Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.668
1.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717532

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Gene Expression Regulation , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Respiratory Tract Diseases/genetics , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/metabolism , Asthma/genetics , Asthma/therapy , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy
2.
Sci Rep ; 14(1): 10361, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710754

Chronic obstructive pulmonary disease (COPD) is a progressive disease that is characterized by chronic airway inflammation. A Japanese herbal medicine, hochuekkito (TJ-41), is prominently used for chronic inflammatory diseases in Japan. This study aimed to analyze the anti-inflammatory effect of TJ-41 in vivo and its underlying mechanisms. We created a COPD mouse model using intratracheal administration of porcine pancreatic elastase and lipopolysaccharide (LPS) and analyzed them with and without TJ-41 administration. A TJ-41-containing diet reduced inflammatory cell infiltration of the lungs in the acute and chronic phases and body weight loss in the acute phase. In vitro experiments revealed that TJ-41 treatment suppressed the LPS-induced inflammatory cytokines in BEAS-2B cells. Furthermore, TJ-41 administration activated the AMP-activated protein kinase (AMPK) pathway and inhibited the mechanistic target of the rapamycin (mTOR) pathway, both in cellular and mouse experiments. We concluded that TJ-41 administration reduced airway inflammation in the COPD mouse model, which might be regulated by the activated AMPK pathway, and inhibited the mTOR pathway.


Anti-Inflammatory Agents , Disease Models, Animal , Drugs, Chinese Herbal , Medicine, Kampo , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Drugs, Chinese Herbal/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Humans , Lipopolysaccharides , Male , Cytokines/metabolism , Signal Transduction/drug effects , Cell Line , Lung/pathology , Lung/drug effects , Lung/metabolism , Pancreatic Elastase/metabolism , East Asian People
3.
Drug Des Devel Ther ; 18: 1755-1770, 2024.
Article En | MEDLINE | ID: mdl-38808326

Purpose: The aim of this study is to uncover the anti-inflammatory propertity of andrographolide (AGP) in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and the underlying mechanisms related to the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway. Methods: An in vivo experiment was conducted on murine model of AECOPD through endotracheal atomization of elastase and lipopolysaccharide (LPS). Intraperitoneal AGP was administered four times. NLRP3 inflammasome pathway molecules were examined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. By using enzyme-linked immunosorbent assay (ELISA), we tested interleukin (IL)-1ß levels in bronchoalveolar lavage fluid. An in vitro study was conducted to determine how AGP impacts the NLRP3 inflammasome in THP-1 derived macrophages. The levels of molecules involved in the pathway were measured. Furthermore, molecular docking analyses were carried out to investigate the interactions between AGP and pathway targets. Results: In the in vivo study, NLRP3 inflammasome activation was observed in mice experiencing AECOPD. The administration of high-dose AGP demonstrated a mitigating effect on inflammatory cells infiltration in the lungs. Moreover, AGP administration effectively suppressed the expression of NLRP3, apoptosis associated speck-like protein that contains a CARD (PYCARD), cysteinyl aspartate-specific protease-1 (Caspase-1), IL-1ß, and IL-18 at both the genetic and protein levels. In the in vitro experiment, IL-1ß levels were significantly elevated in THP-1 derived macrophages with activated inflammasome compared to the control group. Furthermore, the downregulation of NLRP3, CASP1, and IL1B genes was observed upon the inhibition of NLRP3 expression through small interfering RNA (siRNA). AGP demonstrated inhibitory effects on the gene expression and protein levels of NLRP3, Caspase-1, and IL-1ß. Additionally, molecular docking analysis confirmed that AGP exhibited a favorable binding affinity with all five targets of the pathway. Conclusion: AGP effectively inhibited NLRP3 inflammasome activation and mitigated the inflammatory reaction of AECOPD both in animal models and in vitro experiments, highlighting the potential of AGP as a treatment for AECOPD with anti-inflammatory properties.


