Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
Skin Res Technol ; 30(7): e13822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970783

ABSTRACT

PURPOSE: In present, the diagnosis of psoriasis is mainly based on the patient's typical clinical manifestations, dermoscopy and skin biopsy, and unlike other immune diseases, psoriasis lacks specific indicators in the blood. Therefore, we are required to search novel biomarkers for the diagnosis of psoriasis. METHODS: In this study, we analyzed the composition and the differences of intestinal fungal communities composition between psoriasis patients and healthy individuals in order to find the intestinal fungal communities associated with the diagnosis of psoriasis. We built a machine learning model and identified potential microbial markers for the diagnosis of psoriasis. RESULTS: The results of AUROC (area under ROC) showed that Aspergillus puulaauensis (AUROC = 0.779), Kazachstania africana (AUROC = 0.750) and Torulaspora delbrueckii (AUROC = 0.745) had high predictive ability (AUROC > 0.7) for predicting psoriasis, While Fusarium keratoplasticum (AUROC = 0.670) was relatively lower (AUROC < 0.7). CONCLUSION: The strategy based on the prediction of intestinal fungal communities provides a new idea for the diagnosis of psoriasis and is expected to become an auxiliary diagnostic method for psoriasis.


Subject(s)
Biomarkers , Gastrointestinal Microbiome , Metagenomics , Mycobiome , Psoriasis , Humans , Psoriasis/microbiology , Psoriasis/blood , Female , Adult , Male , Biomarkers/blood , Metagenomics/methods , Middle Aged , Machine Learning , Feces/microbiology , Young Adult , Aspergillus
2.
Acta Derm Venereol ; 104: adv34892, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898675

ABSTRACT

Psoriasis results from both genetic predisposition and environmental triggers, such as Streptococcal infections. This study aimed to explore the correlation between the abundance of the Streptococcus genus on the skin and psoriasis severity in individuals carrying specific psoriasis-associated genetic variants. Studying 39 chronic plaque psoriasis patients, the elbow skin microbiome and 49 psoriasis-related single nucleotide polymorphisms (SNPs) were analysed using a MiSeq instrument for 16S rDNA sequencing, and CLC Genomic Workbench for processing and analysis. Through multivariate linear regression analysis, a positive correlation was found between Streptococcus genus abundance and psoriasis severity in patients with certain FBXL19 gene-related heterozygous SNPs (rs12924903, rs10782001, rs12445568). Conversely, a negative association was observed in patients with homozygous genotypes. Moreover, we identified an association between Streptococcus abundance and psoriasis severity in patients with genetic variants related to IL-22, ERAP1, NOS2, and ILF3. This is the first study highlighting a positive association between Streptococcus skin colonization and psoriasis severity in patients with heterozygous genotypes within the FBXL19 gene region. FXBL19 targets the IL-33/IL1RL1 axis, crucial in infectious diseases and innate immunity promotion. These novel results suggests an intricate interaction among host genetics, Streptococcus skin colonization, and psoriasis inflammation, offering potential avenues for novel treatment approaches.


Subject(s)
F-Box Proteins , Polymorphism, Single Nucleotide , Psoriasis , Severity of Illness Index , Skin , Streptococcus , Humans , Male , Psoriasis/genetics , Psoriasis/microbiology , Female , Middle Aged , Adult , Skin/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , F-Box Proteins/genetics , Genetic Predisposition to Disease , Phenotype , Heterozygote , Host-Pathogen Interactions , Homozygote , Ribotyping , Aged
3.
Arch Dermatol Res ; 316(7): 374, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850443

ABSTRACT

The microbiome is intricately linked to the development of psoriasis, serving as both a potential cause and consequence of the psoriatic process. In recent years, there has been growing interest among psoriasis researchers in exploring how psoriasis treatments affect the skin and gut microbiome. However, a comprehensive evaluation of the impact of modern treatment approaches on the microbiome has yet to be conducted. In this systematic review, we analyze studies investigating alterations in the skin and gut microbiome resulting from psoriasis treatment, aiming to understand how current therapies influence the role of the microbiome in psoriasis development. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed and Scopus databases were searched for eligible studies from the inception dates until July 5, 2023. Study selection, data extraction, and risk of bias assessment were carried out by three overlapping pairs of reviewers, resolving any disagreements through consensus. Our analysis of various treatments, including biologics, conventional medications, phototherapy, and probiotics, reveals significant shifts in microbial diversity and abundance. Importantly, favorable treatment outcomes are associated with microbiota alterations that approach those observed in healthy individuals. While the studies reviewed exhibit varying degrees of bias, underscoring the need for further research, this review supports the potential of microbiome modulation as both a preventive and therapeutic strategy for psoriasis patients. The findings underscore the importance of personalized therapeutic approaches, recognizing the profound impact of treatment on the microbiome. They also highlight the promise of probiotics, prebiotics, and dietary interventions in psoriasis management.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Psoriasis , Skin , Psoriasis/microbiology , Psoriasis/immunology , Psoriasis/therapy , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Skin/microbiology , Probiotics/administration & dosage , Phototherapy/methods , Biological Products/therapeutic use , Treatment Outcome , Dermatologic Agents/therapeutic use , Dermatologic Agents/administration & dosage
4.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928354

