were performed. RESULTS: The LAP index showed a positive correlation with psoriasis in 9,781 adult participants who were 20 years of age or older. A 27% elevated probability of psoriasis was linked to every unit increase in ln LAP in the fully adjusted model (Model 3: OR 1.27, 95% CI 1.06-1.52). In comparison with participants in the lowest ln LAP quartile, those in the highest quartile had an 83% greater likelihood of psoriasis (Model 3: OR 1.83, 95% CI 1.08-3.11). This positive correlation was more pronounced for young males, participants who had never smoked, non-drinkers, participants who exercised little, as well as non-hypertensive and non-diabetic participants. CONCLUSIONS: This study found that the LAP index and adult psoriasis were positively correlated, especially in young males without comorbidities. Therefore, it is proposed that LAP may serve as a biomarker for early diagnosis of psoriasis and tracking the effectiveness of treatment.


Lipid Accumulation Product , Nutrition Surveys , Psoriasis , Humans , Psoriasis/epidemiology , Psoriasis/metabolism , Male , Adult , Female , Cross-Sectional Studies , Middle Aged , Obesity/epidemiology , Young Adult , Risk Factors , Logistic Models , Body Mass Index
5.
Exp Dermatol ; 33(5): e15103, 2024 May.
Article En | MEDLINE | ID: mdl-38794829

Erythrodermic psoriasis (EP) is a rare and life-threatening disease, the pathogenesis of which remains to be largely unknown. Metabolomics analysis can provide global information on disease pathophysiology, candidate biomarkers, and potential intervention strategies. To gain a better understanding of the mechanisms of EP and explore the serum metabolic signature of EP, we conducted an untargeted metabolomics analysis from 20 EP patients and 20 healthy controls. Furthermore, targeted metabolomics for focused metabolites were identified in the serum samples of 30 EP patients and 30 psoriasis vulgaris (PsV) patients. In the untargeted analysis, a total of 2992 molecular features were extracted from each sample, and the peak intensity of each feature was obtained. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed significant difference between groups. After screening, 98 metabolites were found to be significantly dysregulated in EP, including 67 down-regulated and 31 up-regulated. EP patients had lower levels of L-tryptophan, L-isoleucine, retinol, lysophosphatidylcholine (LPC), and higher levels of betaine and uric acid. KEGG analysis showed differential metabolites were enriched in amino acid metabolism and glycerophospholipid metabolism. The targeted metabolomics showed lower L-tryptophan in EP than PsV with significant difference and L-tryptophan levels were negatively correlated with the PASI scores. The serum metabolic signature of EP was discovered. Amino acid and glycerophospholipid metabolism were dysregulated in EP. The metabolite differences provide clues for pathogenesis of EP and they may provide insights for therapeutic interventions.


Metabolomics , Principal Component Analysis , Psoriasis , Humans , Psoriasis/blood , Psoriasis/metabolism , Metabolomics/methods , Male , Female , Adult , Middle Aged , Chromatography, Liquid , Betaine/blood , Biomarkers/blood , Tryptophan/blood , Tryptophan/metabolism , Lysophosphatidylcholines/blood , Isoleucine/blood , Uric Acid/blood , Vitamin A/blood , Case-Control Studies , Mass Spectrometry , Dermatitis, Exfoliative/blood , Glycerophospholipids/blood , Discriminant Analysis , Down-Regulation , Least-Squares Analysis , Liquid Chromatography-Mass Spectrometry
6.
Arch Dermatol Res ; 316(6): 224, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787414

