Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70.477
1.
J Vis ; 24(6): 5, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38842835

Ensemble processing allows the visual system to condense visual information into useful summary statistics (e.g., average size), thereby overcoming capacity limitations to visual working memory and attention. To examine the role of attention in ensemble processing, we conducted three experiments using a novel paradigm that merged the action effect (a manipulation of attention) and ensemble processing. Participants were instructed to make a simple action if the feature of a cue word corresponded to a subsequent shape. Immediately after, they were shown an ensemble display of eight ovals of varying sizes and were asked to report either the average size of all ovals or the size of a single oval from the set. In Experiments 1 and 2, participants were cued with a task-relevant feature, and in Experiment 3, participants were cued with a task-irrelevant feature. Overall, the task-relevant cues that elicited an action influenced reports of average size in the ensemble phase more than the cues that were passively viewed, whereas task-irrelevant cues did not bias the reports of average size. The results of this study suggest that attention influences ensemble processing only when it is directed toward a task-relevant feature.


Attention , Cues , Photic Stimulation , Humans , Attention/physiology , Young Adult , Male , Female , Photic Stimulation/methods , Adult , Memory, Short-Term/physiology , Reaction Time/physiology , Size Perception/physiology , Form Perception/physiology , Psychomotor Performance/physiology , Pattern Recognition, Visual/physiology
2.
J Vis ; 24(6): 4, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38842836

The interception (or avoidance) of moving objects is a common component of various daily living tasks; however, it remains unclear whether precise alignment of foveal vision with a target is important for motor performance. Furthermore, there has also been little examination of individual differences in visual tracking strategy and the use of anticipatory gaze adjustments. We examined the importance of in-flight tracking and predictive visual behaviors using a virtual reality environment that required participants (n = 41) to intercept tennis balls projected from one of two possible locations. Here, we explored whether different tracking strategies spontaneously arose during the task, and which were most effective. Although indices of closer in-flight tracking (pursuit gain, tracking coherence, tracking lag, and saccades) were predictive of better interception performance, these relationships were rather weak. Anticipatory gaze shifts toward the correct release location of the ball provided no benefit for subsequent interception. Nonetheless, two interceptive strategies were evident: 1) early anticipation of the ball's onset location followed by attempts to closely track the ball in flight (i.e., predictive strategy); or 2) positioning gaze between possible onset locations and then using peripheral vision to locate the moving ball (i.e., a visual pivot strategy). Despite showing much poorer in-flight foveal tracking of the ball, participants adopting a visual pivot strategy performed slightly better in the task. Overall, these results indicate that precise alignment of the fovea with the target may not be critical for interception tasks, but that observers can adopt quite varied visual guidance approaches.


Individuality , Motion Perception , Humans , Male , Female , Young Adult , Motion Perception/physiology , Adult , Psychomotor Performance/physiology , Fixation, Ocular/physiology , Virtual Reality , Saccades/physiology , Fovea Centralis/physiology , Eye Movements/physiology
3.
Hum Brain Mapp ; 45(8): e26719, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38826009

Gilles de la Tourette syndrome (GTS) is a disorder characterised by motor and vocal tics, which may represent habitual actions as a result of enhanced learning of associations between stimuli and responses (S-R). In this study, we investigated how adults with GTS and healthy controls (HC) learn two types of regularities in a sequence: statistics (non-adjacent probabilities) and rules (predefined order). Participants completed a visuomotor sequence learning task while EEG was recorded. To understand the neurophysiological underpinnings of these regularities in GTS, multivariate pattern analyses on the temporally decomposed EEG signal as well as sLORETA source localisation method were conducted. We found that people with GTS showed superior statistical learning but comparable rule-based learning compared to HC participants. Adults with GTS had different neural representations for both statistics and rules than HC adults; specifically, adults with GTS maintained the regularity representations longer and had more overlap between them than HCs. Moreover, over different time scales, distinct fronto-parietal structures contribute to statistical learning in the GTS and HC groups. We propose that hyper-learning in GTS is a consequence of the altered sensitivity to encode complex statistics, which might lead to habitual actions.


