Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.340
Filter
1.
Oncol Res ; 32(7): 1197-1207, 2024.
Article in English | MEDLINE | ID: mdl-38948022

ABSTRACT

Breast cancer, a predominant global health issue, requires ongoing exploration of new therapeutic strategies. Palbociclib (PAL), a well-known cyclin-dependent kinase (CDK) inhibitor, plays a critical role in breast cancer treatment. While its efficacy is recognized, the interplay between PAL and cellular autophagy, particularly in the context of the RAF/MEK/ERK signaling pathway, remains insufficiently explored. This study investigates PAL's inhibitory effects on breast cancer using both in vitro (MCF7 and MDA-MB-468 cells) and in vivo (tumor-bearing nude mice) models. Aimed at elucidating the impact of PAL on autophagic processes and exploring the potential of combining it with trametinib (TRA), an MEK inhibitor, our research seeks to address the challenge of PAL-induced drug resistance. Our findings reveal that PAL significantly decreases the viability of MCF7 and MDA-MB-468 cells and reduces tumor size in mice while showing minimal cytotoxicity in MCF10A cells. However, PAL also induces protective autophagy, potentially leading to drug resistance via the RAF/MEK/ERK pathway activation. Introducing TRA effectively neutralized this autophagy, enhancing PAL's anti-tumor efficacy. A combination of PAL and TRA synergistically reduced cell viability and proliferation, and in vivo studies showed notable tumor size reduction. In conclusion, the PAL and TRA combination emerges as a promising strategy for overcoming PAL-induced resistance, offering a new horizon in breast cancer treatment.


Subject(s)
Autophagy , Breast Neoplasms , Piperazines , Pyridines , Pyridones , Pyrimidinones , Xenograft Model Antitumor Assays , Humans , Animals , Autophagy/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridones/pharmacology , Pyridones/therapeutic use , Female , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Drug Synergism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mice, Nude , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Survival/drug effects , MCF-7 Cells
2.
Low Urin Tract Symptoms ; 16(4): e12529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956950

ABSTRACT

OBJECTIVES: This study aimed to evaluate the efficacy and safety of Vibegron for the treatment of residual overactive bladder (OAB) symptoms after laser vaporization of the prostate (photo-selective vaporization of the prostate, contact laser vaporization of the prostate, and thulium laser vaporization). METHODS: This randomized, open-label, parallel-group, single-center superiority trial with a 12-week observation (jRCTs071190040) enrolled male patients with OAB aged 40 years or older who had undergone laser vaporization of the prostate for not less than 12 weeks and not more than 1 year earlier. Patients were allocated to receive Vibegron 50 mg once daily or follow-up without treatment for 12 weeks. RESULTS: Forty-seven patients were enrolled between January 2020 and March 2023. The median age (interquartile range) was 75.5 (72.5-78.5) years for the Vibegron group and 76.5 (71.0-81.0) years for the control group. The intergroup difference in the mean change (95% confidence interval) in the 24-hour urinary frequency at 12 weeks after randomization was -3.66 (-4.99, -2.33), with a significant decrease for the Vibegron group. The Overactive Bladder Symptom Score, International Prostate Symptom Score, IPSS storage score, and Overactive Bladder Questionnaire score significantly improved for the Vibegron group. Voided volume per micturition also increased for the Vibegron group. CONCLUSIONS: The administration of 50 mg of Vibegron once daily for 12 weeks showed significant improvement compared with follow-up without treatment in bladder storage (OAB) symptoms after laser vaporization of the prostate for symptomatic benign prostatic hyperplasia.


Subject(s)
Laser Therapy , Urinary Bladder, Overactive , Humans , Male , Aged , Urinary Bladder, Overactive/etiology , Urinary Bladder, Overactive/drug therapy , Prospective Studies , Laser Therapy/methods , Laser Therapy/adverse effects , Prostatic Hyperplasia/surgery , Prostatic Hyperplasia/complications , Treatment Outcome , Aged, 80 and over , Pyrimidinones , Pyrrolidines
3.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992067