ABSTRACT

Psoriasis is an inflammatory dermatosis with a complex pathogenesis, significantly impacting the quality of life of patients. The role of oxidative stress and gut microbiota in the pathogenesis of this disease is increasingly studied, appearing to underlie the comorbidities associated with this condition. We present the first prospective observational study conducted in Romania evaluating the interrelationship between gut microbiota and hematological, inflammatory, biochemical, and oxidative stress parameters in treatment-naïve psoriasis patients. Significant differences were observed in terms of microbiota composition, with lower levels of Firmicutes and Enterobacteriaceae in the psoriasis group compared to the control group. Moreover, a negative correlation was found between the serum triglyceride levels in patients with psoriasis and the Enterobacteriaceae family (p = 0.018, r = -0.722), and a positive correlation was found between the serum glucose levels and the Firmicutes/Bacteroides ratio (p = 0.03, r = 0.682). Regarding the oxidant-antioxidant status, a significant correlation was found between the FORT level and Lactobacillus (p = 0.034, r = 0.669). Lastly, the Firmicutes level negatively correlated with the DLQI level, independent of the clinical severity of the disease (p = 0.02, r = -0.685). In conclusion, even though the number of included patients is small, these results may serve as a starting point for future research into the involvement of the microbiota-inflammation-oxidative stress axis in psoriasis development.


Subject(s)
Gastrointestinal Microbiome , Oxidative Stress , Psoriasis , Humans , Psoriasis/microbiology , Psoriasis/blood , Psoriasis/metabolism , Female , Male , Adult , Middle Aged , Inflammation , Prospective Studies
5.
Science ; 384(6699): 1023-1030, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815037

ABSTRACT

Seamless interfaces between electronic devices and biological tissues stand to revolutionize disease diagnosis and treatment. However, biological and biomechanical disparities between synthetic materials and living tissues present challenges at bioelectrical signal transduction interfaces. We introduce the active biointegrated living electronics (ABLE) platform, encompassing capabilities across the biogenic, biomechanical, and bioelectrical properties simultaneously. The living biointerface, comprising a bioelectronics layout and a Staphylococcus epidermidis-laden hydrogel composite, enables multimodal signal transduction at the microbial-mammalian nexus. The extracellular components of the living hydrogels, prepared through thermal release of naturally occurring amylose polymer chains, are viscoelastic, capable of sustaining the bacteria with high viability. Through electrophysiological recordings and wireless probing of skin electrical impedance, body temperature, and humidity, ABLE monitors microbial-driven intervention in psoriasis.


Subject(s)
Hydrogels , Psoriasis , Skin , Staphylococcus epidermidis , Animals , Humans , Mice , Body Temperature , Electric Impedance , Electronics , Humidity , Hydrogels/chemistry , Inflammation/microbiology , Inflammation/therapy , Skin/microbiology , Wearable Electronic Devices , Wireless Technology , Psoriasis/microbiology , Psoriasis/therapy , Mice, Knockout , Toll-Like Receptor 2/genetics
6.
Australas J Dermatol ; 65(4): 319-327, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38419189