Diterpenes , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pulmonary Disease, Chronic Obstructive , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/administration & dosage , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Humans , Mice, Inbred C57BL , Molecular Docking Simulation , Male , Inflammation/drug therapy , Inflammation/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Lipopolysaccharides/pharmacology , Structure-Activity Relationship
4.
J Physiol Sci ; 74(1): 29, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730366

L-Ascorbic acid, commonly known as vitamin C, has been used not only for disease prevention and in complementary and alternative medicine, but also for anti-aging purposes. However, the scientific evidence is not yet sufficient. Here, we review the physiological functions of vitamin C and its relationship with various pathological conditions, including our previous findings, and discuss the prospects of its application in healthy longevity. In summary, vitamin C levels are associated with lifespan in several animal models. Furthermore, clinical studies have shown that the blood vitamin C levels are lower in middle-aged and older adults than in younger adults. Lower blood vitamin C levels have also been observed in various pathological conditions such as chronic kidney disease and chronic obstructive pulmonary disease in the elderly. These observations suggest the implications of vitamin C in age-related pathological mechanisms owing to its physiological functions.


Aging , Ascorbic Acid , Humans , Aging/physiology , Animals , Longevity/physiology , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/metabolism
5.
Bioelectrochemistry ; 158: 108726, 2024 Aug.
Article En | MEDLINE | ID: mdl-38733722

Mucus hypersecretion resulting from excessive proliferation and metaplasia of goblet cells in the airways is the pathological foundation for Chronic obstructive pulmonary disease (COPD). Clinical trials have confirmed the clinical efficacy of pulsed electric field ablation (PFA) for COPD, but its underlying mechanisms is poorly understood. Cellular and animal models of COPD (rich in goblet cells) were established in this study to detect goblet cells' sensitivity to PFA. Schwan's equation was adopted to calculate the cells' transmembrane potential and the electroporation areas in the cell membrane. We found that goblet cells are more sensitive to low-intensity PFA (250 V/cm-500 V/cm) than BEAS-2B cells. It is attributed to the larger size of goblet cells, which allows a stronger transmembrane potential formation under the same electric field strength. Additionally, the transmembrane potential of larger-sized cells can reach the cell membrane electroporation threshold in more areas. Trypan blue staining confirmed that the cells underwent IRE rate was higher in goblet cells than in BEAS-2B cells. Animal experiments also confirmed that the airway epithelium of COPD is more sensitive to PFA. We conclude that lower-intensity PFA can selectively kill goblet cells in the COPD airway epithelium, ultimately achieving the therapeutic effect of treating COPD.


Electroporation , Goblet Cells , Pulmonary Disease, Chronic Obstructive , Goblet Cells/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/therapy , Animals , Humans , Electroporation/methods , Cell Line , Membrane Potentials , Male , Ablation Techniques/methods , Electricity , Mice
6.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745304

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Mice, Inbred C57BL , PPAR gamma , Physical Conditioning, Animal , Pulmonary Disease, Chronic Obstructive , Wnt Signaling Pathway , Animals , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/metabolism , Male , Wnt Signaling Pathway/physiology , Mice , Physical Conditioning, Animal/physiology , PPAR gamma/metabolism , Disease Models, Animal , Lung/metabolism , Lung/physiopathology , Inflammation/metabolism
7.
Respir Med ; 227: 107658, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704051

Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is associated with worse clinical outcomes and decreased survival rates. In absence of disease specific diagnostic/therapeutic targets and unclear pathophysiology, there is an urgent need for the identification of potential genetic/molecular markers and disease associated pathways. The present study aims to use a bioinformatics approach to identify and validate hypoxia-associated gene signatures in COPD-PH patients. Additionally, hypoxia-related inflammatory profile is also explored in these patients. Microarray dataset obtained from the Gene Expression Omnibus repository was used to identify differentially expressed genes (DEGs) in a hypoxic PH mice model. The top three hub genes identified were further validated in COPD-PH patients, with chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL12 showing significant changes in comparison to healthy controls. Furthermore, multiplexed analysis of 10 inflammatory cytokines, tumor necrosis factor alpha (TNF-α), transforming growth factor ß (TGF-ß), interleukin 1-beta (IL-1ß), IL-4, IL-5, IL-6, IL-13, IL-17, IL-18 and IL-21 was also performed. These markers showed significant changes in COPD-PH patients as compared to controls. They also exhibited the ability to differentially diagnose COPD-PH patients in comparison to COPD. Additionally, IL-6 and IL-17 showed significant positive correlation with systolic pulmonary artery pressure (sPAP). This study is the first report to assess the levels of CXCL9 and CXCL12 in COPD-PH patients and also explores their link with the inflammatory profile of these patients. Our findings could be extended to better understand the underlying disease mechanism and possibly used for tailoring therapies exclusive for the disease.