Electroencephalography , Tourette Syndrome , Humans , Tourette Syndrome/physiopathology , Male , Adult , Female , Young Adult , Learning/physiology , Psychomotor Performance/physiology , Middle Aged , Probability Learning
4.
Arch. argent. pediatr ; 122(3): e202310085, jun. 2024. tab
Article En, Es | LILACS, BINACIS | ID: biblio-1554679

Introducción. La evaluación de la visión en los niños durante el periodo preverbal, con un método fácil de usar y basado en la evidencia, permitiría el diagnóstico temprano y la intervención en los trastornos visuales. El objetivo del estudio fue determinar la utilidad y confiabilidad de la versión en idioma turco del cuestionario Preverbal Visual Assessment (PreViAs), desarrollado para evaluar la visión en niños preverbales. Población y métodos. El cuestionario PreViAs se administró a los cuidadores primarios de niños nacidos de término, antes de los 24 meses de edad. Se registraron sus respuestas. Resultados. Se analizaron los datos de 278 participantes para evaluar la consistencia interna del cuestionario PreViAs. Se encontró un alto nivel de consistencia con un alfa de Cronbach de 0,958 para el puntaje total, lo que sugiere una fuerte coherencia interna. Los valores del alfa de Cronbach para cada dominio fueron: 0,890 ­ 0,913 ­ 0,951 y 0,922 para la atención visual, la comunicación visual, el procesamiento visual y la coordinación visomotora respectivamente; esto indica una buena consistencia interna para cada subdominio. Conclusión. La versión en idioma turco del cuestionario PreViAs es útil y confiable para evaluar la visión durante el periodo preverbal.


Introduction: Evaluating the visual functions of children with an easy-to-use and evidence-based method during the preverbal period will enable early diagnosis and intervention of visual impairments. The aim of this study is to determine the utility and reliability of the Turkish version of the Preverbal Visual Assessment (PreViAs) questionnaire, which was developed to evaluate the visual functioning of preverbal infants. Population and Methods: The PreViAs questionnaire was administered to primary caregivers of term infants under 24 months of age, and their responses were recorded. Results: Data from the 278 participating infants were analyzed to assess the internal consistency of the PreViAs questionnaire. Results showed a high level of consistency with Cronbach's alpha value of 0.958 for the total score, suggesting strong internal coherence. In addition, the Cronbach's alpha values for each domain were 0.890, 0.913, 0.951, and 0.922 for visual attention, visual communication, visual processing, and visual-motor coordination, respectively, indicating good internal consistency for each subdomain. Conclusion: The Turkish version of the PreViAs questionnaire is useful and reliable for assessing functional vision during the preverbal period.


Humans , Infant, Newborn , Infant , Palliative Care , Psychomotor Performance , Turkey , Surveys and Questionnaires , Reproducibility of Results
5.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Article En | MEDLINE | ID: mdl-38726799

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Magnetoencephalography , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Adult , Male , Female , Young Adult , Markov Chains , Psychomotor Performance/physiology , Cerebral Cortex/physiology , Movement/physiology , Beta Rhythm/physiology
6.
PLoS One ; 19(5): e0299705, 2024.
Article En | MEDLINE | ID: mdl-38701086

Whenever we are confronted with action opportunities in everyday life, e.g., when passing an opening, we rely on our ability to precisely estimate our own bodily capabilities in relation to the environmental conditions. So-called affordance judgments can be affected after brain damage. Previous studies with healthy adults showed that such judgments appeared to be trainable within one session. In the current study, we examined whether stroke patients with either right brain damage (n = 30) or left brain damage (n = 30) may similarly profit from training in an aperture task. Further, the role of neuropsychological deficits in trainability was investigated. In the administered task, stroke patients decided whether their hand would fit into a presented opening with varying horizontal width (Aperture Task). During one training session, patients were asked to try to fit their hand into the opening and received feedback on their decisions. We analyzed accuracy and the detection theory parameters perceptual sensitivity and judgment tendency. Both patients with right brain damage and patients with left brain damage showed improved performance during training as well as post training. High variability with differential profiles of trainability was revealed in these patients. Patients with impaired performance in a visuo-spatial or motor-cognitive task appeared to profit considerably from the target-driven action phase with feedback, but the performance increase in judgments did not last when the action was withdrawn. Future studies applying lesion analysis with a larger sample may shed further light on the dissociation in the trainability of affordance judgments observed in patients with versus without visuo-spatial or motor-cognitive deficits.


