Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.503
Filter
1.
FASEB J ; 38(16): e70009, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39158138

ABSTRACT

Skeletal muscle comprises slow and fast myofibers, with slow myofibers excelling in aerobic metabolism and endurance. Quercetin, a polyphenol, is reported to induce slow myofibers in rodent skeletal muscle both in vitro and in vivo. However, its effect on human myofiber types remains unexplored. In this study, we evaluated quercetin's impact on slow myofiber induction using human skeletal muscle satellite cells. In a two-dimensional culture, quercetin enhanced gene expression, contributing to muscle differentiation, and significantly expanded the area of slow-type myosin heavy chain positive cells. It also elevated the gene expression of Pgc1α, an inducer of slow myofibers. Conversely, quercetin did not affect mitochondrial abundance, fission, or fusion, but it did increase the gene expression of Cox7A2L, which aids in promoting mitochondrial supercomplexity and endurance, and Mb, which contributes to oxidative phosphorylation. In a three-dimensional culture, quercetin significantly extended the time to peak tension and half relaxation time of the engineered human skeletal muscle tissues constructed on microdevices. Moreover, quercetin enhanced the muscle endurance of the tissues and curbed the rise in lactate secretion from the exercised tissues. These findings suggest that quercetin may induce slow myofibers in human skeletal muscle.


Subject(s)
Muscle, Skeletal , Quercetin , Quercetin/pharmacology , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/cytology , Tissue Engineering/methods , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Phenotype , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/cytology , Cells, Cultured , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Cell Differentiation/drug effects
2.
ACS Appl Bio Mater ; 7(8): 5662-5678, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39097904

ABSTRACT

Quercetin, recognized for its antioxidant, anti-inflammatory, and antibacterial properties, faces limited biomedical application due to its low solubility. Cotton, a preferred wound dressing material over synthetic ones, lacks inherent antibacterial and wound-healing attributes and can benefit from quercetin features. This study explores the potential of overcoming these challenges through the inclusion complexation of quercetin with cyclodextrins (CDs) and the development of a nanofibrous coating on a cotton nonwoven textile. Hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) formed inclusion complexes of quercetin, with chitosan added to enhance antibacterial properties. Phase solubility results showed that inclusion complexation can enhance quercetin solubility up to 20 times, with HP-γ-CD forming a more stable inclusion complexation compared with HP-ß-CD. Electrospinning of the nanofibers from HP-ß-CD/Quercetin and HP-γ-CD/Quercetin aqueous solutions without the use of a polymeric matrix yielded a uniform, smooth fiber morphology. The structural and thermal analyses of the HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers confirmed the presence of inclusion complexes between quercetin and each of the CDs (HP-ß-CD and HP-γ-CD). Moreover, HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed a near-complete loading efficiency of quercetin and followed a fast-releasing profile of quercetin. Both HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed significantly higher antioxidant activity compared to pristine quercetin. The HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers also showed antibacterial activity, and with the addition of chitosan in the HP-γ-CD/Quercetin system, the Chitosan/HP-γ-CD/Quercetin nanofibers completely eliminated the investigated bacteria species. The nanofibers were nontoxic and well-tolerated by cells, and exploiting the quercetin and chitosan anti-inflammatory activities resulted in the downregulation of IL-6 and NO secretion in both immune as well as regenerative cells. Overall, CD inclusion complexation markedly enhances quercetin solubility, resulting in a biofunctional antioxidant, antibacterial, and anti-inflammatory wound dressing through a nanofibrous coating on cotton textiles.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Bandages , Chitosan , Cyclodextrins , Materials Testing , Nanofibers , Quercetin , Quercetin/pharmacology , Quercetin/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nanofibers/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Cotton Fiber , Wound Healing/drug effects , Humans , Picrates/antagonists & inhibitors , Cell Survival/drug effects , Biphenyl Compounds
3.
An Acad Bras Cienc ; 96(suppl 1): e20230244, 2024.
Article in English | MEDLINE | ID: mdl-39140520