ABSTRACT

BACKGROUND: Numerous inflammatory skin diseases are associated with the gut microbiota. Studies of the association between gut microbiota and inflammatory skin diseases have yielded conflicting results owing to confounding factors, and the causal relationship between them remains undetermined. METHODS: Two-sample Mendelian randomization (MR) was used to examine the association between gut microbiota and four common inflammatory skin diseases: acne, psoriasis, urticaria and atopic dermatitis. The summary statistics of the gut microbiota from the largest available genome-wide association study meta-analysis (n = 13,266) conducted by the MiBioGen consortium along with the summary statistics of the four diseases were obtained from the FinnGen consortium. Causal relationships were assessed using the inverse variance weighted (IVW), weighted median, MR-Egger and maximum likelihood methods, and several sensitivity analyses were performed to ensure the accuracy of the results. Finally, reverse and multivariable MR analyses were performed to verify the robustness of the results. RESULTS: We found causal associations of Bacteroidaceae [odds ratio (OR), 2.25; 95% confidence interval (CI), 1.48-3.42; pivw = 0.0001], Allisonella (OR, 1.42; 95% CI, 1.18-1.70; pivw = 0.0002) and Bacteroides (OR, 2.25; 95% CI, 1.48-3.42; pivw = 0.0001) with acne, the Eubacterium fissicatena group with psoriasis (OR, 1.22; 95% CI, 1.10-1.35; pivw = 0.0002) and Intestinibacter with urticaria (OR, 1.28; 95% CI, 1.13-1.45; pivw = 0.0001). These results were corrected for a false discovery rate. Sensitivity analyses were performed to validate the robustness of the associations and reverse MR confirmed that the results were not influenced by the reverse effect. CONCLUSION: Our study revealed that some gut microbiota are risk factors for inflammatory skin diseases, providing new information on potential therapeutic targets. Additionally, a possible association with the gut-skin axis was confirmed. Further research is required to elucidate the mechanisms underlying these relationships.


Subject(s)
Acne Vulgaris , Dermatitis, Atopic , Gastrointestinal Microbiome , Mendelian Randomization Analysis , Psoriasis , Humans , Gastrointestinal Microbiome/genetics , Psoriasis/microbiology , Psoriasis/genetics , Acne Vulgaris/microbiology , Dermatitis, Atopic/microbiology , Urticaria/microbiology , Genome-Wide Association Study
7.
Cells ; 12(22)2023 11 14.
Article in English | MEDLINE | ID: mdl-37998359

ABSTRACT

The skin presents a multifaceted microbiome, a balanced coexistence of bacteria, fungi, and viruses. These resident microorganisms are fundamental in upholding skin health by both countering detrimental pathogens and working in tandem with the skin's immunity. Disruptions in this balance, known as dysbiosis, can lead to disorders like psoriasis and atopic dermatitis. Central to the skin's defense system are mast cells. These are strategically positioned within the skin layers, primed for rapid response to any potential foreign threats. Recent investigations have started to unravel the complex interplay between these mast cells and the diverse entities within the skin's microbiome. This relationship, especially during times of both balance and imbalance, is proving to be more integral to skin health than previously recognized. In this review, we illuminate the latest findings on the ties between mast cells and commensal skin microorganisms, shedding light on their combined effects on skin health and maladies.


Subject(s)
Dermatitis, Atopic , Microbiota , Psoriasis , Humans , Mast Cells , Skin , Psoriasis/microbiology
8.
J Invest Dermatol ; 143(9): 1657-1666, 2023 09.
Article in English | MEDLINE | ID: mdl-37422760

ABSTRACT

There is growing evidence that supports a role of gut dysbiosis in the pathogenesis of psoriasis (Pso). Thus, probiotic supplementation and fecal microbiota transplantation may serve as promising preventive and therapeutic strategies for patients with Pso. One of the basic mechanisms through which the gut microbiota interacts with the host is through bacteria-derived metabolites, usually intermediate or end products produced by microbial metabolism. In this study, we provide an up-to-date review of the most recent literature on microbial-derived metabolites and highlight their roles in the immune system, with a special focus on Pso and one of its most common comorbidities, psoriatic arthritis.


Subject(s)
Arthritis, Psoriatic , Gastrointestinal Microbiome , Psoriasis , Humans , Psoriasis/therapy , Psoriasis/microbiology , Fecal Microbiota Transplantation , Dysbiosis/microbiology
9.
Int J Biometeorol ; 67(4): 661-673, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36864227

ABSTRACT

Psoriasis is a chronic inflammatory skin disease. It is associated with changes in skin microbiome. The aim of this study was to evaluate how Lake Hévíz sulfur thermal water influences the composition of microbial communities that colonizes skin in patients with psoriasis. Our secondary objective was to investigate the effects of balneotherapy on disease activity. In this open label study, participants with plaque psoriasis underwent 30-min therapy sessions in Lake Hévíz, at a temperature of 36 °C, five times a week for 3 weeks. The skin microbiome samples were collected by swabbing method from two different areas (lesional skin-psoriatic plaque and non-lesional skin). From 16 patients, 64 samples were processed for a 16S rRNA sequence-based microbiome analysis. Outcome measures were alpha-diversity (Shannon, Simpson, and Chao1 indexes), beta-diversity (Bray-Curtis metric), differences in genus level abundances, and Psoriasis Area and Severity Index (PASI). Skin microbiome samples were collected at baseline, and immediately after treatment. Based on the visual examination of the employed alpha- and beta-diversity measures, no systematic difference based on sampling timepoint or sample location could be revealed in these regards. Balneotherapy in the unaffected area significantly increased the level of Leptolyngbya genus, and significantly decreased the level of Flavobacterium genus. A similar trend was revealed by the results of the psoriasis samples, but the differences were not statistically significant. In patients with mild psoriasis, a significant improvement was observed in PASI scores.


