Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.043
Filter
1.
World J Microbiol Biotechnol ; 40(10): 324, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39294482

ABSTRACT

High fidelity DNA polymerase from Pyrococcus furiosus (Pfupol) is an attractive alternative to the highly popular DNA polymerase from Thermus aquaticus. Because this enzyme is in great demand for biotechnological applications, optimizing Pfupol production is essential to supplying the industry's expanding demand. T7-induced promoter expression in Escherichia coli expression systems is used to express recombinant Pfupol; however, this method is not cost-effective. Here, we have effectively developed an optimized process for the autoinduction approach of Pfupol expression in a defined medium. To better examine Pfupol's activities, its purified fraction was used. A 71 mg/L of pure Pfupol was effectively produced, resulting in a 2.6-fold increase in protein yield when glucose, glycerol, and lactose were added in a defined medium at concentrations of 0.05%, 1%, and 0.6%, respectively, and the condition for production in a 5 L bioreactor was as follow: 200 rpm, 3 vvm, and 10% inoculant. Furthermore, the protein exhibited 1445 U/mg of specific activity when synthesized in its active state. This work presents a high level of Pfupol production, which makes it an economically viable and practically useful approach.


Subject(s)
Bioreactors , Culture Media , DNA-Directed DNA Polymerase , Escherichia coli , Pyrococcus furiosus , Recombinant Proteins , Pyrococcus furiosus/genetics , Pyrococcus furiosus/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Bioreactors/microbiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Culture Media/chemistry , Glucose/metabolism , Promoter Regions, Genetic , Glycerol/metabolism , Lactose/metabolism
2.
Front Cell Infect Microbiol ; 14: 1419949, 2024.
Article in English | MEDLINE | ID: mdl-39119294

ABSTRACT

Human respiratory syncytial virus (HRSV) is the most prevalent pathogen contributing to acute respiratory tract infections (ARTI) in infants and young children and can lead to significant financial and medical costs. Here, we developed a simultaneous, dual-gene and ultrasensitive detection system for typing HRSV within 60 minutes that needs only minimum laboratory support. Briefly, multiplex integrating reverse transcription-recombinase polymerase amplification (RT-RPA) was performed with viral RNA extracted from nasopharyngeal swabs as a template for the amplification of the specific regions of subtypes A (HRSVA) and B (HRSVB) of HRSV. Next, the Pyrococcus furiosus Argonaute (PfAgo) protein utilizes small 5'-phosphorylated DNA guides to cleave target sequences and produce fluorophore signals (FAM and ROX). Compared with the traditional gold standard (RT-qPCR) and direct immunofluorescence assay (DFA), this method has the additional advantages of easy operation, efficiency and sensitivity, with a limit of detection (LOD) of 1 copy/µL. In terms of clinical sample validation, the diagnostic accuracy of the method for determining the HRSVA and HRSVB infection was greater than 95%. This technique provides a reliable point-of-care (POC) testing for the diagnosis of HRSV-induced ARTI in children and for outbreak management, especially in resource-limited settings.


Subject(s)
RNA, Viral , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Sensitivity and Specificity , Humans , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , RNA, Viral/genetics , Infant , Pyrococcus furiosus/genetics , Pyrococcus furiosus/isolation & purification , Argonaute Proteins/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Nasopharynx/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Child, Preschool
3.
Biosens Bioelectron ; 265: 116692, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39208510

ABSTRACT

Foodborne hazardous factors pose a significant risk to public health, emphasizing the need for the development of sensitive and user-friendly detection strategies to effectively manage and control these risks in the food supply chain. Pyrococcus furiosus argonaute (PfAgo)-based biosensing approaches have been extensively explored due to its built-in signal amplification. However, the property that PfAgo is a DNA-guided DNA endonuclease has enabled almost all the existing PfAgo-based reports to be used for the detection of nucleic acids. To lend PfAgo toolbox to extended non-nucleic acid detection, we systematically investigated the mechanism characteristic of PfAgo' preference for guide DNA (gDNA) and proposed a gDNA dephosphorylation-modulated PfAgo sensor for the detection of non-nucleic acid targets. Our results indicated that PfAgo exhibits preference for 5'-phosphorylated gDNA at a specific ratio of PfAgo to gDNA concentration. Leveraging this PfAgo' preference and the dephosphorylation activity of alkaline phosphatase (ALP), ALP could be detected as low as 2.7 U/L. Furthermore, the PfAgo was coupled with immunolabelled ALP to develop a PfAgo-based fluorescence immunosensor, which achieves aflatoxins B1 detection with a detection limit of 29.89 pg/mL and exhibits satisfactory recoveries in wheat and maize samples. The developed method broadens the application scope of PfAgo toolbox, and provides a simple, sensitive, and universal detection platform for a variety targets.