ABSTRACT

This study aimed to investigate the antioxidant and anti-inflammatory properties of quercetin on the cellular components of the Enteric Nervous System in the ileum of rats with arthritis. Rats were distributed into five groups: control (C), arthritic (AIA), arthritic treated with ibuprofen (AI), arthritic treated with quercetin (AQ) and arthritic treated with both ibuprofen and quercetin (AIQ). The ileum was processed for immunohistochemical techniques for HuC/D, calcitonin gene-related peptide, and vasoactive intestinal polypeptide. Measurements in histological sections, chemiluminescence assays, and total antioxidant capacity were also performed. Rheumatoid arthritis resulted in a decrease in neuronal density, yet neuroplasticity mechanisms were evident through observed changes in varicosities size and neuronal area compared to the control group. Reduced paw edema and neuroprotective effects were predominantly noted in both plexuses, as evidenced by the increased density preservation of HuC/D-IR neurons in the AIQ group. The increase of lipoperoxidation levels and paw edema volume in the AQ group was observed compared to the arthritic, whereas the AIQ group mainly showed similar results to those observed in the control. The enteropathy associated with arthritis proved to be significant in the field of gastroenterology, and the combination of quercetin and ibuprofen demonstrated promising anti-inflammatory and neuroprotective effects.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ibuprofen , Quercetin , Rats, Wistar , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Rats , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Neurons/drug effects , Neurons/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Enteric Nervous System/drug effects , Enteric Nervous System/pathology , Immunohistochemistry , Ileum/drug effects , Ileum/pathology
4.
Reprod Biol Endocrinol ; 22(1): 100, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118090

ABSTRACT

BACKGROUND: Patients with endometriosis suffer with chronic pelvic pain and infertility, and from the lack of pharmacologic therapies that consistently halt disease progression. Differences in the endometrium of patients with endometriosis vs. unaffected controls are well-documented. Specifically, shed endometrial tissues (delivered to the pelvic cavity via retrograde menstruation) reveal that a subset of stromal cells exhibiting pro-inflammatory, pro-fibrotic, and pro-senescence-like phenotypes is enhanced in endometriosis patients compared to controls. Additionally, cultured biopsy-derived endometrial stromal cells from endometriosis patients exhibit impaired decidualization, a defined differentiation process required for human embryo implantation and pregnancy. Quercetin, a senolytic agent, shows therapeutic potential for pulmonary fibrosis, a disorder attributed to senescent pulmonary fibroblasts. In rodent models of endometriosis, quercetin shows promise, and quercetin improves decidualization in vitro. However, the exact mechanisms are not completely understood. Therefore, we investigated the effects of quercetin on menstrual effluent-derived endometrial stromal cells from endometriosis patients and unaffected controls to define the signaling pathways underlying quercetin's effects on endometrial stromal cells. METHODS: Menstrual effluent-derived endometrial stromal cells were collected and cultured from unaffected controls and endometriosis patients and then, low passage cells were treated with quercetin (25 µM) under basal or standard decidualization conditions. Decidualization responses were analyzed by measuring the production of IGFBP1 and PRL. Also, the effects of quercetin on intracellular cAMP levels and cellular oxidative stress responses were measured. Phosphokinase arrays, western blotting, and flow cytometry methods were performed to define the effects of quercetin on various signaling pathways and the potential mechanistic roles of quercetin. RESULTS: Quercetin significantly promotes decidualization of control- and endometriosis-endometrial stromal cells. Quercetin substantially reduces the phosphorylation of multiple signaling molecules in the AKT and ERK1/2 pathways, while enhancing the phosphorylation of p53 and total p53 levels. Furthermore, p53 inhibition blocks decidualization while p53 activation promotes decidualization. Finally, we provide evidence that quercetin increases apoptosis of endometrial stromal cells with a senescent-like phenotype. CONCLUSIONS: These data provide insight into the mechanisms of action of quercetin on endometrial stromal cells and warrant future clinical trials to test quercetin and other senolytics for treating endometriosis.