Psoriasis is renowned for its chronic nature and complex pathophysiology, with exosomes playing a crucial regulatory role within it. However, the proteomic composition of exosomes extracted from psoriasis cells remains largely unexplored. This study aimed to analyze the proteomic makeup of exosomes derived from psoriasis-model keratinocytes and compare it with that of normal controls, with the goal of identifying specific proteins that could aid in understanding the disease's pathology and potentially serve as biomarkers or therapeutic targets. The normal cultured keratinocyte line HaCaT served as the control group, while a concentration of 10 ng/mL of TNF-α was utilized to stimulate HaCaT cells and induce the formation of psoriasis model cells for the test group. Exosomes were extracted and prepared from the culture supernatant using the magnetic bead method, and their identity was confirmed through transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Data-independent acquisition (DIA) mass spectrometry was employed to detect the protein composition of exosomes, followed by GO, KEGG, Reactome, and PPI analyses. The analysis revealed a total of 2796 proteins within the exosomes, with 131 showing significant differential expression between the test and control groups. Notably, this study identified the proteins ADO, CBX1, and MIF within the exosomes derived from psoriasis model cells for the first time, highlighting their potential roles in angiogenesis, epigenetic regulation, and inflammatory responses in psoriasis. Several differentially expressed proteins identified in the KEGG enrichment analysis were implicated in immune infiltration pathways, keratinocyte-regulating pathways, angiogenesis pathways, and inflammation pathways. The identification of unique proteins within exosomes derived from psoriasis-model cells offers novel insights into the molecular mechanisms underlying psoriasis. These findings pave the way for further research into the biological functions of these exosomal proteins and their potential utility in diagnosing and treating psoriasis.


Exosomes , Keratinocytes , Proteomics , Psoriasis , Exosomes/metabolism , Psoriasis/metabolism , Psoriasis/diagnosis , Psoriasis/pathology , Humans , Proteomics/methods , Keratinocytes/metabolism , HaCaT Cells , Proteome/metabolism , Mass Spectrometry , Biomarkers/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cell Line
7.
Arch Dermatol Res ; 316(6): 208, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787443

BACKGROUND: Psoriasis is a chronic inflammation-associated skin disorder, and interleukin-22 (IL-22) is involved in psoriasis pathogenesis by boosting the proliferation and migration of keratinocytes. Mounting evidence has shown that circRNAs might play an important role in several aspects of psoriasis. This study is designed to explore the role and mechanism of circ_0056856 in regulating the phenotypes of IL-22-induced keratinocytes (HaCaT cells). METHODS: Circ_0056856, microRNA-197-3p (miR-197-3p), Cyclin-dependent kinase 1 (CDK1), and Wilms tumor 1-associated protein (WTAP) levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, migration, and invasion were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Wound scratch, and Transwell assays. After being predicted by Circinteractome or TargetScan, binding between miR-197-3p and circ_0056856 or CDK1 was verified by a dual-luciferase reporter assay. CDK1 and WTAP protein levels were determined using Western blot. Interaction between WTAP and circ_0056856 was assessed using methylated RNA immunoprecipitation (MeRIP) assay. RESULTS: Increased circ_0056856, CDK1, and WTAP were observed in psoriasis patients and IL-22-treated HaCaT cells. Moreover, circ_0056856 knockdown might repress IL-22-induced HaCaT cell proliferation, migration, and invasion in vitro. In mechanism, circ_0056856 might function as a sponge of miR-197-3p to modulate CDK1 expression, and WTAP improved circ_0056856 expression via m6A methylation. CONCLUSION: WTAP-guided m6A modified circ_0056856 facilitates IL-22-stimulated HaCaT cell damage through the miR-197-3p/CDK1 axis, which could provide novel insights into psoriasis treatment.


CDC2 Protein Kinase , Cell Movement , Cell Proliferation , Interleukin-22 , Interleukins , Keratinocytes , MicroRNAs , Psoriasis , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Keratinocytes/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Interleukins/metabolism , Interleukins/genetics , Psoriasis/pathology , Psoriasis/genetics , Psoriasis/metabolism , Cell Movement/genetics , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , HaCaT Cells , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Signal Transduction
9.
Mol Biol Rep ; 51(1): 635, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727850