Subject(s)
Aflatoxin B1 , Alkaline Phosphatase , Biosensing Techniques , Pyrococcus furiosus , Biosensing Techniques/methods , Pyrococcus furiosus/enzymology , Aflatoxin B1/analysis , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , Argonaute Proteins/metabolism , Limit of Detection , DNA/chemistry , Phosphorylation , Fluorescence , Food Contamination/analysis
4.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201583

ABSTRACT

Hyperthermophilic archaea such as Pyrococcus furiosus survive under very aggressive environmental conditions by occupying niches inaccessible to representatives of other domains of life. The ability to survive such severe living conditions must be ensured by extraordinarily efficient mechanisms of DNA processing, including repair. Therefore, in this study, we compared kinetics of conformational changes of DNA Endonuclease Q from P. furiosus during its interaction with various DNA substrates containing an analog of an apurinic/apyrimidinic site (F-site), hypoxanthine, uracil, 5,6-dihydrouracil, the α-anomer of adenosine, or 1,N6-ethenoadenosine. Our examination of DNA cleavage activity and fluorescence time courses characterizing conformational changes of the dye-labeled DNA substrates during the interaction with EndoQ revealed that the enzyme induces multiple conformational changes of DNA in the course of binding. Moreover, the obtained data suggested that the formation of the enzyme-substrate complex can proceed through dissimilar kinetic pathways, resulting in different types of DNA conformational changes, which probably allow the enzyme to perform its biological function at an extreme temperature.


Subject(s)
DNA Cleavage , Pyrococcus furiosus , Pyrococcus furiosus/enzymology , Kinetics , Archaeal Proteins/metabolism , Archaeal Proteins/chemistry , Substrate Specificity , Nucleic Acid Conformation , DNA/metabolism
5.
Poult Sci ; 103(10): 104141, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137501

ABSTRACT

Rapid and accurate detection of goose parvovirus (GPV) is crucial for controlling outbreaks and mitigating their economic impact on the poultry industry. This study introduces recombinase polymerase amplification combined with the Pyrococcus furiosus argonaute (RPA-PfAgo) system, a novel diagnostic platform designed to address the limitations of traditional GPV detection methods. Capitalizing on the rapid DNA amplification of RPA and stringent nucleic acid cleavage by the PfAgo protein, the RPA-PfAgo system offers high specificity and sensitivity in detecting GPV. Our optimization efforts included primer and probe configurations, reaction parameters, and guided DNA selection, culminating in a detection threshold of 102 GPV DNA copies per microlitre. The specificity of the proposed method was rigorously validated against a spectrum of avian pathogens. Clinical application to lung tissues from GPV-infected geese yielded a detection concordance of 100%, surpassing that of qPCR and PCR in both rapidity and operational simplicity. The RPA-PfAgo system has emerged as a revolutionary diagnostic modality for managing this disease, as it is a promising rapid, economical, and onsite GPV detection method amenable to integration into broad-scale disease surveillance frameworks. Future explorations will extend the applicability of this method to diverse avian diseases and assess its field utility across various epidemiological landscapes.


Subject(s)
Geese , Nucleic Acid Amplification Techniques , Parvoviridae Infections , Poultry Diseases , Pyrococcus furiosus , Animals , Parvoviridae Infections/veterinary , Parvoviridae Infections/diagnosis , Parvoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Geese/virology , Pyrococcus furiosus/genetics , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Recombinases/metabolism , Parvovirinae/genetics , Parvovirinae/isolation & purification , Sensitivity and Specificity
6.
Mikrochim Acta ; 191(7): 439, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38954110

ABSTRACT

A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.