Judgment , Stroke , Humans , Male , Stroke/physiopathology , Stroke/complications , Stroke/psychology , Female , Middle Aged , Aged , Functional Laterality/physiology , Psychomotor Performance/physiology , Adult
7.
Sci Rep ; 14(1): 10011, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693174

Interacting with the environment often requires the integration of visual and haptic information. Notably, perceiving external objects depends on how our brain binds sensory inputs into a unitary experience. The feedback provided by objects when we interact (through our movements) with them might then influence our perception. In VR, the interaction with an object can be dissociated by the size of the object itself by means of 'colliders' (interactive spaces surrounding the objects). The present study investigates possible after-effects in size discrimination for virtual objects after exposure to a prolonged interaction characterized by visual and haptic incongruencies. A total of 96 participants participated in this virtual reality study. Participants were distributed into four groups, in which they were required to perform a size discrimination task between two cubes before and after 15 min of a visuomotor task involving the interaction with the same virtual cubes. Each group interacted with a different cube where the visual (normal vs. small collider) and the virtual cube's haptic (vibration vs. no vibration) features were manipulated. The quality of interaction (number of touches and trials performed) was used as a dependent variable to investigate the performance in the visuomotor task. To measure bias in size perception, we compared changes in point of subjective equality (PSE) before and after the task in the four groups. The results showed that a small visual collider decreased manipulation performance, regardless of the presence or not of the haptic signal. However, change in PSE was found only in the group exposed to the small visual collider with haptic feedback, leading to increased perception of the cube size. This after-effect was absent in the only visual incongruency condition, suggesting that haptic information and multisensory integration played a crucial role in inducing perceptual changes. The results are discussed considering the recent findings in visual-haptic integration during multisensory information processing in real and virtual environments.


Virtual Reality , Visual Perception , Humans , Male , Female , Adult , Visual Perception/physiology , Young Adult , Psychomotor Performance/physiology , Touch Perception/physiology , Size Perception/physiology
8.
J Neuroeng Rehabil ; 21(1): 70, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702813

Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiquitous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG-based systems often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandonment. Unsupervised adaptation is one proposed solution that updates a model's parameters over time based on its own predictions during real-time use to maintain robustness without requiring additional user input or dedicated recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify (and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adaptive learning strategy, Context-Informed Incremental Learning (CIIL), that leverages in situ context to better inform the prediction of pseudo-labels. In this work, we evaluate these CIIL strategies in an online target acquisition task for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input space has occurred. A total of 32 participants were evaluated across the two experiments. The results show that the CIIL strategies significantly outperform the current state-of-the-art unsupervised high-confidence adaptation and outperform models trained with the conventional screen-guided training approach, even after a 45-degree electrode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially reducing the training burden while bolstering model robustness, and leading to improved real-time control.


Electromyography , Humans , Male , Adult , Female , Young Adult , Learning/physiology , Artificial Limbs , Machine Learning , Psychomotor Performance/physiology
9.
Sci Rep ; 14(1): 10421, 2024 05 07.
Article En | MEDLINE | ID: mdl-38710897

Humans move their hands toward precise positions, a skill supported by the coordination of multiple joint movements, even in the presence of inherent redundancy. However, it remains unclear how the central nervous system learns the relationship between redundant joint movements and hand positions when starting from scratch. To address this question, a virtual-arm reaching task was performed in which participants were required to move a cursor corresponding to the hand of a virtual arm to a target. The joint angles of the virtual arm were determined by the heights of the participants' fingers. The results demonstrated that the participants moved the cursor to the target straighter and faster in the late phase than they did in the initial phase of learning. This improvement was accompanied by a reduction in the amount of angular changes in the virtual limb joint, predominantly characterized by an increased reliance on the virtual shoulder joint as opposed to the virtual wrist joint. These findings suggest that the central nervous system selects a combination of multijoint movements that minimize motor effort while learning novel upper-limb kinematics.


Arm , Learning , Movement , Humans , Biomechanical Phenomena , Arm/physiology , Male , Learning/physiology , Female , Movement/physiology , Adult , Young Adult , Psychomotor Performance/physiology , Wrist Joint/physiology
10.
Article En | MEDLINE | ID: mdl-38801679