ABSTRACT

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Subject(s)
Bortezomib , Cell Cycle Proteins , Mitosis , Proteasome Endopeptidase Complex , Protein-Tyrosine Kinases , Pyroptosis , Pyroptosis/drug effects , Humans , Mice , Animals , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Mitosis/drug effects , Mitosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Bortezomib/pharmacology , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Proteasome Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Xenograft Model Antitumor Assays , Gasdermins , Pyrimidinones
4.
Taiwan J Obstet Gynecol ; 63(4): 471-478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004472

ABSTRACT

Platinum-resistant ovarian cancer (PROC) refers to disease progression within 6 months after the completion of platinum-based chemotherapy. Historically, treatment options for PROC were limited with a poor prognosis and non-platinum single agent plus bevacizumab has been the mainstay of treatment. Fortunately, there have been notable advancements in recent years, leading to an advance in treatment paradigms for this challenging disease. Various combinations of chemotherapy, targeted agents such as poly (ADP-ribose) polymerase (PARP) inhibitors, and immunotherapy are being explored for an improved treatment outcome. Antibody-drug conjugates targeting folate receptor alpha, which deliver a cytotoxic payload directly to cancer cells, have emerged as a promising therapeutic approach for PROC. WEE1 inhibitors, such as adavosertib, function by inhibiting the WEE1 kinase activity, leading to premature entry of a cell into mitosis phase and thus increased DNA damage. It has been observed that cancer cells with TP53 mutations may be more sensitive to WEE1 inhibitors. Biomarker testing such as analysis of the expression level of folate receptor alpha or mutation in TP53 may be applicable for identifying patients who are more likely to respond to the specific therapy, enabling a more personalized treatment approach. This overview summarizes key clinical findings on the efficacy and safety of theses novel biomarker-driven therapeutic approaches.


Subject(s)
Drug Resistance, Neoplasm , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/therapeutic use , Folate Receptor 1/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy/methods , Immunoconjugates/therapeutic use , Pyrazoles/therapeutic use , Tumor Suppressor Protein p53 , Pyrimidinones/therapeutic use
5.
J Urol ; 212(2): 267-279, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38979756

ABSTRACT

PURPOSE: We aimed to evaluate the therapeutic efficacy and safety of TAS-303, a highly selective noradrenaline reuptake inhibitor, in Japanese women with stress urinary incontinence (SUI). MATERIALS AND METHODS: A double-blind, placebo-controlled, phase 2 study randomized women with SUI symptoms to once-daily oral administration of TAS-303 18 mg or placebo for 12 weeks. The primary endpoint was percent change from baseline to Week 12 in mean SUI episode frequency per 24 hours (SUIEF) in the per-protocol set. The secondary endpoints were the proportion of patients with ≥ 50% reduction in mean SUIEF, incontinence episode frequency, incontinence amount, health-related quality of life, and safety in the full analysis set. RESULTS: In total, 231 patients were randomized to TAS-303 (n = 116) or placebo (n = 115). At Week 12, TAS-303 had superior efficacy to placebo, with a least squares mean percent change in mean SUIEF of -57.7% vs -46.9%, respectively, in the per-protocol set (least squares mean difference -10.8%; P = .036). TAS-303 showed some evidence of improved incontinence episode frequency, incontinence amount, and health-related quality of life (although not statistically significant) at Week 12 vs placebo in the full analysis set. The between-group difference in SUIEF improvement was more clearly confirmed in patients with ≥ 2 SUI episodes daily at baseline. All adverse events (AEs) with TAS-303 were mild or moderate; there were no serious AEs, AEs leading to discontinuation, or nervous system- or gastrointestinal-related (eg, nausea or vomiting) adverse drug reactions. CONCLUSIONS: Once-daily TAS-303 18 mg showed superior efficacy to placebo for the treatment of SUI in Japanese women, with an adequate safety profile. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04512053; Japan Registry of Clinical Trials: jRCT2080225307 (JapicCTI-205403 before site integration).


Subject(s)
Urinary Incontinence, Stress , Humans , Double-Blind Method , Female , Urinary Incontinence, Stress/drug therapy , Middle Aged , Adult , Treatment Outcome , Quality of Life , Aged , Pyrrolidines/administration & dosage , Pyrrolidines/adverse effects , Pyrrolidines/therapeutic use , Pyrimidinones
6.
Genome Biol ; 25(1): 143, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822412

ABSTRACT

BACKGROUND: Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS: Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS: Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Histone-Lysine N-Methyltransferase/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Myeloid-Lymphoid Leukemia Protein/genetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Cycle/drug effects , Core Binding Factor Alpha 2 Subunit/genetics
7.
Molecules ; 29(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930946

ABSTRACT

Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.