Subject(s)
Cellular Senescence , Endometriosis , Proto-Oncogene Proteins c-akt , Quercetin , Stromal Cells , Tumor Suppressor Protein p53 , Quercetin/pharmacology , Female , Humans , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Adult , Stromal Cells/drug effects , Stromal Cells/metabolism , Cellular Senescence/drug effects , Tumor Suppressor Protein p53/metabolism , Endometrium/drug effects , Endometrium/metabolism , Endometrium/pathology , Decidua/drug effects , Decidua/metabolism , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects , Cells, Cultured
5.
Sci Rep ; 14(1): 18156, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39103421

ABSTRACT

Senescence of skeletal muscle (SkM) has been a primary contributor to senior weakness and disability in recent years. The gradually declining SkM function associated with senescence has recently been connected to an imbalance between damage and repair. Macrophages (Mac) are involved in SkM aging, and different macrophage subgroups hold different biological functions. Through comprehensive single-cell transcriptomic analysis, we first compared the metabolic pathways and biological functions of different types of cells in young (Y) and old (O) mice SkM. Strikingly, the Mac population in mice SkM was also explored, and we identified a unique Mac subgroup in O SkM characterized by highly expressed SPP1 with strong senescence and adipogenesis features. Further work was carried out on the metabolic and biological processes for these Mac subgroups. Besides, we verified that the proportion of the SPP1+ Mac was increased significantly in the quadriceps tissues of O mice, and the senotherapeutic drug combination dasatinib + quercetin (D + Q) could dramatically reduce its proportion. Our study provides novel insight into the potential role of SPP1+ Mac in SkM, which may serve as a senotherapeutic target in SkM aging.


Subject(s)
Aging , Dasatinib , Macrophages , Muscle, Skeletal , Single-Cell Analysis , Transcriptome , Animals , Aging/genetics , Mice , Muscle, Skeletal/metabolism , Macrophages/metabolism , Dasatinib/pharmacology , Gene Expression Profiling , Quercetin/pharmacology , Male , Mice, Inbred C57BL , Senotherapeutics/pharmacology , Cellular Senescence/genetics , Adipogenesis/genetics
6.
Gut Microbes ; 16(1): 2390136, 2024.
Article in English | MEDLINE | ID: mdl-39163273

ABSTRACT

Abdominal obesity-related metabolic syndrome (MetS) has emerged as a significant global public health issue that affects human health. Flavonoids, such as quercetin, have been reported to exert obvious anti-obesity and lipid-lowering effects in both humans and animal models. However, the precise underlying mechanism remains elusive. In this study, we investigated the potential roles of gut microbiota-bile acids (BAs) interactions in quercetin-induced anti-obesity effects and metabolic benefits. Oral administration of quercetin significantly enhanced energy metabolism through activating thermogenesis of brown adipose tissues (BAT) and browning of white adipose tissues (WAT), thus mitigating metabolic dysfunctions in an abdominal obesity-related MetS mouse model. Further mechanistic studies demonstrated that quercetin treatment substantially promoted the generation of non-12α-hydroxylated BAs (non-12OH BAs), particularly ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), in serum via regulating the overall structure of gut microbiota and enriching Lactobacillus. High level of non-12OH BAs bind to Takeda G protein-coupled receptor 5 (TGR5) on adipocytes to stimulate thermogenesis. Remarkably, fecal microbiota transplantation (FMT) from quercetin-treated mice replicated the effects of quercetin on non-12OH BAs generation and energy expenditure, which suggested gut microbiota reshape and concomitant BAs regulation were responsible for the benefits on energy metabolism of quercetin in the MetS mouse model. Our findings not only highlighted the critical role of gut microbiota-BAs crosstalk in mediating quercetin-induced energy expenditure, but also enriched the pharmacological mechanisms of quercetin in ameliorating MetS-related diseases.