Chemokine CXCL12 , Computational Biology , Cytokines , Hypertension, Pulmonary , Hypoxia , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Cytokines/metabolism , Cytokines/genetics , Computational Biology/methods , Humans , Hypoxia/genetics , Hypoxia/metabolism , Animals , Mice , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Hypertension, Pulmonary/genetics , Chemokine CXCL9/genetics , Gene Expression Profiling , Male , Female , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Middle Aged
8.
COPD ; 21(1): 2342797, 2024 12.
Article En | MEDLINE | ID: mdl-38712759

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


AMP-Activated Protein Kinases , Epithelial Cells , F-Box Proteins , Protein Serine-Threonine Kinases , Pulmonary Disease, Chronic Obstructive , Smoke , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Mice , Smoke/adverse effects , F-Box Proteins/metabolism , F-Box Proteins/genetics , AMP-Activated Protein Kinase Kinases , Cell Line , Proteolysis/drug effects , Leupeptins/pharmacology , Male , Cycloheximide/pharmacology , RNA, Small Interfering , Mice, Inbred C57BL , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Cigarette Smoking/adverse effects
9.
Cells ; 13(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38786103

Cigarette smoke is one of the main factors in Chronic Obstructive Pulmonary Disease (COPD), a respiratory syndrome marked by persistent respiratory symptoms and increasing airway obstruction. Perturbed NAD+/NADH levels may play a role in various diseases, including lung disorders like COPD. In our study, we investigated the preventive effect of NADH supplementation in an experimental model of COPD induced by cigarette smoke extract (CSE). N = 64 mice randomly distributed in eight groups were injected with NADH (two doses of 100 mg/kg or 200 mg/kg) or dexamethasone (2 mg/kg) before being exposed to CSE for up to 9 weeks. Additionally, NADH supplementation preserved lung antioxidant defenses by preventing the functional loss of key enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and the expression levels of glutathione (GSH) (n = 4, p < 0.001). It also reduced oxidative damage markers, such as malondialdehyde (MDA) and nitrites (n = 4, p < 0.001). A marked increase in tissue myeloperoxidase activity was assessed (MPO), confirming neutrophils implication in the inflammatory process. The latter was significantly ameliorated in the NADH-treated groups (p < 0.001). Finally, NADH prevented the CSE-induced secretion of cytokines such as Tumor Necrosis Factor alpha (TNF-α), IL-17, and IFN-y (n = 4, p < 0.001). Our study shows, for the first time, the clinical potential of NADH supplementation in preventing key features of COPD via its unique anti-inflammatory and antioxidant properties.


Disease Models, Animal , Mice, Inbred BALB C , NAD , Pneumonia , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/prevention & control , Pulmonary Disease, Chronic Obstructive/etiology , NAD/metabolism , Mice , Pneumonia/prevention & control , Pneumonia/metabolism , Pneumonia/pathology , Injections, Intraperitoneal , Smoke/adverse effects , Oxidative Stress/drug effects , Male , Antioxidants/metabolism , Antioxidants/pharmacology , Cytokines/metabolism , Lung/pathology , Lung/metabolism , Lung/drug effects , Peroxidase/metabolism
10.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791100