Subject(s)
Acute Kidney Injury , Cisplatin , Disease Models, Animal , Inflammation , Oxidative Stress , Pyridones , Pyrimidinones , Animals , Cisplatin/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Pyridones/pharmacology , Oxidative Stress/drug effects , Mice , Pyrimidinones/pharmacology , Inflammation/drug therapy , Inflammation/chemically induced , Inflammation/metabolism , Male , Cell Death/drug effects , Apoptosis/drug effects , Kidney Tubules/pathology , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Lipid Peroxidation/drug effects , Cytokines/metabolism , MAP Kinase Signaling System/drug effects
8.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849340

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , MAP Kinase Signaling System , Mice, Transgenic , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Humans , Female , Animals , Male , Mice , MAP Kinase Signaling System/drug effects , Pyridones/pharmacology , Pyridones/therapeutic use , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Prefrontal Cortex/metabolism , Transcriptome , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Sex Characteristics , Aged , Sex Factors , Pyrimidinones
9.
Cell Commun Signal ; 22(1): 324, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867255

ABSTRACT

BACKGROUND: KRAS-mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS-G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c-MET), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS-mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. METHODS: Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS-mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS-mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. RESULTS: Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS-mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 (p = 0.014) for high levels of KRAS mRNA expression and 3.742 (p = 0.052) for high MET mRNA expression. CONCLUSIONS: We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS-mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Omeprazole , Proto-Oncogene Proteins c-met , Proto-Oncogene Proteins p21(ras) , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Animals , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Omeprazole/pharmacology , Omeprazole/therapeutic use , Mice , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays , Mice, Nude , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Female , Triazines/pharmacology , Triazines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Piperazines , Piperidines , Pyridazines , Pyridones
10.
Bioorg Med Chem ; 109: 117799, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38897138

ABSTRACT

Natural products as starting templates have shown historically major contribution to development of drugs. Inspired by the structure-function of an anticancer natural alkaloid Rutaecarpine, the Scaffold-hopped Acyclic Analogues of Rutaecarpine (SAAR) with 'N'-atom switch (1°-hop) and ring-opening (2°-hop) were investigated. A new synthetic route was developed for an effective access to the analogues, i.e. 2-indolyl-pyrido[1,2-a]pyrimidinones, which involved preparation of N-Boc-N'-phthaloyltryptamine/mexamine-bromides and pyridopyrmidinon-2-yl triflate, a nickel/palladium-catalysed Ullmann cross-coupling of these bromides and triflate, deprotection of phthalimide followed by N-aroylation, and Boc-deprotection. Fourteen novel SAAR-compounds were prepared, and they showed characteristic antiproliferative activity against various cancer cells. Three most active compounds (11a, 11b, and 11c) exhibited good antiproliferative activity, IC50 7.7-15.8 µM against human breast adenocarcinoma cells (MCF-7), lung cancer cells (A549), and colon cancer cells (HCT-116). The antiproliferative property was also observed in the colony formation assay. The SAAR compound 11b was found to have superior potency than original natural product Rutaecarpine and an anticancer drug 5-FU in antiproliferative activities with relatively lower cytotoxicity towards normal breast epithelial cells (MCF10A) and significantly higher inhibitory effect on cancer cells' migration. The compound 11b was found to possess favourable in silico physicochemical characteristics (lipophilicity-MLOGP, TPSA, and water solubility-ESOL, and others), bioavailability score, and pharmacokinetic properties (GI absorption, BBB non-permeant, P-gp, and CYP2D6). Interestingly, the compound 11b did not show any medicinal chemistry structural alert of PAINS and Brenk filter. The study represents for the first time the successful discovery of new potent anticancer chemotypes using Rutaecarpine natural alkaloid as starting template and reaffirms the significance of natural product-inspired scaffold-hopping technique in drug discovery research.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Indole Alkaloids , Quinazolines , Humans , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Indole Alkaloids/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Dose-Response Relationship, Drug , Quinazolinones
11.
Eur J Med Chem ; 275: 116568, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38889606