Subject(s)
Microbiota , Psoriasis , Humans , Pilot Projects , Lakes , RNA, Ribosomal, 16S/genetics , Psoriasis/therapy , Psoriasis/microbiology , Sulfur , Water , Treatment Outcome
10.
New Microbiol ; 45(2): 130-137, 2022 04.
Article in English | MEDLINE | ID: mdl-35699562

ABSTRACT

We explore the association of Malassezia and IL-23/IL-17 axis in the skin lesions of patients with Psoriasis. From October 2018 to October 2020, 202 psoriasis patients were hospitalized in the dermatology department of Yantaishan hospital. The patients' skin lesions were collected, and Malassezia-specific mRNA in the skin lesions was determined. The patients were subdivided into Malassezia high and low distribution groups as per the Malassezia-specific mRNA results. Psoriasis Area and Severity Index (PASI) scores between the two groups were performed. LL-37, IL-23, IL-17A, and tumor necrosis factor α (TNF-α) expression in the skin lesions of the two groups were determined. Malassezia mRNA and the correlation of LL-37 with inflammatory factors TNF-α, IL-23, and IL-17A were determined. The relevance of inflammatory factors, Malassezia infection, and LL-37 content with PASI score were studied. The Malassezia high distribution group was treated with etoconazole, and the effects of treatment on the PASI score, IL-23, TNF-α, and IL-17A were determined. The PASI score, neutrophil, eosinophil, and peripheral blood white blood cell counts, and lgG in the Malassezia high distribution group were significantly higher than in the low distribution group (P<0.05). IL-23, LL-37, TNF-α, and IL-17A levels in the Malassezia high distribution group were significantly higher than in the low distribution group (P<0.05). Malassezia and LL-37 levels had a moderate positive correlation (R=0.5009, P<0.0001). Malassezia and LL-37, IL-17A, TNF-a, and IL- 23 correlated positively. Malassezia, IL-17A, LL37, TNF-a, and IL-23 correlated positively with the PASI score of Psoriasis. Ketoconazole therapy inhibited the PASI score, IL-23, TNF-a, and IL-17A expressions in patients. Malassezia enhances the progression of Psoriasis through the aberrant activation of the IL-23/IL-17 axis.


Subject(s)
Interleukin-17 , Interleukin-23 , Malassezia , Psoriasis , Humans , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-23/immunology , Interleukin-23/metabolism , Malassezia/genetics , Psoriasis/immunology , Psoriasis/metabolism , Psoriasis/microbiology , Psoriasis/pathology , RNA, Messenger , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
11.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35076024

ABSTRACT

Besides promoting inflammation by mobilizing lipid mediators, group IIA secreted phospholipase A2 (sPLA2-IIA) prevents bacterial infection by degrading bacterial membranes. Here, we show that, despite the restricted intestinal expression of sPLA2-IIA in BALB/c mice, its genetic deletion leads to amelioration of cancer and exacerbation of psoriasis in distal skin. Intestinal expression of sPLA2-IIA is reduced after treatment with antibiotics or under germ-free conditions, suggesting its upregulation by gut microbiota. Metagenome, transcriptome, and metabolome analyses have revealed that sPLA2-IIA deficiency alters the gut microbiota, accompanied by notable changes in the intestinal expression of genes related to immunity and metabolism, as well as in the levels of various blood metabolites and fecal bacterial lipids, suggesting that sPLA2-IIA contributes to shaping of the gut microbiota. The skin phenotypes in Pla2g2a-/- mice are lost (a) when they are cohoused with littermate WT mice, resulting in the mixing of the microbiota between the genotypes, or (b) when they are housed in a more stringent pathogen-free facility, where Pla2g2a expression in WT mice is low and the gut microbial compositions in both genotypes are nearly identical. Thus, our results highlight a potentially new aspect of sPLA2-IIA as a modulator of gut microbiota, perturbation of which affects distal skin responses.