Subject(s)
Alkaline Phosphatase , Biosensing Techniques , Limit of Detection , Pyrococcus furiosus , Biosensing Techniques/methods , Alkaline Phosphatase/blood , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Humans , Pyrococcus furiosus/enzymology , Argonaute Proteins/metabolism , Nucleic Acid Amplification Techniques/methods , Enzyme Assays/methods
7.
J Am Chem Soc ; 146(26): 18019-18031, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888987

ABSTRACT

The membrane-bound hydrogenase (Mbh) from Pyrococcus furiosus is an archaeal member of the Complex I superfamily. It catalyzes the reduction of protons to H2 gas powered by a [NiFe] active site and transduces the free energy into proton pumping and Na+/H+ exchange across the membrane. Despite recent structural advances, the mechanistic principles of H2 catalysis and ion transport in Mbh remain elusive. Here, we probe how the redox chemistry drives the reduction of the proton to H2 and how the catalysis couples to conformational dynamics in the membrane domain of Mbh. By combining large-scale quantum chemical density functional theory (DFT) and correlated ab initio wave function methods with atomistic molecular dynamics simulations, we show that the proton transfer reactions required for the catalysis are gated by electric field effects that direct the protons by water-mediated reactions from Glu21L toward the [NiFe] site, or alternatively along the nearby His75L pathway that also becomes energetically feasible in certain reaction steps. These local proton-coupled electron transfer (PCET) reactions induce conformational changes around the active site that provide a key coupling element via conserved loop structures to the ion transport activity. We find that H2 forms in a heterolytic proton reduction step, with spin crossovers tuning the energetics along key reaction steps. On a general level, our work showcases the role of electric fields in enzyme catalysis and how these effects are employed by the [NiFe] active site of Mbh to drive PCET reactions and ion transport.


Subject(s)
Hydrogen , Hydrogenase , Molecular Dynamics Simulation , Pyrococcus furiosus , Hydrogenase/chemistry , Hydrogenase/metabolism , Hydrogen/chemistry , Hydrogen/metabolism , Pyrococcus furiosus/enzymology , Protons , Density Functional Theory , Catalytic Domain , Oxidation-Reduction
8.
Structure ; 32(8): 1150-1164.e3, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38815577

ABSTRACT

Multidrug and toxin extrusion (MATE) family transporters excrete toxic compounds coupled to Na+/H+ influx. Although structures of MATE transporters are available, the mechanism by which substrate export is coupled to ion influx remains unknown. To address this issue, we conducted a structural analysis of Pyrococcus furiosus MATE (PfMATE) using solution nuclear magnetic resonance (NMR). The NMR analysis, along with thorough substitutions of all non-exposed acidic residues, confirmed that PfMATE is under an equilibrium between inward-facing (IF) and outward-facing (OF) conformations, dictated by the Glu163 protonation. Importantly, we found that only the IF conformation exhibits a mid-µM affinity for substrate recognition. In contrast, the OF conformation exhibited only weak mM substrate affinity, suitable for releasing substrate to the extracellular side. These results indicate that PfMATE is an affinity-directed H+ antiporter where substrates selectively bind to the protonated IF conformation in the equilibrium, and subsequent proton release mechanistically ensures H+-coupled substrate excretion by the transporter.


Subject(s)
Archaeal Proteins , Pyrococcus furiosus , Pyrococcus furiosus/metabolism , Archaeal Proteins/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Protein Binding , Substrate Specificity , Binding Sites , Models, Molecular , Protons , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/chemistry , Organic Cation Transport Proteins/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
9.
Biosensors (Basel) ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785719

ABSTRACT

Since SARS-CoV-2 is a highly transmissible virus, alternative reliable, fast, and cost-effective methods are still needed to prevent virus spread that can be applied in the laboratory and for point-of-care testing. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) is currently the gold criteria for detecting RNA viruses, which requires reverse transcriptase to reverse transcribe viral RNA into cDNA, and fluorescence quantitative PCR detection was subsequently performed. The frequently used reverse transcriptase is thermolabile; the detection process is composed of two steps: the reverse transcription reaction at a relatively low temperature, and the qPCR performed at a relatively high temperature, moreover, the RNA to be detected needs to pretreated if they had advanced structure. Here, we develop a fast and sensitive one-tube SARS-CoV-2 detection platform based on Ultra-fast RTX-PCR and Pyrococcus furiosus Argonaute-mediated Nucleic acid Detection (PAND) technology (URPAND). URPAND was achieved ultra-fast RTX-PCR process based on a thermostable RTX (exo-) with both reverse transcriptase and DNA polymerase activity. The URPAND can be completed RT-PCR and PAND to detect nucleic acid in one tube within 30 min. This method can specifically detect SARS-CoV-2 with a low detection limit of 100 copies/mL. The diagnostic results of clinical samples with one-tube URPAND displayed 100% consistence with RT-qPCR test. Moreover, URPAND was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The URPAND platform is rapid, accurate, tube closed, one-tube, easy-to-operate and free of large instruments, which provides a new strategy to the detection of SARS-CoV-2 and other RNA viruses.