Compared to traditional continuous performance tasks, virtual reality-based continuous performance tests (VR-CPT) offer higher ecological validity. While previous studies have primarily focused on behavioral outcomes in VR-CPT and incorporated various distractors to enhance ecological realism, little attention has been paid to the effects of distractors on EEG. Therefore, our study aimed to investigate the influence of distractors on EEG during VR-CPT. We studied visual distractors and auditory distractors separately, recruiting 68 subjects (M =20.82, SD =1.72) and asking each to complete four tasks. These tasks were categorized into four groups according to the presence or absence of visual and auditory distractors. We conducted paired t-tests on the mean relative power of the five electrodes in the ROI region across different frequency bands. Significant differences were found in theta waves between Group 3 (M =2.49, SD =2.02) and Group 4 (M =2.68, SD =2.39) (p < 0.05); in alpha waves between Group 3 (M =2.08, SD =3.73) and Group 4 (M =3.03, SD =4.60) (p < 0.001); and in beta waves between Group 1 (M = -4.44 , SD =2.29) and Group 2 (M = -5.03 , SD =2.48) (p < 0.001), as well as between Group 3 (M = -4.48 , SD =2.03) and Group 4 (M = -4.67 , SD =2.23) (p < 0.05). The incorporation of distractors in VR-CPT modulates EEG signals across different frequency bands, with visual distractors attenuating theta band activity, auditory distractors enhancing alpha band activity, and both types of distractors reducing beta oscillations following target stimuli. This insight holds significant promise for the rehabilitation of children and adolescents with attention deficits.


Attention , Electroencephalography , Virtual Reality , Humans , Male , Female , Electroencephalography/methods , Young Adult , Attention/physiology , Adult , Visual Perception/physiology , Theta Rhythm/physiology , Acoustic Stimulation/methods , Alpha Rhythm/physiology , Photic Stimulation , Auditory Perception/physiology , Psychomotor Performance/physiology
11.
Sci Rep ; 14(1): 10788, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734783

Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG). When compared with the controls, the adults with CP had a weaker beta (18-24 Hz) event-related desynchronization (ERD), post-movement beta rebound (PMBR, 16-20 Hz) and theta (4-6 Hz) event-related synchronization (ERS) in the sensorimotor cortices. In agreement with normative work, the controls exhibited differences in the strength of the sensorimotor gamma (66-84 Hz) ERS during proactive compared to reactive trials, but similar condition-wise changes were not seen in adults with CP. Lastly, the adults with CP who had a stronger theta ERS tended to have better hand dexterity, as indicated by the Box and Blocks Test and Purdue Pegboard Test. These results may suggest that alterations in the theta and gamma cortical oscillations play a role in the altered hand dexterity and uncharacteristic adaptive sensorimotor control noted in adults with CP.


Cerebral Palsy , Magnetoencephalography , Sensorimotor Cortex , Humans , Adult , Male , Female , Cerebral Palsy/physiopathology , Sensorimotor Cortex/physiopathology , Sensorimotor Cortex/physiology , Young Adult , Psychomotor Performance/physiology , Adaptation, Physiological , Case-Control Studies
12.
Elife ; 122024 May 13.
Article En | MEDLINE | ID: mdl-38738986

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.


Behavior, Animal , Animals , Humans , Male , Behavior, Animal/physiology , Female , Psychomotor Performance/physiology , Adult , Postural Balance/physiology , Young Adult , Macaca mulatta
13.
J Neuroeng Rehabil ; 21(1): 78, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745322

BACKGROUND: Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS: Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS: We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION: VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION: NCT04738851.


Feedback, Sensory , Motor Cortex , Spectroscopy, Near-Infrared , Adult , Female , Humans , Male , Young Adult , Brain/physiology , Brain/diagnostic imaging , Feedback, Sensory/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Psychomotor Performance/physiology , Spectroscopy, Near-Infrared/methods
14.
PLoS One ; 19(5): e0300786, 2024.
Article En | MEDLINE | ID: mdl-38748663

Cognitive Arousal, frequently elicited by environmental stressors that exceed personal coping resources, manifests in measurable physiological markers, notably in galvanic skin responses. This effect is prominent in cognitive tasks such as composition, where fluctuations in these biomarkers correlate with individual expressiveness. It is crucial to understand the nexus between cognitive arousal and expressiveness. However, there has not been a concrete study that investigates this inter-relation concurrently. Addressing this, we introduce an innovative methodology for simultaneous monitoring of these elements. Our strategy employs Bayesian analysis in a multi-state filtering format to dissect psychomotor performance (captured through typing speed), galvanic skin response or skin conductance (SC), and heart rate variability (HRV). This integrative analysis facilitates the quantification of expressive behavior and arousal states. At the core, we deploy a state-space model connecting one latent psychological arousal condition to neural activities impacting sweating (inferred through SC responses) and another latent state to expressive behavior during typing. These states are concurrently evaluated with model parameters using an expectation-maximization algorithms approach. Assessments using both computer-simulated data and experimental data substantiate the validity of our approach. Outcomes display distinguishable latent state patterns in expressive typing and arousal across different computer software used in office management, offering profound implications for Human-Computer Interaction (HCI) and productivity analysis. This research marks a significant advancement in decoding human productivity dynamics, with extensive repercussions for optimizing performance in telecommuting scenarios.