ABSTRACT

USP1 has emerged as a novel and potential target for drug discovery in single therapeutic agents or combination with chemotherapy and molecular targeted therapy. In this study, based on the disclosed structure of ML323 and KSQ-4279, we designed and synthesized a series of pyrido[2,3-d]pyrimidin-7(8H)-one derivatives as potent USP1 inhibitors by cyclization strategy and the systematic structure-activity relationship exploration was conducted. The representative compounds 1k, 1m and 2d displayed excellent USP1/UAF inhibition and exhibited strong antiproliferation effect in NCI-H1299 cells. Further flow cytometry analysis revealed that they could arrest breast cancer cells MDA-MB-436 in the S phase. Inhibition mechanism study of compound 1m indicated these derivatives acted as reversible and noncompetitive USP1 inhibitors. Of note, the combination of compound 1m with PARP inhibitor olaparib generated enhanced cell killing in olaparib-resistant MDA-MB-436/OP cells, and compound 1m exhibited excellent oral pharmacokinetic properties in mice. Overall, our efforts may provide a reliable basis for the development of novel USP1 inhibitor as a single therapeutic agent and in combination with PARP inhibitors.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Pyrimidinones , Humans , Structure-Activity Relationship , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Animals , Pyrimidinones/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/chemical synthesis , Molecular Structure , Mice , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitin-Specific Proteases/metabolism
12.
Curr Oncol ; 31(5): 2644-2649, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38785480

ABSTRACT

MEK inhibitors (MEKi) represent innovative and promising treatments for managing manifestations of neurofibromatosis type 1 (NF1). To mitigate potential ophthalmic side effects, such as MEKi-associated retinopathy (MEKAR), patients undergoing MEKi therapy routinely receive ophthalmology evaluations. Our study aims to assess the necessity of this regular screening within a predominantly pediatric NF1 population by examining the occurrence of ocular adverse events (OAE). A retrospective study evaluated 45 NF1 patients receiving MEKi. Inclusion criteria included baseline and follow-up examinations following the initiation of MEKi therapy. At each assessment, a comprehensive eye evaluation was performed, comprising a dilated fundus examination, ocular coherence tomography of the macula and nerve fiber layer, and Humphrey visual field testing. Twenty-six patients, with an average age of 13 years (range 2-23 years) and an average follow-up duration of 413 days were included in the analysis. Three different MEKi were used: selumetinib (77%), trametinib (23%), and mirdametinib (4%). None of the patients experienced retinopathy at any point during the study. Some patients had pre-existing optic neuropathies (27%), but no instances of nerve changes occurred after commencing MEKi therapy. Four patients (15%) exhibited symptoms of dry eye, all of which were effectively managed with topical lubrication.


Subject(s)
Neurofibromatosis 1 , Protein Kinase Inhibitors , Humans , Neurofibromatosis 1/complications , Neurofibromatosis 1/drug therapy , Child , Female , Male , Adolescent , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Child, Preschool , Young Adult , Retrospective Studies , Incidence , Eye Diseases/chemically induced , Adult , Benzimidazoles , Pyridones , Pyrimidinones
13.
Cell Commun Signal ; 22(1): 282, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778340

ABSTRACT

Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.


Subject(s)
Cell Movement , Extracellular Vesicles , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Melanoma/pathology , Melanoma/drug therapy , Melanoma/metabolism , Extracellular Vesicles/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Humans , Cell Movement/drug effects , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Vemurafenib/pharmacology , Pyrimidinones/pharmacology , Pyridones/pharmacology , Pyridones/therapeutic use , Imidazoles/pharmacology , Oximes/pharmacology
14.
BMJ Case Rep ; 17(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38719253

ABSTRACT

The combination therapy of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors is approved for treating patients with BRAF V600E-positive tumours, including melanoma and lung cancer. Several case reports indicated autoimmune side effects associated with the use of BRAF and MEK inhibitors. Still, the effects of these drugs on the immune system were not fully elucidated. Here, we report a patient with large-vessel vasculitis diagnosed after initiation of treatment with dabrafenib and trametinib for BRAF V600E-positive metastatic lung adenocarcinoma. She was a never-smoker woman in her early 70s who presented with a chronic cough and was diagnosed with BRAF V600E-positive metastatic lung adenocarcinoma by transbronchial lung biopsy. She was successfully treated with prednisolone and methotrexate while BRAF and MEK inhibitors were continued. We should be careful about autoimmune diseases using BRAF and MEK inhibitors.