Subject(s)
Argonaute Proteins , COVID-19 , Pyrococcus furiosus , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , RNA, Viral/analysis , COVID-19/diagnosis , COVID-19/virology , Humans , Real-Time Polymerase Chain Reaction/methods , Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/methods
10.
Gene ; 922: 148544, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38734187

ABSTRACT

This study introduces an efficient RPA-PfAgo detection system for the MTHFR C677T polymorphism, proposing a potential strategy to simplify the genotyping process. By optimizing recombinase polymerase amplification (RPA) with Pyrococcus furiosus Argonaute (PfAgo) nucleases, we achieved DNA amplification at a constant temperature. The assay was fine-tuned through meticulous primer and guide DNA selection, with optimal conditions established at 2.0 µL of MgAc, a reaction temperature of 42 °C, and a 10-minute reaction time for RPA. Further optimization of the PfAgo cleavage assay revealed the ideal concentrations of MnCl2, guide DNA, molecular beacon probes, the PfAgo enzyme, and the RPA product to maximize sensitivity and specificity. Clinical validation of 20 samples showed 100% concordance with Sanger sequencing, confirming the method's precision. The RPA-PfAgo system is a promising tool for on-site genotyping, with broad applications in personalized medicine and disease prevention.


Subject(s)
Genotyping Techniques , Methylenetetrahydrofolate Reductase (NADPH2) , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Pyrococcus furiosus/genetics , Pyrococcus furiosus/enzymology , Genotype , Nucleic Acid Amplification Techniques/methods , Argonaute Proteins/genetics , Recombinases/metabolism , Recombinases/genetics
11.
Nucleic Acids Res ; 52(10): 6017-6035, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38709902

ABSTRACT

Archaeal transcription is carried out by a multi-subunit RNA polymerase (RNAP) that is highly homologous in structure and function to eukaryotic RNAP II. Among the set of basal transcription factors, only Spt5 is found in all domains of life, but Spt5 has been shaped during evolution, which is also reflected in the heterodimerization of Spt5 with Spt4 in Archaea and Eukaryotes. To unravel the mechanistic basis of Spt4/5 function in Archaea, we performed structure-function analyses using the archaeal transcriptional machinery of Pyrococcus furiosus (Pfu). We report single-particle cryo-electron microscopy reconstructions of apo RNAP and the archaeal elongation complex (EC) in the absence and presence of Spt4/5. Surprisingly, Pfu Spt4/5 also binds the RNAP in the absence of nucleic acids in a distinct super-contracted conformation. We show that the RNAP clamp/stalk module exhibits conformational flexibility in the apo state of RNAP and that the enzyme contracts upon EC formation or Spt4/5 engagement. We furthermore identified a contact of the Spt5-NGN domain with the DNA duplex that stabilizes the upstream boundary of the transcription bubble and impacts Spt4/5 activity in vitro. This study, therefore, provides the structural basis for Spt4/5 function in archaeal transcription and reveals a potential role beyond the well-described support of elongation.


Subject(s)
Archaeal Proteins , DNA-Directed RNA Polymerases , Models, Molecular , Transcription Elongation, Genetic , Transcriptional Elongation Factors , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Protein Binding , Pyrococcus furiosus/enzymology , Pyrococcus furiosus/genetics , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics
13.
Poult Sci ; 103(7): 103729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676965

ABSTRACT

Since 2015, an outbreak of an infectious disease in broilers caused by fowl adenovirus serotype 4 (FAdV-4) has occurred in China, resulting in substantial economic losses. Rapid, accurate, and specific detection are significant in the prevention and control of FAdV-4. In this study, an FAdV-4 detection method combining loop-mediated isothermal amplification (LAMP) and Pyrococcus furiosus Argonaute (PfAgo) was established. Specific primers, guide DNAs (gDNAs), and molecular beacons were designed to target a conserved region of the FAdV-4 hexon gene. After optimizing the reaction conditions, the minimum detection of this assay could reach 5 copies. It only amplified FAdV-4, and there was no cross-reactivity with other pathogens. The assay took about only 50 min, and the results could be visualized with the naked eye under ultraviolet or blue light, getting rid of specialized instruments. This novel LAMP-PfAgo assay was validated by using 20 clinical samples and the results were identical to gold-standard real-time polymerase chain reaction method. In summary, the LAMP-PfAgo assay established in the paper provides a rapid, reliable, convenient, ultra-sensitive and highly specific tool for the on-site detection and clinical diagnosis of FAdV-4.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Nucleic Acid Amplification Techniques , Poultry Diseases , Pyrococcus furiosus , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/diagnosis , Animals , Poultry Diseases/virology , Poultry Diseases/diagnosis , Pyrococcus furiosus/genetics , Aviadenovirus/genetics , Aviadenovirus/isolation & purification , Aviadenovirus/classification , Sensitivity and Specificity , Serogroup , Argonaute Proteins/genetics , Molecular Diagnostic Techniques/veterinary , Molecular Diagnostic Techniques/methods
14.
ACS Synth Biol ; 13(4): 1323-1331, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38567812