Subject(s)
Gastrointestinal Microbiome/immunology , Group II Phospholipases A2/metabolism , Psoriasis , Skin Neoplasms , Animals , Carcinogenesis/immunology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/immunology , Inflammation/microbiology , Mice , Mice, Inbred BALB C , Pathology, Molecular/methods , Psoriasis/immunology , Psoriasis/microbiology , Skin Neoplasms/immunology , Skin Neoplasms/microbiology
12.
Mycoses ; 65(2): 247-254, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34787934

ABSTRACT

BACKGROUND: Psoriasis patients are more frequently colonised with Candida species. The correlation between fungal colonisation and clinical severity is unclear, but may exacerbate psoriasis and the impact of antipsoriatic therapies on the prevalence of Candida is unknown. OBJECTIVES: To examine the prevalence of C species in psoriasis patients compared to an age- and sex-matched control population, we investigated the influence of Candida colonisation on disease severity, immune cell activation and the interplay on psoriatic treatments. METHODS: The prevalence of C species was examined in 265 psoriasis patients and 200 control subjects by swabs and stool samples for fungal cultures. Peripheral mononuclear blood cells (PBMCs) were collected from 20 fungal colonised and 24 uncolonised patients and stimulated. The expression of interferon (IFN)-γ, IL-17A, IL-22 and tumour necrosis factor (TNF)-α from stimulated PBMCs was measured by quantitative real-time polymerase chain reaction (qPCR). RESULTS: A significantly higher prevalence for Candida was detected in psoriatic patients (p ≤ .001) compared to the control subjects; most abundant in stool samples, showing Candida albicans. Older participants (≥51 years) were more frequent colonised, and no correlation with gender, disease severity or systemic treatments like IL-17 inhibitors was found. CONCLUSIONS: Although Candida colonisation is significantly more common in patients with psoriasis, it does not influence the psoriatic disease or cytokine response. Our study showed that Candida colonisation is particularly more frequent in patients with psoriasis ≥51 years of age. Therefore, especially this group should be screened for symptoms of candidiasis during treatment with IL-17 inhibitors.


Subject(s)
Candidiasis , Psoriasis , Candida/genetics , Candidiasis/epidemiology , Cytokines , Humans , Interleukin-17/antagonists & inhibitors , Prevalence , Psoriasis/epidemiology , Psoriasis/microbiology
13.
Biomed Res Int ; 2021: 9113418, 2021.
Article in English | MEDLINE | ID: mdl-34938812

ABSTRACT

BACKGROUND: Whether nail psoriasis can increase the risk of onychomycosis is still being debated, and data relating to the prevalence of onychomycosis among psoriasis patients receiving different treatments is limited. OBJECTIVES: To investigate the overall prevalence and prevalence compared among psoriasis treatments of onychomycosis in patients with nail psoriasis and fungal involvement. METHODS: A prospective study of three groups of nail psoriasis being treated with only topical medication, methotrexate, or biologics (25 patients per group, 150 nails) was conducted at Siriraj Hospital (Bangkok, Thailand) during November 2018 to September 2020. Demographic data, psoriasis severity, and nail psoriasis severity were recorded. The nail most severely affected with psoriasis on each hand was selected for mycological testing. Potassium hydroxide, periodic acid-Schiff stain, and fungal culture were performed. RESULTS: The prevalence of onychomycosis in nail psoriasis was 35.3%. Among the treatment groups, the prevalence of onychomycosis was significantly higher in the methotrexate group than in the topical treatment and biologic treatment groups (p = 0.014). Candida spp. was the main causative organism, followed by Trichophyton rubrum. Thumb was most commonly affected (59.3%). The most common abnormality of the nail matrix and the nail bed was pitted nail (71.3%) and onycholysis (91.3%), respectively. Multivariate analysis revealed diabetes, wet-work exposure, and methotrexate treatment to be predictors of onychomycosis. CONCLUSIONS: Several factors, including psoriasis treatment, were shown to increase the risk of onychomycosis in nail psoriasis. Further research is needed to determine whether biologic agents, especially interleukin-17 inhibitors, can increase risk of onychomycosis and Candida infection/colonization of the nails.