BACKGROUND: Psoriasis, a chronic inflammatory skin disease, is increasingly effectively managed with the targeted immunotherapy; however, long-term immunotherapy carries health risks, and loss of response. Therefore, we need to develop the alternative treatment strategies. Mesenchymal stem/stromal cell (M.S.C.) exosomes stand out for their remarkable immunomodulatory properties, gaining widespread recognition. This study investigated whether M.S.C. exosomes can reduce psoriasis-induced hyperplasia by inducing Transforming Growth Factor beta 2 (TGF-beta2) signaling. METHODOLOGY: Exosomes were isolated from M.S.C.s by ultracentrifugation. Then, scanning electron microscopy was used for the morphology of exosomes. To ascertain the exosome concentration, the Bradford test was used. To ascertain the cellular toxicity of exosomes in Human Umbilical Vein Endothelial Cells ( H.U.V.E.C), an MTT experiment was then conducted. Real-time PCR was used to quantify TGF beta2 expression levels, whereas an ELISA immunosorbent assay was used to determine the protein concentration of TGF beta2. RESULTS: In this study, the exosomes of 15-30 nm in size that were uniform, and cup-shaped were isolated. Moreover, the IC50 value for this Treatment was calculated to be 181.750 µg/ml. The concentration of TGF-ß2 gene in the target cells significantly increased following Treatment with the exosomes. Furthermore, the expression level of the studied gene significantly increased due to the Treatment. CONCLUSION: Upregulating the expression of TGF-ß2 in psoriatic cells via TGF-ß2 signaling is one way exosomes can help reduce hyperplasia.


Exosomes , Human Umbilical Vein Endothelial Cells , Hyperplasia , Mesenchymal Stem Cells , Psoriasis , Transforming Growth Factor beta2 , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Psoriasis/metabolism , Humans , Transforming Growth Factor beta2/metabolism , Hyperplasia/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Animals
10.
Med Sci Monit ; 30: e943360, 2024 May 08.
Article En | MEDLINE | ID: mdl-38715343

BACKGROUND Aberrant lipid metabolism alterations in skin tissue, blood, or urine have been implicated in psoriasis. Here, we examined lipid metabolites related to psoriasis and their association with the age of disease onset. MATERIAL AND METHODS Differences in lipid metabolites before and after methotrexate (MTX) treatment were evaluated. The discovery cohort and validation cohort consisted of 50 and 46 patients, respectively, with moderate-to-severe psoriasis. After MTX treatment, the patients were divided into response (Psoriasis Area and Severity Index [PASI] 75 and above) and non-response (PASI below 75) groups, blood was collected for serum metabolomics, and multivariate statistical analysis was performed. RESULTS We detected 1546 lipid metabolites. The proportion of the top 3 metabolites was as follows: triglycerides (TG, 34.8%), phospholipids (PE, 14.5%), phosphatidylcholine (PC, 12.4%); diglycerides (DG) (16: 1/18: 1), and DG (18: 1/18: 1) showed strong positive correlations with onset age. There were marked changes in TG (16: 0/18: 0/20: 0), TG (18: 0/18: 0/22: 0), TG (14: 0/18: 0/22: 0), TG (14: 0/20: 0/20: 0), lysophosphatidylcholine (LPC) (16: 0/0: 0), LPC (18: 0/0: 0), LPC (14: 0/0: 0), and LPC (18: 1/0: 0) levels before and after 12 weeks of MTX treatment. The glycerophospholipid metabolic pathway was implicated in psoriasis development. Of the 96 recruited patients, 35% were MTX responders and 65% non-responders. PE (34: 4) and PE (38: 1) levels were significantly different between the groups. Obvious differences in lipid metabolism were found between early-onset (<40 years) and late-onset (≥40 years) psoriasis. Significant changes in serum lipid profile before and after MTX treatment were observed. CONCLUSIONS The specific lipid level changes in responders may serve as an index for MTX treatment efficacy evaluation.