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a major cause of diarrhea and diarrhea-related deaths among piglets and results in massive losses to the overall porcine industry. The clinical manifestations of porcine diarrhea brought on by the porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and PDCoV are oddly similar to each other. Hence, the identification of different pathogens through molecular diagnosis and serological techniques is crucial. Three novel detection methods for identifying PDCoV have been developed utilizing recombinase-aided amplification (RAA) or reverse transcription recombinase-aided amplification (RT-RAA) in conjunction with Pyrococcus furiosus Argonaute (PfAgo): RAA-PfAgo, one-pot RT-RAA-PfAgo, and one-pot RT-RAA-PfAgo-LFD. The indicated approaches have a detection limit of around 60 copies/µL of PDCoV and do not cross-react with other viruses including PEDV, TGEV, RVA, PRV, PCV2, or PCV3. The applicability of one-pot RT-RAA-PfAgo and one-pot RT-RAA-PfAgo-LFD were examined using clinical samples and showed a positive rate comparable to the qPCR method. These techniques offer cutting-edge technical assistance for identifying, stopping, and managing PDCoV.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Porcine epidemic diarrhea virus , Pyrococcus furiosus , Swine Diseases , Animals , Swine , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Pyrococcus furiosus/genetics , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Sensitivity and Specificity , Diarrhea/diagnosis , Recombinases
15.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675882

ABSTRACT

As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.


Subject(s)
Pyrococcus furiosus , Viral Nonstructural Proteins , Zika Virus Infection , Zika Virus , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Humans , Viral Nonstructural Proteins/genetics , Pyrococcus furiosus/genetics , Argonaute Proteins/genetics , Sensitivity and Specificity , RNA, Viral/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Genome, Viral
16.
Biotechnol Bioeng ; 121(7): 2079-2090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38682557

ABSTRACT

Hyperthermophilic enzymes serve as an important source of industrial enzymes due to their high thermostability. Unfortunately, most hyperthermophilic enzymes suffer from reduced activity at low temperatures (e.g., ambient temperature), limiting their applicability. In addition, evolving hyperthermophilic enzymes to increase low temperature activity without compromising other desired properties is generally difficult. In the current study, a variant of ß-glucosidase from Pyrococcus furiosus (PfBGL) was engineered to enhance enzyme activity at low temperatures through the construction of a saturation mutagenesis library guided by the HotSpot Wizard analysis, followed by its screening for activity and thermostability. From this library construction and screening, one PfBGL mutant, PfBGL-A4 containing Q214S/A264S/F344I mutations, showed an over twofold increase in ß-glucosidase activity at 25 and 50°C compared to the wild type, without compromising high-temperature activity, thermostability and substrate specificity. Our experimental and computational characterizations suggest that the findings with PfBGL-A4 may be due to the elevation of local conformational flexibility around the active site, while slightly compacting the global protein structure. This study showcases the potential of HotSpot Wizard-informed engineering of hyperthermophilic enzymes and underscores the interplays among temperature, enzyme activity, and conformational flexibility in these enzymes.


Subject(s)
Enzyme Stability , Protein Engineering , Pyrococcus furiosus , beta-Glucosidase , Pyrococcus furiosus/enzymology , Pyrococcus furiosus/genetics , beta-Glucosidase/genetics , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Protein Engineering/methods , Cold Temperature
17.
Int J Food Microbiol ; 417: 110697, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38642433