Subject(s)
Nail Diseases/drug therapy , Nail Diseases/epidemiology , Nails/microbiology , Onychomycosis/drug therapy , Onychomycosis/epidemiology , Psoriasis/drug therapy , Psoriasis/epidemiology , Administration, Topical , Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Candida/drug effects , Female , Humans , Male , Middle Aged , Nail Diseases/microbiology , Nails, Malformed/drug therapy , Nails, Malformed/microbiology , Prevalence , Prospective Studies , Psoriasis/microbiology , Thailand/epidemiology
14.
Cells ; 10(9)2021 09 08.
Article in English | MEDLINE | ID: mdl-34571998

ABSTRACT

The bacterial microbiota in the skin and intestine of patients with psoriasis were different compared with that of healthy individuals. However, the presence of a distinct blood microbiome in patients with psoriasis is yet to be investigated. In this study, we investigated the differences in bacterial communities in plasma-derived extracellular vesicles (EVs) between patients with moderate to severe psoriasis (PSOs) and healthy controls (HCs). The plasma EVs from the PSO (PASI > 10) (n = 20) and HC (n = 8) groups were obtained via a series of centrifugations, and patterns were examined and confirmed using transmission electron microscopy (TEM) and EV-specific markers. The taxonomic composition of the microbiota was determined by using full-length 16S ribosomal RNA gene sequencing. The PSO group had lower bacterial diversity and richness compared with HC group. Principal coordinate analysis (PCoA)-based clustering was used to assess diversity and validated dysbiosis for both groups. Differences at the level of amplicon sequence variant (ASV) were observed, suggesting alterations in specific ASVs according to health conditions. The HC group had higher levels of the phylum Firmicutes and Fusobacteria than in the PSO group. The order Lactobacillales, family Brucellaceae, genera Streptococcus, and species Kingella oralis and Aquabacterium parvum were highly abundant in the HC group compared with the PSO group. Conversely, the order Bacillales and the genera Staphylococcus and Sphihgomonas, as well as Ralstonia insidiosa, were more abundant in the PSO group. We further predicted the microbiota functional capacities, which revealed significant differences between the PSO and HC groups. In addition to previous studies on microbiome changes in the skin and gut, we demonstrated compositional differences in the microbe-derived EVs in the plasma of PSO patients. Plasma EVs could be an indicator for assessing the composition of the microbiome of PSO patients.


Subject(s)
Extracellular Vesicles/microbiology , Microbiota/genetics , Psoriasis/microbiology , Adult , Aged , Aged, 80 and over , Bacteria/genetics , Dysbiosis/microbiology , Female , Humans , Male , Metagenomics/methods , Middle Aged , Skin/microbiology , Young Adult
15.
Exp Dermatol ; 30(10): 1517-1531, 2021 10.
Article in English | MEDLINE | ID: mdl-34387406

ABSTRACT

The two most common chronic inflammatory skin diseases are atopic dermatitis (AD) and psoriasis. The underpinnings of the remarkable degree of clinical heterogeneity of AD and psoriasis are poorly understood and, as a consequence, disease onset and progression are unpredictable and the optimal type and time point for intervention are as yet unknown. The BIOMAP project is the first IMI (Innovative Medicines Initiative) project dedicated to investigating the causes and mechanisms of AD and psoriasis and to identify potential biomarkers responsible for the variation in disease outcome. The consortium includes 7 large pharmaceutical companies and 25 non-industry partners including academia. Since there is mounting evidence supporting an important role for microbial exposures and our microbiota as factors mediating immune polarization and AD and psoriasis pathogenesis, an entire work package is dedicated to the investigation of skin and gut microbiome linked to AD or psoriasis. The large collaborative BIOMAP project will enable the integration of patient cohorts, data and knowledge in unprecedented proportions. The project has a unique opportunity with a potential to bridge and fill the gaps between current problems and solutions. This review highlights the power and potential of the BIOMAP project in the investigation of microbe-host interplay in AD and psoriasis.


Subject(s)
Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Microbiota/immunology , Psoriasis/immunology , Psoriasis/microbiology , Skin/immunology , Skin/microbiology , Humans
16.
Nutrients ; 13(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34207960

ABSTRACT

Psoriasis is an immune-mediated systemic disease that may be treated with probiotics. In this study, probiotic strains that could or could not decrease interleukin (IL)-17 levels were applied to imiquimod (IMQ)-induced psoriasis-like mice via oral administration. Bifidobacteriumadolescentis CCFM667, B. breve CCFM1078, Lacticaseibacillusparacasei CCFM1074, and Limosilactobacillus reuteri CCFM1132 ameliorated psoriasis-like pathological characteristics and suppressed the release of IL-23/T helper cell 17 (Th17) axis-related inflammatory cytokines, whereas B. animalis CCFM1148, L. paracasei CCFM1147, and L. reuteri CCFM1040 neither alleviated the pathological characteristics nor reduced the levels of inflammatory cytokines. All effective strains increased the contents of short-chain fatty acids, which were negatively correlated with the levels of inflammatory cytokines. By performing 16S rRNA gene sequencing, the diversity of gut microbiota in psoriasis-like mice was found to decrease, but all effective strains made some specific changes to the composition of gut microbiota compared to the ineffective strains. Furthermore, except for B. breve CCFM1078, all other effective strains decreased the abundance of the family Rikenellaceae, which was positively correlated with psoriasis-like pathological characteristics and was negatively correlated with propionate levels. These findings demonstrated effects of strain-specificity, and how probiotics ameliorated psoriasis and provide new possibilities for the treatment of psoriasis.