Lipid Metabolism , Metabolomics , Methotrexate , Psoriasis , Severity of Illness Index , Humans , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/blood , Methotrexate/therapeutic use , Male , Female , Metabolomics/methods , Middle Aged , Adult , Lipid Metabolism/drug effects , Metabolome/drug effects , Lipids/blood , Aged
11.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731900

Psoriasis is a highly prevalent dermatological disease associated with an increased systemic inflammatory response. In addition, joint involvement is also present in around 20% of patients. Therefore, treatment modalities used in this condition should be simultaneously effective at improving skin manifestations, reducing inflammation, and addressing psoriatic arthritis when present. Twenty years ago, the introduction of biologic treatments for psoriasis was a turning point in the management of this condition, offering an effective and reasonably safe option for patients whose disease could not be adequately controlled with conventional therapies. At the moment, Janus Kinase inhibitors (JAKis) are a new class of promising molecules in the management of psoriasis. They are orally administered and can show benefits in patients who failed biologic therapy. We conducted a scoping review in order to identify randomized-controlled trials that investigated different JAKis in patients with plaque psoriasis and psoriatic arthritis, with an emphasis on molecules that have been approved by the European Medicines Agency and the Food and Drug Administration. The added value of this study is that it collected information about JAKis approved for two different indications, plaque psoriasis and psoriatic arthritis, in order to provide an integrated understanding of the range of effects that JAKis have on the whole spectrum of psoriasis manifestations.


Janus Kinase Inhibitors , Janus Kinases , Psoriasis , STAT Transcription Factors , Signal Transduction , Humans , Psoriasis/drug therapy , Psoriasis/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Signal Transduction/drug effects , STAT Transcription Factors/metabolism , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism
12.
Arch Dermatol Res ; 316(6): 236, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795158

Accumulating evidence indicates that microRNAs (miRNAs) have a vital effect on the pathogenesis of psoriasis. This study is conducted to investigate the potential involvement of miR-181a-5p and miR-181b-5p in the proliferation of HaCaT keratinocytes. Cell viability and proliferation were evaluated respectively in this study using the CCK-8 and the 5-ethynyl-2'-deoxyuridine (EdU) assays. The expression of Maternal Embryonic Leucine Zipper Kinase (MELK) and Keratin 16 (KRT16) mRNA and protein in tissues and cells was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The Luciferase reporter system analyzes the connection between miR-181a-5p/miR-181b-5p and MELK. The results showed that miR-181a/b-5p expression was downregulated in the psoriasis lesions and negatively regulated the proliferation of keratinocytes. MELK was directly targeted by miR-181a-5p/miR-181b-5p. In addition, HaCaT keratinocytes proliferation was inhibited by knockdown of MELK while promoted dramatically by MELK overexpression. Notably, miR-181a/b-5p mimics could attenuate the effects of MELK in keratinocytes. In conclusion, our research findings suggested miR-181a-5p and miR-181b-5p negatively regulate keratinocyte proliferation by targeting MELK, providing potential diagnostic biomarkers and therapeutic targets for psoriasis.


Cell Proliferation , HaCaT Cells , Keratinocytes , MicroRNAs , Protein Serine-Threonine Kinases , Psoriasis , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Keratinocytes/metabolism , Cell Proliferation/genetics , Psoriasis/pathology , Psoriasis/genetics , Psoriasis/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Keratin-16/metabolism , Keratin-16/genetics , Down-Regulation , Cell Survival , Cell Line
13.
Clin Exp Pharmacol Physiol ; 51(7): e13874, 2024 Jul.
Article En | MEDLINE | ID: mdl-38797519

Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.


Cell Cycle , Cell Survival , Glycolysis , Keratinocytes , STAT3 Transcription Factor , Uridine Phosphorylase , Humans , Cell Proliferation , Epidermis/metabolism , Epidermis/pathology , Interleukin-6/metabolism , Interleukin-6/genetics , Keratinocytes/metabolism , Psoriasis/pathology , Psoriasis/metabolism , Psoriasis/genetics , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Uridine Phosphorylase/metabolism , Uridine Phosphorylase/genetics
14.
Exp Dermatol ; 33(5): e15083, 2024 May.
Article En | MEDLINE | ID: mdl-38794808

Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.