ABSTRACT

Foodborne illness caused by Salmonella spp. is one of the most prevalent public health problems globally, which have brought immeasurable economic burden and social impact to countries around the world. Neither current nucleic acid amplification detection method nor standard culture method (2-3 days) are suitable for field detection in areas with a heavy burden of Salmonella spp. Here, we developed a highly sensitive and accurate assay for Salmonella spp. detection in less than 40 min. Specifically, the invA gene of Salmonella spp. was amplified by recombinase polymerase amplification (RPA), followed by Pyrococcus furiosus Argonaute (PfAgo)-based target sequence cleavage, which could be observed by a fluorescence reader or the naked eye. The assay offered the lowest detectable concentration of 1.05 × 101 colony forming units/mL (CFU/mL). This assay had strong specificity and high sensitivity for the detection of Salmonella spp. in field samples, which indicated the feasibility of this assay.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Pyrococcus furiosus , Salmonella , Pyrococcus furiosus/genetics , Salmonella/genetics , Salmonella/isolation & purification , Nucleic Acid Amplification Techniques/methods , Food Safety , Recombinases/metabolism , Recombinases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Sensitivity and Specificity , Food Contamination/analysis
18.
Viruses ; 16(3)2024 02 29.
Article in English | MEDLINE | ID: mdl-38543748

ABSTRACT

Monkeypox virus (MPXV), the pathogen responsible for the infectious disease monkeypox, causes lesions on the skin, lymphadenopathy, and fever. It has posed a global public health threat since May 2022. Highly sensitive and specific detection of MPXV is crucial for preventing the spread of the disease. Pyrococcus furiosus Argonaute (PfAgo) is an artificial DNA-guided restriction cleavage enzyme programmable with 5'-phosphorylated ssDNA sequences, which can be developed to specifically detect nucleic acids of pathogens. Here, a PfAgo-based system was established for the detection of MPXV-specific DNA targeting the F3L gene. A short amplicon of 79 bp could be obtained through a fast PCR procedure, which was completed within 45 min. Two 5'-phosphorylation guide DNAs were designed to guide PfAgo to cleave the amplicon to obtain an 18 bp 5'-phosphorylation sequence specific to MPXV, not to other orthopoxviruses (cowpox, variola, and vaccinia viruses). The 18 bp sequence guided PfAgo to cleave a designed probe specific to MPXV to emit fluorescence. With optimized conditions for the PfAgo-MPXV system, it could be completed in 60 min for the detection of the extracted MPXV DNA with the limit of detection (LOD) of 1.1 copies/reaction and did not depend on expensive instruments. Successful application of the PfAgo-MPXV system in sensitively detecting MPXV in simulated throat swabs, skin swabs, sera, and wastewater demonstrated the system's good performance. The PfAgo platform, with high sensitivity and specificity established here, has the potential to prevent the spread of MPXV.


Subject(s)
Mpox (monkeypox) , Pyrococcus furiosus , Humans , Pyrococcus furiosus/genetics , Monkeypox virus/genetics , DNA , Argonaute Proteins/genetics
19.
Adv Healthc Mater ; 13(18): e2304484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530141

ABSTRACT

Argonaute (Ago) as a powerful enzyme has provided new insights into biosensing due to its programmability, high sensitivity, and user-friendly operation. However, current strategies mainly rely on phosphorylated guide DNA to modulate the cleavage activity of Ago, which is limited in versatility and simplicity. Herein, the authors report the Mn2+-enhanced cleavage activity of Ago and employ Mn-ions with variable valence to regulate the activity of Pyrococcus furiosus Ago (PfAgo) for biosensing applications. The conversion of Mn ions with different valence states through MnO2 nanoflowers enables the sensitive detection of ascorbic acid, alkaline phosphatase, and arsenic with limits of detection of 2.5 nmol L-1, 0.009 U L-1, and 0.4 ng mL-1, respectively. A PfAgo-based immunoassay is further developed that allows for the detection of diverse targets, thus providing a promising toolbox to broaden PfAgo-based sensors into versatile bioanalytical and biomedical applications.


Subject(s)
Biosensing Techniques , Manganese , Pyrococcus furiosus , Biosensing Techniques/methods , Pyrococcus furiosus/metabolism , Manganese/chemistry , Ascorbic Acid/metabolism , Ascorbic Acid/chemistry , Argonaute Proteins/metabolism , Arsenic , Alkaline Phosphatase/metabolism , Manganese Compounds/chemistry , Oxides/chemistry , Immunoassay/methods , Limit of Detection
20.
Food Microbiol ; 120: 104475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431321

ABSTRACT

Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.


Subject(s)
Alicyclobacillus , Pyrococcus furiosus , Fruit and Vegetable Juices , Pyrococcus furiosus/genetics , Alicyclobacillus/genetics , DNA , Fruit
SELECTION OF CITATIONS
SEARCH DETAIL