Arousal , Bayes Theorem , Cognition , Galvanic Skin Response , Heart Rate , Humans , Arousal/physiology , Galvanic Skin Response/physiology , Heart Rate/physiology , Cognition/physiology , Male , Female , Adult , Psychomotor Performance/physiology , Teleworking , Efficiency/physiology , Algorithms , Young Adult
15.
PLoS One ; 19(5): e0302838, 2024.
Article En | MEDLINE | ID: mdl-38753863

When older adults step over obstacles during multitasking, their performance is impaired; the impairment results from central and/or sensory interference. The purpose was to determine if sensory interference alters performance under low levels of cognitive, temporal, and gait demand, and if the change in performance is different for younger versus older adults. Participants included 17 younger adults (20.9±1.9 years) and 14 older adults (69.7±5.4 years). The concurrent task was a single, simple reaction time (RT) task: depress button in response to light cue. The gait task was stepping over an obstacle (8 m walkway) in three conditions: (1) no sensory interference (no RT task), (2) low sensory interference (light cue on obstacle, allowed concurrent foveation of cue and obstacle), or (3) high sensory interference (light cue away from obstacle, prevented concurrent foveation of cue and obstacle). When standing, the light cue location was not relevant (no sensory interference). An interaction (sensory interference by task, p<0.01) indicated that RT was longer for high sensory interference during walking, but RT was not altered for standing, confirming that sensory interference increased RT during obstacle approach. An interaction (sensory interference by age, p<0.01) was observed for foot placement before the obstacle: With high sensory interference, younger adults placed the trail foot closer to the obstacle while older adults placed it farther back from the obstacle. The change increases the likelihood of tripping with the trail foot for younger adults, but with the lead limb for older adults. Recovery from a lead limb trip is more difficult due to shorter time for corrective actions. Overall, visual sensory interference impaired both RT and gait behavior with low levels of multitask demand. Changes in foot placement increased trip risk for both ages, but for different limbs, reducing the likelihood of balance recovery in older adults.


Gait , Reaction Time , Humans , Aged , Male , Female , Reaction Time/physiology , Young Adult , Gait/physiology , Adult , Psychomotor Performance/physiology , Aging/physiology , Cues , Walking/physiology , Middle Aged , Age Factors
16.
J Neuroeng Rehabil ; 21(1): 80, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755606

BACKGROUND: Individuals with a moderate-to-severe traumatic brain injury (m/sTBI), despite experiencing good locomotor recovery six months post-injury, face challenges in adapting their locomotion to the environment. They also present with altered cognitive functions, which may impact dual-task walking abilities. Whether they present collision avoidance strategies with moving pedestrians that are altered under dual-task conditions, however, remains unclear. This study aimed to compare between individuals with m/sTBI and age-matched control individuals: (1), the locomotor and cognitive costs associated with the concurrent performance of circumventing approaching virtual pedestrians (VRPs) while attending to an auditory-based cognitive task and; (2) gaze behaviour associated with the VRP circumvention task in single and dual-task conditions. METHODOLOGY: Twelve individuals with m/sTBI (age = 43.3 ± 9.5 yrs; >6 mo. post injury) and 12 healthy controls (CTLs) (age = 41.8 ± 8.3 yrs) were assessed while walking in a virtual subway station viewed in a head-mounted display. They performed a collision avoidance task with VRPs, as well as auditory-based cognitive tasks (pitch discrimination and auditory Stroop), both under single and dual-task conditions. Dual-task cost (DTC) for onset distance of trajectory deviation, minimum distance from the VRP, maximum lateral deviation, walking speed, gaze fixations and cognitive task accuracy were contrasted between groups using generalized estimating equations. RESULTS: In contrast to CTLs who showed locomotor DTCs only, individuals with m/sTBI displayed both locomotor and cognitive DTCs. While both groups walked slower under dual-task conditions, only individuals with m/sTBI failed to modify their onset distance of trajectory deviation and maintained smaller minimum distances and smaller maximum lateral deviation compared to single-task walking. Both groups showed shorter gaze fixations on the approaching VRP under dual-task conditions, but this reduction was less pronounced in the individuals with m/sTBI. A reduction in cognitive task accuracy under dual-task conditions was found in the m/sTBI group only. CONCLUSION: Individuals with m/sTBI present altered locomotor and gaze behaviours, as well as altered cognitive performances, when executing a collision avoidance task involving moving pedestrians in dual-task conditions. Potential mechanisms explaining those alterations are discussed. Present findings highlight the compromised complex walking abilities in individuals with m/sTBI who otherwise present a good locomotor recovery.