Chronic obstructive pulmonary disease (COPD) is comprised of histopathological alterations such as pulmonary emphysema and peribronchial fibrosis. Matrix metalloproteinase 9 (MMP-9) is one of the key enzymes involved in both types of tissue remodeling during the development of lung damage. In recent studies, it was demonstrated that deflamin, a protein component extracted from Lupinus albus, markedly inhibits the catalytic activity of MMP-9 in experimental models of colon adenocarcinoma and ulcerative colitis. Therefore, in the present study, we investigated for the first time the biological effect of deflamin in a murine COPD model induced by chronic exposure to ozone. Ozone exposure was carried out in C57BL/6 mice twice a week for six weeks for 3 h each time, and the treated group was orally administered deflamin (20 mg/kg body weight) after each ozone exposure. The histological results showed that deflamin attenuated pulmonary emphysema and peribronchial fibrosis, as evidenced by H&E and Masson's trichrome staining. Furthermore, deflamin administration significantly decreased MMP-9 activity, as assessed by fluorogenic substrate assay and gelatin zymography. Interestingly, bioinformatic analysis reveals a plausible interaction between deflamin and MMP-9. Collectively, our findings demonstrate the therapeutic potential of deflamin in a COPD murine model, and suggest that the attenuation of the development of lung tissue damage occurs by deflamin-regulated MMP-9 catalytic activity.


Disease Models, Animal , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Ozone , Pulmonary Disease, Chronic Obstructive , Animals , Matrix Metalloproteinase 9/metabolism , Ozone/pharmacology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/chemically induced , Mice , Lung/pathology , Lung/drug effects , Lung/metabolism , Male
11.
Clin Transl Med ; 14(5): e1679, 2024 May.
Article En | MEDLINE | ID: mdl-38706045

Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.


Lipidomics , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Lipidomics/methods , Smoking/adverse effects , Smoking/metabolism , Lipid Metabolism/genetics , Male , Female , Metabolomics/methods , Middle Aged
12.
Nutrients ; 16(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38794746

BACKGROUND: Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE: Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS: Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS: Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS: Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.


Lacticaseibacillus rhamnosus , Macrophages , Oxidative Stress , Pulmonary Disease, Chronic Obstructive , Receptors, G-Protein-Coupled , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Oxidative Stress/drug effects , Receptors, G-Protein-Coupled/metabolism , Mice , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Cytokines/metabolism , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Smoke/adverse effects , Dexamethasone/pharmacology , Butyrates/pharmacology , Lung/drug effects , Lung/metabolism
13.
Sci Rep ; 14(1): 12042, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802460

T cells are one of the main cell types shaping the immune microenvironment in chronic obstructive pulmonary disease (COPD). They persist andplay cytotoxic roles. The purpose of this study aimed to explore the potential related-genes of T cells in lung tissue of COPD. Chip data GSE38974 and single_celldata GSE196638 were downloaded from the GEO database. Difference analyses and WGCNA of GSE38974 were performed to identify DEGs and the modules most associated with the COPD phenotype. Various cell subsets were obtained by GSE196638, and DEGs of T cells were further identified. GO, GSEA and KEGG enrichment analyses were conducted to explore the biological functions and regulatory signaling pathways of the DEGs and DEGs of T cells. The intersection of the DEGs, module genes and DEGs of T cells was assessed to acquire related-genes of T cells. The mRNA and protein expression levels of related-genes ofT cells were verified in lung tissue of mouse with emphysema model. Based on GSE38974 difference analysis, 3811 DEGs were obtained. The results of WGCNA showed that the red module had the highest correlation coefficient with the COPD phenotype. GSE196638 analysis identified 124 DEGs of T cells. The GO, GSEAand KEGG enrichment analyses mainly identified genes involved in I-kappaB kinase/NF-kappaB signaling, receptor signaling pathway via STAT, regulationof CD4-positive cells, regulation of T-helper cell differentiation, chemokine signaling pathway, Toll-likereceptor signaling pathway, CD8-positive cells, alpha-beta T cell differentiation, MAPK signaling pathway and Th17 cell differentiation. The DEGs, genes of the red module and DEGs of T cells were overlapped to acquire FOXO1 and DDX17. The results of RT-qPCR and Western Blot indicate that the mRNA and protein expression levels of FOXO1 and DDX17 in lung tissue of emphysema mice were significantly higher compared with those in air-exposed mice. FOXO1 as well as DDX17 may be related-genesof T cells in lung tissue of patient with COPD, and their participation in the biological processes of different signaling pathways may inspire further COPD research.