Subject(s)
Adenocarcinoma of Lung , Imidazoles , Lung Neoplasms , Oximes , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Pyridones , Pyrimidinones , Vasculitis , Humans , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Female , Pyridones/adverse effects , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Pyrimidinones/adverse effects , Lung Neoplasms/drug therapy , Aged , Adenocarcinoma of Lung/drug therapy , Imidazoles/adverse effects , Imidazoles/therapeutic use , Oximes/adverse effects , Oximes/therapeutic use , Vasculitis/chemically induced , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Prednisolone/therapeutic use , Methotrexate/therapeutic use , Methotrexate/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
15.
Biochem Pharmacol ; 224: 116252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701866

ABSTRACT

The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Drug Resistance, Neoplasm , Melanoma , Neoplastic Stem Cells , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Retinal Dehydrogenase , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Cell Line, Tumor , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Retinal Dehydrogenase/metabolism , Protein Kinase Inhibitors/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pyrimidinones/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Pyridones/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Vemurafenib/pharmacology , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/genetics , Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Phenotype
16.
Bioorg Med Chem Lett ; 107: 129780, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38714262

ABSTRACT

Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , SOS1 Protein , Humans , SOS1 Protein/metabolism , SOS1 Protein/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Molecular Structure , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Proteolysis Targeting Chimera
17.
NPJ Syst Biol Appl ; 10(1): 51, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750040

ABSTRACT

In vertical inhibition treatment strategies, multiple components of an intracellular pathway are simultaneously inhibited. Vertical inhibition of the BRAFV600E-MEK-ERK signalling pathway is a standard of care for treating BRAFV600E-mutated melanoma where two targeted cancer drugs, a BRAFV600E-inhibitor, and a MEK inhibitor, are administered in combination. Targeted therapies have been linked to early onsets of drug resistance, and thus treatment strategies of higher complexities and lower doses have been proposed as alternatives to current clinical strategies. However, finding optimal complex, low-dose treatment strategies is a challenge, as it is possible to design more treatment strategies than are feasibly testable in experimental settings. To quantitatively address this challenge, we develop a mathematical model of BRAFV600E-MEK-ERK signalling dynamics in response to combinations of the BRAFV600E-inhibitor dabrafenib (DBF), the MEK inhibitor trametinib (TMT), and the ERK-inhibitor SCH772984 (SCH). From a model of the BRAFV600E-MEK-ERK pathway, and a set of molecular-level drug-protein interactions, we extract a system of chemical reactions that is parameterised by in vitro data and converted to a system of ordinary differential equations (ODEs) using the law of mass action. The ODEs are solved numerically to produce simulations of how pathway-component concentrations change over time in response to different treatment strategies, i.e., inhibitor combinations and doses. The model can thus be used to limit the search space for effective treatment strategies that target the BRAFV600E-MEK-ERK pathway and warrant further experimental investigation. The results demonstrate that DBF and DBF-TMT-SCH therapies show marked sensitivity to BRAFV600E concentrations in silico, whilst TMT and SCH monotherapies do not.


Subject(s)
Imidazoles , MAP Kinase Signaling System , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Pyridones , Pyrimidinones , Proto-Oncogene Proteins B-raf/genetics , Humans , Pyridones/pharmacology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/drug therapy , Melanoma/genetics , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidinones/pharmacology , Oximes/pharmacology , Computer Simulation , Models, Biological , Signal Transduction/drug effects , Signal Transduction/genetics , Mutation , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics
18.
Orphanet J Rare Dis ; 19(1): 199, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750525

ABSTRACT

Repurposing anticancer drugs to vascular malformations has significantly improved patient outcomes. Complex Lymphatic Anomalies (CLA) are part of the spectrum of lymphatic malformations (LMs) that share similar oncogenic mutations to cancer. We report the case of a young patient with highly symptomatic CLA who was initially treated with sirolimus, due to the frequent involvement of the PI3K-AKT-mTOR pathway in CLA pathogenesis. Despite an initial reduction in symptoms, sirolimus progressively lost its effectiveness. After an unsuccessful attempt with trametinib alone, sirolimus was added to trametinib and resulted in a significant, rapid and sustained improvement in symptoms. This suggests that, contrary to current dogmas, combination therapy using sub-therapeutic doses targeting both the PI3K and RAS pathways retains efficacy without generating the toxicity known for combination therapies, and is beneficial in the management of CLAs and potentially other vascular anomalies.