Brain Injuries, Traumatic , Pedestrians , Virtual Reality , Humans , Male , Adult , Female , Brain Injuries, Traumatic/rehabilitation , Brain Injuries, Traumatic/psychology , Brain Injuries, Traumatic/physiopathology , Middle Aged , Psychomotor Performance/physiology , Walking/physiology , Cognition/physiology , Avoidance Learning , Attention/physiology
17.
PLoS One ; 19(5): e0302872, 2024.
Article En | MEDLINE | ID: mdl-38768134

Whether a saccade is accurate and has reached the target cannot be evaluated during its execution, but relies on post-saccadic feedback. If the eye has missed the target object, a secondary corrective saccade has to be made to align the fovea with the target. If a systematic post-saccadic error occurs, adaptive changes to the oculomotor behavior are made, such as shortening or lengthening the saccade amplitude. Systematic post-saccadic errors are typically attributed internally to erroneous motor commands. The corresponding adaptive changes to the motor command reduce the error and the need for secondary corrective saccades, and, in doing so, restore accuracy and efficiency. However, adaptive changes to the oculomotor behavior also occur if a change in saccade amplitude is beneficial for task performance, or if it is rewarded. Oculomotor learning thus is more complex than reducing a post-saccadic position error. In the current study, we used a novel oculomotor learning paradigm and investigated whether human participants are able to adapt their oculomotor behavior to improve task performance even when they attribute the error externally. The task was to indicate the intended target object among several objects to a simulated human-machine interface by making eye movements. The participants were informed that the system itself could make errors. The decoding process depended on a distorted landing point of the saccade, resulting in decoding errors. Two different types of visual feedback were added to the post-saccadic scene and we compared how participants used the different feedback types to adjust their oculomotor behavior to avoid errors. We found that task performance improved over time, regardless of the type of feedback. Thus, error feedback from the simulated human-machine interface was used for post-saccadic error evaluation. This indicates that 1) artificial visual feedback signals and 2) externally caused errors might drive adaptive changes to oculomotor behavior.


Saccades , Humans , Saccades/physiology , Adult , Male , Female , Eye Movements/physiology , Young Adult , Psychomotor Performance/physiology , Learning/physiology
18.
Cogn Sci ; 48(5): e13454, 2024 May.
Article En | MEDLINE | ID: mdl-38773755

Open-ended tasks can be decomposed into the three levels of Newell's Cognitive Band: the Unit-Task level, the Operation level, and the Deliberate-Act level. We analyzed the video game Co-op Space Fortress at these levels, reporting both the match of a cognitive model to subject behavior and the use of electroencephalogram (EEG) to track subject cognition. The Unit Task level in this game involves coordinating with a partner to kill a fortress. At this highest level of the Cognitive Band, there is a good match between subject behavior and the model. The EEG signals were also strong enough to track when Unit Tasks succeeded or failed. The intermediate Operation level in this task involves legs of flight to achieve a kill. The EEG signals associated with these operations are much weaker than the signals associated with the Unit Tasks. Still, it was possible to reconstruct subject play with much better than chance success. There were significant differences in the leg behavior of subjects and models. Model behavior did not provide a good basis for interpreting a subject's behavior at this level. At the lowest Deliberate-Act level, we observed overlapping key actions, which the model did not display. Such overlapping key actions also frustrated efforts to identify EEG signals of motor actions. We conclude that the Unit-task level is the appropriate level both for understanding open-ended tasks and for using EEG to track the performance of open-ended tasks.