Computational Biology , Lung , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Computational Biology/methods , Animals , Mice , Lung/metabolism , Lung/pathology , Lung/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Humans , Gene Expression Profiling , Signal Transduction , Disease Models, Animal , Gene Regulatory Networks , Databases, Genetic
14.
Respir Res ; 25(1): 186, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678295

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Apoptosis , Influenza A Virus, H3N2 Subtype , Melatonin , Pulmonary Disease, Chronic Obstructive , Animals , Melatonin/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/virology , Pulmonary Disease, Chronic Obstructive/physiopathology , Mice , Apoptosis/drug effects , RAW 264.7 Cells , Influenza A Virus, H3N2 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/immunology , Mice, Inbred C57BL , Male , Macrophages/drug effects , Macrophages/metabolism , Disease Progression , Cell Polarity/drug effects , Disease Models, Animal , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology
15.
Article En | MEDLINE | ID: mdl-38650680

Introduction: The Lifei Decoction (LD) is a commonly utilized Chinese medicine for the treatment of sepsis and bronchial inflammation. However, its therapeutic potential in chronic obstructive pulmonary disease (COPD) remains unknown. Therefore, the objective of this study was to investigate the therapeutic efficacy and underlying mechanism of LD in a mouse model of COPD induced by cigarette smoke (CS) combined with lipopolysaccharide (LPS). Methods: Hematoxylin-eosin (H&E) staining was employed to observe the pathological alterations in lung tissue, while ELISA was utilized for the detection of levels of inflammatory factors in both lung tissue and bronchoalveolar lavage fluid (BALF). Additionally, Western blot analysis was conducted to assess the expression of p-NF-κB, GDF11, ZO-1, and Occludin-1 proteins. The changes in intestinal flora were evaluated using the viable bacteria count method. Results: The administration of LD demonstrates significant efficacy in mitigating pulmonary tissue damage in a murine model, while concurrently inhibiting the activation of the inflammatory pathway NF-κB to attenuate the levels of pro-inflammatory factors. Moreover, LD exhibits the capacity to enhance the expression of intestinal functional proteins ZO-1 and Occludin-1, thereby rectifying dysbiosis within the gut microbiota. Conclusion: The LD shows great promise as a potential treatment for COPD.


Anti-Inflammatory Agents , Disease Models, Animal , Drugs, Chinese Herbal , Inflammation Mediators , Lipopolysaccharides , Lung , NF-kappa B , Occludin , Pulmonary Disease, Chronic Obstructive , Signal Transduction , Zonula Occludens-1 Protein , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/microbiology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/microbiology , Drugs, Chinese Herbal/pharmacology , Zonula Occludens-1 Protein/metabolism , NF-kappa B/metabolism , Occludin/metabolism , Inflammation Mediators/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Mice, Inbred C57BL , Smoke/adverse effects , Bronchoalveolar Lavage Fluid , Cigarette Smoking/adverse effects , Mice
16.
Article En | MEDLINE | ID: mdl-38633565