Subject(s)
Gastrointestinal Microbiome , Probiotics/therapeutic use , Psoriasis/diet therapy , Psoriasis/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bifidobacterium/physiology , Cytokines/immunology , Cytokines/metabolism , Fatty Acids, Volatile/metabolism , Feces/microbiology , Female , Imiquimod , Interleukins/analysis , Interleukins/metabolism , Lactobacillaceae/physiology , Mice , Mice, Inbred BALB C , Probiotics/pharmacology , Psoriasis/immunology , Psoriasis/pathology , Skin/immunology , Skin/pathology , Th17 Cells/immunology
17.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804147

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by IL-17-dominant abnormal innate and acquired immunity, and the hyperproliferation and aberrant differentiation of epidermal keratinocytes, and comorbid arthritis or cardiometabolic diseases. This Special Issue presented updated information on pathogenesis, comorbidities, and therapy of psoriasis. The pathogenesis of psoriasis may involve the dysfunction of indoleamine 2,3-dioxygenase 2 or of UBA domain containing 1-mediated regulation of CARD14/CARMA2sh. The blood cells of psoriasis patients showed the enhanced oxidative stress/autophagy flux and decreased 20S proteasome activity. Elafin, clusterin, or selenoprotein P may act as biomarkers for psoriasis and comorbid metabolic diseases. The proteomic profile of psoriasis lesions showed the dysfunction of dermal fibroblasts; up-regulation of proinflammatory factors and signal transduction or down-regulation of structural molecules. The skin inflammation in psoriasis may populate certain gut bacteria, such as Staphylococcus aureus and Streptococcus danieliae, which worsen the skin inflammation in turn. The psoriasis-associated pruritus may be caused by immune, nervous, or vascular mechanisms. In addition to current oral treatments and biologics, a new treatment option for psoriasis is now being developed, such as retinoic-acid-receptor-related orphan nuclear receptor γt inhibitors, IL-36 receptor antagonist, or aryl hydrocarbon receptor agonist. Antimicrobial peptides and innate immune cells, involved in the pathogenesis of psoriasis, may be novel therapeutic targets. The pathomechanisms and responses to drugs in collagen diseases are partially shared with and partially different from those in psoriasis. Certain nutrients can exacerbate or regulate the progress of psoriasis. The articles in this Special Issue will encourage attractive approaches to psoriasis by future researchers.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Guanylate Cyclase/genetics , Immunity, Innate/genetics , Inflammation/genetics , Membrane Proteins/genetics , Psoriasis/genetics , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Inflammation/pathology , Inflammation/therapy , Interleukin-17/genetics , Keratinocytes/microbiology , Keratinocytes/pathology , Proteomics , Psoriasis/microbiology , Psoriasis/therapy , Skin/microbiology , Skin/pathology , Staphylococcus aureus/pathogenicity , Streptococcus/pathogenicity , Ubiquitin-Protein Ligases/genetics
18.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926088

ABSTRACT

Psoriasis is a chronic, immune-mediated inflammatory disease that affects around 125 million people worldwide. Several studies concerning the gut microbiota composition and its role in disease pathogenesis recently demonstrated significant alterations among psoriatic patients. Certain parameters such as Firmicutes/Bacteroidetes ratio or Psoriasis Microbiome Index were developed in order to distinguish between psoriatic and healthy individuals. The "leaky gut syndrome" and bacterial translocation is considered by some authors as a triggering factor for the onset of the disease, as it promotes chronic systemic inflammation. The alterations were also found to resemble those in inflammatory bowel diseases, obesity and certain cardiovascular diseases. Microbiota dysbiosis, depletion in SCFAs production, increased amount of produced TMAO, dysregulation of the pathways affecting the balance between lymphocytes populations seem to be the most significant findings concerning gut physiology in psoriatic patients. The gut microbiota may serve as a potential response-to-treatment biomarker in certain cases of biological treatment. Oral probiotics administration as well as fecal microbial transplantation were most reported in bringing health benefits to psoriatic patients. However, the issue of psoriatic bacterial gut composition, its role and healing potential needs further investigation. Here we reviewed the literature on the current state of the relationship between psoriasis and gut microbiome.