Connective Tissue Diseases , Interferon Regulatory Factor-7 , Keratinocytes , Signal Transduction , Skin Diseases , Humans , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Skin Diseases/immunology , Skin Diseases/metabolism , Keratinocytes/metabolism , Keratinocytes/immunology , Connective Tissue Diseases/metabolism , Connective Tissue Diseases/immunology , Psoriasis/immunology , Psoriasis/metabolism , Animals , Skin/metabolism , Skin/immunology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/genetics , Immunity, Innate
15.
Exp Dermatol ; 33(5): e15104, 2024 May.
Article En | MEDLINE | ID: mdl-38794817

Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.


Central Nervous System , Interleukin-17 , Interleukin-23 , Psoriasis , Psoriasis/metabolism , Psoriasis/immunology , Humans , Central Nervous System/metabolism , Interleukin-23/metabolism , Interleukin-17/metabolism , Neuroimmunomodulation , Neuropeptides/metabolism , Inflammation/metabolism , Peripheral Nervous System/metabolism , Animals , Signal Transduction
16.
Front Immunol ; 15: 1407782, 2024.
Article En | MEDLINE | ID: mdl-38799436

Introduction: The new topical formula is urgent needed to meet clinical needs for majority mild patients with psoriasis. Deucravacitinib exerts outstanding anti-psoriatic capacity as an oral TYK2 inhibitor; however, single therapy is insufficient to target the complicated psoriatic skin, including excessive reactive oxygen species (ROS) and persistent inflammation. To address this need, engineered smart nano-therapeutics hold potential for the topical delivery of deucravacitinib. Methods: hydrophobic Deucravacitinib was loaded into polyethylene glycol block-polypropylene sulphide (PEG-b-PPS) for transdermal delivery in the treatment of psoriasis. The oxidative stress model of HaCaT psoriasis was established by TNF-α and IL-17A in vitro. JC-1 assay, DCFH-DA staining and mtDNA copy number were utilized to assess mitochondrial function. 0.75% Carbopol®934 was incorporated into SPMs to produce hydrogels and Rhb was labeled to monitor penetration by Immunofluorescence. In vivo, we established IMQ-induced psoriatic model to evaluate therapeutic effect of Car@Deu@PEPS. Results: Deu@PEPS exerted anti-psoriatic effects by restoring mitochondrial DNA copy number and mitochondrial membrane potential in HaCaT. In vivo, Car@Deu@PEPS supramolecular micelle hydrogels had longer retention time in the dermis in the IMQ-induced ROS microenvironment. Topical application of Car@Deu@PEPS significantly restored the normal epidermal architecture of psoriatic skin with abrogation of splenomegaly in the IMQ-induced psoriatic dermatitis model. Car@Deu@PEPS inhibited STAT3 signaling cascade with a corresponding decrease in the levels of the differentiation and proliferative markers Keratin 17 and Cyclin D1, respectively. Meanwhile, Car@Deu@PEPS alleviated IMQ-induced ROS generation and subsequent NLRP3 inflammasome-mediated pyroptosis. Conclusion: Deu@PEPS exerts prominent anti-inflammatory and anti-oxidative effects, which may offers a more patient-acceptable therapy with fewer adverse effects compared with oral deucravacitinib.