Background: Airway remodeling is a significant pathological characteristic of chronic obstructive pulmonary disease (COPD). In recent years, hypoxia-inducible factor 1-α (HIF-1α), a member of the hypoxia-inducible factor protein family, has gained attention. However, the potential correlation between HIF-1α and COPD airway remodeling remains unclear. Objective: This study explored the expression patterns of HIF-1α in patients with COPD and its association with airway remodelling. This investigation aims to furnish novel insights for the clinical identification of prospective therapeutic targets for ameliorating COPD-related airway remodelling. Patients and Methods: A total of 88 subjects were included, consisting of 28 controls and 60 COPD patients. Various staining methods were employed to observe the pathological changes in airway tissues. Immunohistochemistry was utilized to detect the expression of HIF-1α and MMP9 (matrix metalloproteinase 9) in airway tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure the concentration in serum of HIF-1α and MMP9. Computed tomography (CT) airway parameters were measured in all participants to assess airway remodeling. The relationship between serum HIF-1α and MMP9 concentrations and airway parameters was analyzed. Results: Staining of airway structures in COPD patients revealed significant pathological changes associated with airway remodelling, including mixed cilia and subepithelial fibrosis. The expression of HIF-1α and MMP9 was significantly higher in both human airway tissue and serum compared to controls. Chest CT scans exhibited typical imaging features of airway remodeling and increased airway parameters. Conclusion: The findings suggest a correlation between increased HIF-1α expression and COPD airway remodelling. This study provides novel evidence that HIF-1α may be a potential biomarker for airway remodelling in COPD patients.


Airway Remodeling , Hypoxia-Inducible Factor 1, alpha Subunit , Pulmonary Disease, Chronic Obstructive , Humans , Airway Remodeling/genetics , Biomarkers , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Matrix Metalloproteinase 9 , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673851

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


HMGB1 Protein , Histone Deacetylases , Leukocyte Elastase , Macrophages , Sirtuin 1 , Humans , Acetylation , Cells, Cultured , Cystic Fibrosis/metabolism , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , HMGB1 Protein/metabolism , Hydroxamic Acids , Leukocyte Elastase/metabolism , Macrophages/metabolism , Monocytes/metabolism , Proteolysis , Pulmonary Disease, Chronic Obstructive/metabolism , Sirtuin 1/metabolism
18.
Expert Rev Mol Diagn ; 24(5): 409-421, 2024 May.
Article En | MEDLINE | ID: mdl-38635513

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) accounts for 545 million people living with chronic respiratory disorders and is the third leading cause of morbidity and mortality around the world. COPD is a progressive disease, characterized by episodes of acute worsening of symptoms such as cough, dyspnea, and sputum production. AREAS COVERED: Airway inflammation is a prominent feature of COPD. Chronic airway inflammation results in airway structural remodeling and emphysema. Persistent airway inflammation is a treatable trait of COPD and plays a significant role in disease development and progression. In this review, the authors summarize the current and emerging biomarkers that reveal the heterogeneity of airway inflammation subtypes, clinical outcomes, and therapeutic response in COPD. EXPERT OPINION: Airway inflammation can be broadly categorized as eosinophilic (type 2 inflammation) and non-eosinophilic (non-type 2 inflammation) in COPD. Currently, blood eosinophil counts are incorporated in clinical practice guidelines to identify COPD patients who are at a higher risk of exacerbations and lung function decline, and who are likely to respond to inhaled corticosteroids. As new therapeutics are being developed for the chronic management of COPD, it is essential to identify biomarkers that will predict treatment response.


Biomarkers , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/blood , Humans , Biomarkers/blood , Eosinophils/metabolism , Inflammation/metabolism , Prognosis
19.
Exp Gerontol ; 191: 112441, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38685507

Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterised by irreversible airflow limitation. The elderly are a vulnerable population for developing COPD. With the growth of age, physiological degenerative changes occur in the thorax, bronchus, lung and vascular wall, which can lead to age-related physiological attenuation of lung function in the elderly, so the prevalence of COPD increases with age. Its pathogenesis has not yet been truly clarified. Mitophagy plays an important role in maintaining the stability of mitochondrial function and intracellular environment by scavenging damaged mitochondria. Currently, studies have shown that trophoblast antigen 2 (TROP2) expression is up-regulated in airway basal cells of patients with COPD, suggesting that TROP2 is involved in the progression of COPD. However, whether it is involved in disease progression by regulating mitochondrial function remains unclear. In this study, compared with non-smoking non-COPD patients, the expression of TROP2 in lung tissues of smoking non-COPD patients and patients with COPD increased, and TROP2 expression in patients with COPD was higher than that in smoking non-COPD patients. To further explore the role of TROP2, we stimulated BEAS-2B with cigarette smoke to construct an in vitro model. We found that TROP2 expression increased, whereas TROP2 silencing reversed the cigarette smoke extract-induced decrease in mitochondrial membrane potential, increased reactive oxygen species content, decreased adenosine triphosphate (ATP) production, increased inflammatory factor secretion and increased apoptosis. In addition, we searched online bioinformatics and screened the gene dynamin-related protein 1 (DRP1) related to mitophagy as the research object. Co-IP assay verified the binding relationship between DRP1 and TROP2. Further study found that TROP2 promoted mitophagy and apoptosis of BEAS-2B cells by up-regulating the expression of DRP1. In addition, PTEN-induced putative kinase 1 (PINK1) is a potential binding protein of DRP1, and DRP1 accelerated mitophagy and apoptosis of BEAS-2B cells by promoting the expression of PINK1. We established a COPD SD rat model by cigarette smoke exposure and LPS instillation and treated it by intraperitoneal injection of si-TROP2. The results showed that TROP2 silencing restored lung function and reduced the secretion of inflammatory factors in bronchoalveolar lavage fluid. In conclusion, TROP2 can be used as a new reference for COPD treatment.


Antigens, Neoplasm , Apoptosis , Cell Adhesion Molecules , Disease Progression , Dynamins , Mitophagy , Protein Kinases , Pulmonary Disease, Chronic Obstructive , Up-Regulation , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Aged , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Female , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Animals , Protein Kinases/metabolism , Protein Kinases/genetics , Lung/metabolism , Lung/pathology , Middle Aged , Rats , Mitochondria/metabolism , Cell Line , Rats, Sprague-Dawley
20.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 339-345, 2024 Apr 12.
Article Zh | MEDLINE | ID: mdl-38599809

Objective: To construct and characterize conditional Src homology region 2 protein tyrosine phosphatase 1 (SHP-1) knockout mice in airway epithelial cells and to observe the effect of defective SHP-1 expression in airway epithelial cells on the emphysema phenotype in chronic obstructive pulmonary disease (COPD). Methods: To detect the expression of SHP-1 in the airway epithelium of COPD patients. CRISPR/Cas9 technology was used to construct SHP-1flox/flox transgenic mice, which were mated with airway epithelial Clara protein 10-cyclase recombinase and estrogen receptor fusion transgenic mice (CC10-CreER+/+), and after intraperitoneal injection of tamoxifen, airway epithelial SHP-1 knockout mice were obtained (SHP-1flox/floxCC10-CreER+/-, SHP-1Δ/Δ). Mouse tail and lung tissue DNA was extracted and PCR amplified to discriminate the genotype of the mice; the knockout effect of SHP-1 gene in airway epithelial cells was verified by qRT-PCR, Western blotting, and immunofluorescence. In addition, an emphysema mouse model was constructed using elastase to assess the severity of emphysema in each group of mice. Results: Airway epithelial SHP-1 was significantly downregulated in COPD patients. Genotyping confirmed that SHP-1Δ/Δ mice expressed CC10-CreER and SHP-1-flox. After tamoxifen induction, we demonstrated the absence of SHP-1 protein expression in airway epithelial cells of SHP-1Δ/Δ mice at the DNA, RNA, and protein levels, indicating that airway epithelial cell-specific SHP-1 knockout mice had been successfully constructed. In the emphysema animal model, SHP-1Δ/Δ mice had a more severe emphysema phenotype compared with the control group, which was manifested by disorganization of alveolar structure in lung tissue and rupture and fusion of alveolar walls to form pulmonary alveoli. Conclusions: The present study successfully established and characterized the SHP-1 knockout mouse model of airway epithelial cells, which provides a new experimental tool for the in-depth elucidation of the role of SHP-1 in the emphysema process of COPD and its mechanism.


Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Mice , Animals , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Epithelial Cells/metabolism , Mice, Transgenic , Mice, Knockout , Phenotype , DNA , Tamoxifen
...