Subject(s)
Gastrointestinal Microbiome/physiology , Psoriasis/metabolism , Psoriasis/microbiology , Bacterial Translocation , Bacteroidetes , Cardiovascular Diseases/microbiology , Dysbiosis/physiopathology , Firmicutes , Gastrointestinal Microbiome/genetics , Humans , Inflammatory Bowel Diseases/microbiology , Microbiota , Probiotics/therapeutic use
19.
Int J Mol Sci ; 22(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924414

ABSTRACT

Numerous scientific studies in recent years have shown significant skin and gut dysbiosis among patients with psoriasis. A significant decrease in microbiome alpha-diversity (abundance of different bacterial taxa measured in one sample) as well as beta-diversity (microbial diversity in different samples) was noted in psoriasis skin. It has been proven that the representation of Cutibacterium, Burkholderia spp., and Lactobacilli is decreased and Corynebacterium kroppenstedii, Corynebacterium simulans, Neisseria spp., and Finegoldia spp. increased in the psoriasis skin in comparison to healthy skin. Alterations in the gut microbiome in psoriasis are similar to those observed in patients with inflammatory bowel disease. In those two diseases, the F. prausnitzii, Bifidobacterium spp., Lactobacillus spp., Parabacteroides and Coprobacillus were underrepresented, while the abundance of Salmonella sp., Campylobacter sp., Helicobacter sp., Escherichia coli, Alcaligenes sp., and Mycobacterium sp. was increased. Several research studies provided evidence for the significant influence of psoriasis treatments on the skin and gut microbiome and a positive influence of orally administered probiotics on the course of this dermatosis. Further research is needed to determine the influence of the microbiome on the development of inflammatory skin diseases. The changes in microbiome under psoriasis treatment can serve as a potential biomarker of positive response to the administered therapy.


Subject(s)
Arthritis, Psoriatic/microbiology , Gastrointestinal Microbiome , Psoriasis/microbiology , Skin/microbiology , Arthritis, Psoriatic/complications , Dysbiosis/complications , Dysbiosis/microbiology , Humans , Probiotics/therapeutic use , Psoriasis/complications , Psoriasis/therapy
20.
Sci Rep ; 11(1): 8593, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33883616

ABSTRACT

Psoriasis and non-alcoholic fatty liver disease (NAFLD) are both inflammatory diseases. The study objective was to estimate the risk of NAFLD, non-alcoholic steatohepatitis, and liver fibrosis (by liver stiffness and liver biopsy) in patients with psoriasis and to determine the epidemiological, clinical, immunological (TNF-α, IL-2, IL-6, IL-12, IL-17, IL-23, and TGF-ß) characteristics, and bacterial translocation. Of the 215 psoriatic patients included, 91 presented NAFLD (prevalence: 42.3%). Compared to patients with psoriasis alone, those with NAFLD were significantly more likely to have metabolic syndrome, diabetes, dyslipidemia, body mass index ≥ 30 kg/m2, homeostatic model assessment of insulin resistance ≥ 2.15, and greater psoriasis area severity index. NAFLD patients also had significantly higher levels of TNF-α (p = 0.002) and TGF-ß (p = 0.007) and a higher prevalence of bacterial translocation (29.7% vs. 13.7%; p = 0.004). Liver stiffness measurement was over 7.8 kPa in 17.2% (15/87) of NAFLD patients; 13 of these underwent liver biopsy, and 5.7% (5/87) had liver fibrosis, while 1.1% (1/87) had advanced fibrosis or non-alcoholic steatohepatitis. In conclusion the prevalence of NAFLD in patients with psoriasis is high and associated with a higher prevalence of metabolic syndrome features, bacterial translocation and a higher pro-inflammatory state. It is worth mentioning that liver fibrosis and non-alcoholic steatohepatitis are not frequent in this population of patients.


Subject(s)
Bacterial Translocation/physiology , Inflammation/microbiology , Inflammation/pathology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Psoriasis/microbiology , Psoriasis/pathology , Adult , Body Mass Index , Cytokines/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/microbiology , Diabetes Mellitus/pathology , Female , Humans , Inflammation/metabolism , Insulin Resistance/physiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/microbiology , Liver Cirrhosis/pathology , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Metabolic Syndrome/pathology , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Prevalence , Psoriasis/metabolism , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...