Micelles , Mitochondria , Oxidative Stress , Psoriasis , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Psoriasis/drug therapy , Psoriasis/metabolism , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Mice , Skin/metabolism , Skin/drug effects , Skin/pathology , Polymers/chemistry , HaCaT Cells , Administration, Cutaneous , Male
17.
Exp Dermatol ; 33(4): e15079, 2024 Apr.
Article En | MEDLINE | ID: mdl-38654506

Common characteristics in the pathogenesis of psoriasis (PS) and atopic dermatitis (AD) have been presumed, but only a few studies have clearly supported this. The current aim was to find possible similarities and differences in protein expression patterns between these two major chronic inflammatory skin diseases. High-throughput tandem mass spectrometry proteomic analysis was performed using full thickness skin samples from adult PS patients, AD patients and healthy subjects. We detected a combined total of 3045 proteins in the three study groups. According to principal component analysis, there was significant overlap between the proteomic profiles of PS and AD, and both clearly differed from that of healthy skin. The following validation of selected proteins with western blot analysis showed similar tendencies in expression levels and produced statistically significant results. The expression of periostin (POSTN) was consistently high in AD and very low or undetectable in PS (5% FDR corrected p < 0.001), suggesting POSTN as a potential biomarker to distinguish these diseases. Immunohistochemistry further confirmed higher POSTN expression in AD compared to PS skin. Overall, our findings support the concept that these two chronic skin diseases might share considerably more common mechanisms in pathogenesis than has been suspected thus far.


Cell Adhesion Molecules , Dermatitis, Atopic , Proteomics , Psoriasis , Dermatitis, Atopic/metabolism , Humans , Psoriasis/metabolism , Proteomics/methods , Cell Adhesion Molecules/metabolism , Adult , Female , Male , Middle Aged , Biomarkers/metabolism , Tandem Mass Spectrometry , Skin/metabolism , Principal Component Analysis , Case-Control Studies
18.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581348

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Amino Acids, Branched-Chain , Diet, High-Fat , Obesity , Psoriasis , Transaminases , Animals , Male , Mice , Amino Acids, Branched-Chain/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Imiquimod , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-17/genetics , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/complications , PPAR gamma/metabolism , PPAR gamma/genetics , Psoriasis/metabolism , Psoriasis/pathology , Signal Transduction , Skin/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Transaminases/metabolism
19.
Cell Signal ; 119: 111171, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604345

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Adaptor Proteins, Signal Transducing , MicroRNAs , NF-kappa B , Psoriasis , Wnt-5a Protein , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , NF-kappa B/metabolism , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Up-Regulation , Down-Regulation , Cell Proliferation , Male , HaCaT Cells , Female , Imiquimod , Adult , Repressor Proteins/metabolism , Repressor Proteins/genetics , Middle Aged
20.
Mol Pain ; 20: 17448069241252384, 2024.
Article En | MEDLINE | ID: mdl-38631843

PD-1/PD-L1 inhibitors have been demonstrated to induce itch in both humans and experimental animals. However, whether the PD-1/PD-L1 pathway is involved in the regulation of chronic psoriatic itch remains unclear. This study aimed to investigate the role of the PD-1/PD-L1 pathway in imiquimod-induced chronic psoriatic itch. The intradermal injection of PD-L1 in the nape of neck significantly alleviated chronic psoriatic itch in imiquimod-treated skin. Additionally, we observed that spontaneous scratching behavior induced by imiquimod disappeared on day 21. Still, intradermal injection of PD-1/PD-L1 inhibitors could induce more spontaneous scratching for over a month, indicating that imiquimod-treated skin remained in an itch sensitization state after the spontaneous scratching behavior disappeared. During this period, there was a significant increase in PD-1 receptor expression in both the imiquimod-treated skin and the spinal dorsal horn in mice, accompanied by significant activation of microglia in the spinal dorsal horn. These findings suggest the potential involvement of the peripheral and central PD-1/PD-L1 pathways in regulating chronic itch and itch sensitization induced by imiquimod.


B7-H1 Antigen , Imiquimod , Programmed Cell Death 1 Receptor , Pruritus , Psoriasis , Animals , Imiquimod/pharmacology , Imiquimod/adverse effects , Pruritus/chemically induced , Pruritus/metabolism , Psoriasis/chemically induced , Psoriasis/complications , Psoriasis/metabolism , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Male , Mice , Signal Transduction/drug effects , Skin/metabolism , Skin/pathology , Mice, Inbred C57BL , Chronic Disease
...