Subject(s)
Lymphatic Abnormalities , Pyridones , Pyrimidinones , Sirolimus , Humans , Lymphatic Abnormalities/drug therapy , Lymphatic Abnormalities/pathology , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Sirolimus/therapeutic use
19.
Cell Biol Int ; 48(8): 1185-1197, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38773713

ABSTRACT

Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.


Subject(s)
Breast Neoplasms , Cell Movement , Epithelial-Mesenchymal Transition , Lactic Acid , Monocarboxylic Acid Transporters , Mouth Neoplasms , Humans , Epithelial-Mesenchymal Transition/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Female , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/drug therapy , Lactic Acid/metabolism , Cell Movement/drug effects , Coumarins/pharmacology , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Symporters/metabolism , Symporters/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Tumor Microenvironment/drug effects , Pyrimidinones , Thiophenes
20.
Trials ; 25(1): 343, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790029

ABSTRACT

BACKGROUND: The oral gonadotropin-releasing hormone antagonist relugolix, which temporarily stops menstruation, is used to treat heavy menstrual bleeding, pelvic pressure, and low back pain in women with uterine fibroids. Treatment can also help women recover from low hemoglobin levels and possibly shrink the fibroids. However, evidence of preoperative use of relugolix before laparoscopic myomectomy is limited. Nevertheless, the treatment could reduce interoperative blood loss, decrease the risk of developing postoperative anemia, and shorten the operative time. Thus, we aim to test whether 12-week preoperative treatment with relugolix (40 mg orally, once daily) is similar to or not worse than leuprorelin (one injection every 4 weeks) to reduce intraoperative blood loss. METHODS: Efficacy and safety of preoperative administration of drugs will be studied in a multi-center, randomized, open-label, parallel-group, noninferiority trial enrolling premenopausal women ≥ 20 years of age, diagnosed with uterine fibroids and scheduled for laparoscopic myomectomy. Participants (n = 80) will be recruited in the clinical setting of participating institutions. The minimization method (predefined factors: presence or absence of fibroids ≥ 9 cm and the International Federation of Gynecology and Obstetrics [FIGO] type 1-5 fibroids) with randomization is used in a 1:1 allocation. Relugolix is a 40-mg oral tablet taken once a day before a meal, for 12 weeks, up to the day before surgery. Leuprorelin is a 1.88 mg, or 3.75 mg subcutaneous injection, given in three 4-week intervals during patient visits before the surgery. For the primary outcome measure of intraoperative bleeding, the blood flow is collected from the body cavity, surgical sponges, and collection bag and measured in milliliters. Secondary outcome measures are hemoglobin levels, myoma size, other surgical outcomes, and quality-of-life questionnaire responses (Kupperman Konenki Shogai Index and Uterine Fibroid Symptoms-Quality of Life). DISCUSSION: Real-world evidence will be collected in a clinical setting to use pre-treatment with an oral gonadotropin-releasing hormone antagonist to reduce intraoperative bleeding in women who undergo laparoscopic myomectomy. TRIAL REGISTRATION: jRCTs031210564 was registered on 19 January 2022 in the Japan Registry of Clinical Trials ( https://jrct.niph.go.jp ).


Subject(s)
Laparoscopy , Leiomyoma , Leuprolide , Multicenter Studies as Topic , Premenopause , Uterine Myomectomy , Uterine Neoplasms , Humans , Female , Leiomyoma/surgery , Leiomyoma/drug therapy , Leuprolide/therapeutic use , Leuprolide/administration & dosage , Uterine Myomectomy/adverse effects , Uterine Neoplasms/surgery , Treatment Outcome , Preoperative Care/methods , Equivalence Trials as Topic , Antineoplastic Agents, Hormonal/therapeutic use , Antineoplastic Agents, Hormonal/administration & dosage , Adult , Blood Loss, Surgical/prevention & control , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Time Factors , Randomized Controlled Trials as Topic , Phenylurea Compounds , Pyrimidinones
SELECTION OF CITATIONS
SEARCH DETAIL