Cognition , Electroencephalography , Humans , Cognition/physiology , Male , Video Games , Female , Adult , Psychomotor Performance/physiology , Young Adult
19.
Cir Cir ; 92(2): 194-204, 2024.
Article En | MEDLINE | ID: mdl-38782379

OBJECTIVE: The aim of this study was to evaluate the effect of three training methodologies on the acquisition of psychomotor skills for laparoendoscopic single-site surgery (LESS), using straight and articulating instruments. METHODS: A prospective study was conducted with subjects randomly divided into three groups, who performed a specific training for 12 days using three laparoscopic tasks in a laparoscopic simulator. Group-A trained in conventional laparoscopy setting using straight instruments and in LESS setting using both straight and articulating instruments. Group-B trained in LESS setting using straight and articulating instruments, whereas Group-C trained in LESS setting using articulating instruments. Participants' performance was recorded with a video-tracking system and evaluated with 12 motion analysis parameters (MAPs). RESULTS: All groups obtained significant differences in their performance in most of the MAPs. Group-C showed an improvement in nine MAPs, with a high level of technical competence. Group-A presented a marked improvement in bimanual dexterity skills. CONCLUSIONS: Training in LESS surgery using articulating laparoscopic instruments improves the quality of skills and allows smoother learning curves.


OBJETIVO: Evaluar el efecto de tres métodos de entrenamiento en la adquisición de habilidades psicomotrices para la cirugía laparoendoscópica por puerto único (LESS, laparoendoscopic single-site surgery) utilizando instrumental recto y articulado. MÉTODO: Se realizó un estudio prospectivo con sujetos divididos aleatoriamente en tres grupos, quienes realizaron un entrenamiento específico durante 12 días utilizando tres tareas laparoscópicas en un simulador laparoscópico. El grupo A entrenó en el entorno laparoscópico convencional con instrumentos rectos, y en el entorno LESS con instrumentos rectos y articulados. El grupo B entrenó en el entorno LESS con instrumentos rectos y articulados. El Grupo C entrenó en el entorno LESS con instrumentos articulados. El desempeño de los participantes se registró con un sistema de seguimiento en video y fue evaluado con 12 parámetros de análisis de movimiento (MAP, motion analysis parameters). RESULTADOS: Todos los grupos obtuvieron diferencias significativas en su desempeño para la mayoría de los MAP. El grupo C mostró una mejora en nueve MAP, con un alto nivel de competencia técnica. El grupo A mostró una marcada mejora en la habilidad de destreza bimanual. CONCLUSIONES: El entrenamiento en cirugía LESS con instrumentos articulados mejora la calidad de las habilidades adquiridas y permite curvas de aprendizaje más suaves.


Clinical Competence , Laparoscopy , Psychomotor Performance , Laparoscopy/education , Humans , Prospective Studies , Male , Female , Adult , Simulation Training/methods , Young Adult , Learning Curve
20.
Sci Rep ; 14(1): 11817, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783047

We assessed lifespan development of multitasking in a sample of 187 individuals aged 8-82 years. Participants performed a visuo-spatial working memory (VSWM) task together with either postural control or reaction time (RT) tasks. Using criterion-referenced testing we individually adjusted difficulty levels for the VSWM task to control for single-task differences. Age-differences in single-task performances followed U-shaped patterns with young adults outperforming children and older adults. Multitasking manipulations yielded robust performance decrements in VSWM, postural control and RT tasks. Presumably due to our adjustment of VSWM challenges, costs in this task were small and similar across age groups suggesting that age-differential costs found in earlier studies largely reflected differences already present during single-task performance. Age-differences in multitasking costs for concurrent tasks depended on specific combinations. For VSWM and RT task combinations increases in RT were the smallest for children but pronounced in adults highlighting the role of cognitive control processes. Stabilogram diffusion analysis of postural control demonstrated that long-term control mechanisms were affected by concurrent VSWM demands. This interference was pronounced in older adults supporting concepts of compensation or increased cognitive involvement in sensorimotor processes at older age. Our study demonstrates how a lifespan approach can delineate the explanatory scope of models of human multitasking.


Memory, Short-Term , Reaction Time , Humans , Aged , Adult , Adolescent , Child , Female , Male , Aged, 80 and over , Reaction Time/physiology , Middle Aged , Young Adult , Memory, Short-Term/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Multitasking Behavior/physiology , Task Performance and Analysis , Aging/physiology , Longevity/physiology , Cognition/physiology
...