Subject(s)
Adipose Tissue, Brown , Bile Acids and Salts , Energy Metabolism , Gastrointestinal Microbiome , Metabolic Syndrome , Mice, Inbred C57BL , Quercetin , Thermogenesis , Quercetin/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Mice , Energy Metabolism/drug effects , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Metabolic Syndrome/drug therapy , Male , Bile Acids and Salts/metabolism , Thermogenesis/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Disease Models, Animal , Fecal Microbiota Transplantation
7.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124941

ABSTRACT

Liver disease is a global health problem that affects the well-being of tens of thousands of people. Dihydroquercetin (DHQ) is a flavonoid compound derived from various plants. Furthermore, DHQ has shown excellent activity in the prevention and treatment of liver injury, such as the inhibition of hepatocellular carcinoma cell proliferation after administration, the normalization of oxidative indices (like SOD, GSH) in this tissue, and the down-regulation of pro-inflammatory molecules (such as IL-6 and TNF-α). DHQ also exerts its therapeutic effects by affecting molecular pathways such as NF-κB and Nrf2. This paper discusses the latest research progress of DHQ in the treatment of various liver diseases (including viral liver injury, drug liver injury, alcoholic liver injury, non-alcoholic liver injury, fatty liver injury, and immune liver injury). It explores how to optimize the application of DHQ to improve its effectiveness in treating liver diseases, which is valuable for preparing potential therapeutic drugs for human liver diseases in conjunction with DHQ.


Subject(s)
Quercetin , Quercetin/analogs & derivatives , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/chemistry , Humans , Animals , Liver Diseases/drug therapy , Liver Diseases/metabolism , Liver Diseases/prevention & control , Liver Diseases/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/injuries , NF-kappa B/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry
8.
PLoS One ; 19(8): e0306632, 2024.
Article in English | MEDLINE | ID: mdl-39173044

ABSTRACT

The traditional Chinese medicine (TCM) bupleurum-ginger-licorice formula presents significant anti-cancer effects, but its active ingredients and inhibitory mechanism remain unclear. In this work, the core effective ingredient quercetin and its signal transducer and activator of transcription 3 (Stat3) receptor both were identified by network pharmacology. Quercetin is a low-toxicity, non-carcinogenic flavonoid with antioxidant, anti-inflammatory and anticancer activities, which is widely distributed in edible plants. Stat3 can bind to specific DNA response elements and serves as a transcription factor to promote the translation of some invasion/migration-related target genes, considered as a potential anticancer target. Here, molecular docking and molecular dynamics (MD) simulation both were used to explore molecular recognition of quercetin with Stat3. The results show that quercetin impairs DNA transcription efficiency by hindering Stat3 dimerization, partially destroying DNA conformation. Specifically, when the ligand occupies the SH2 cavity of the enzyme, spatial rejection is not conductive to phosphokinase binding. It indirectly prevents the phosphorylation of Y705 and the formation of Stat3 dimer. When the inhibitor binds to the DT1005 position, it obviously shortens the distance between DNA and DBD, enhances their binding capacity, and thereby reduces the degree of freedom required for transcription. This work not only provides the binding modes between Stat3 and quercetin, but also contributes to the optimization and design of such anti-cancer inhibitors.


Subject(s)
Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Quercetin , STAT3 Transcription Factor , Quercetin/pharmacology , Quercetin/chemistry , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Medicine, Chinese Traditional , Network Pharmacology
9.
Mol Biol Rep ; 51(1): 897, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115553

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is a global metabolic problem. Several factors including hyperglycemia, oxidative stress, and inflammation play significant roles in the development of DM complications. Apoptosis is also an essential event in DM pathophysiology, -with B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) determining apoptotic susceptibility. The present study aimed to elucidate the protective effects of two doses of taxifolin (TXF) on liver damage in diabetic rats and explore the possible mechanisms of action. METHODS AND RESULTS: DM was induced in eighteen rats through intraperitoneal injections of 50 mg/kg streptozotocin and 110 mg/kg nicotinamide. Diabetic rats received daily oral intubation of 25 and 50 mg/kg TXF for 3 months. In the untreated diabetic group, there was a significant increase in fasting and postprandial glucose levels, glycosylated hemoglobin A1C (HbA1c), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), while insulin and adiponectin levels decreased significantly. Both TXF doses mitigated hyperglycemia, regulated cytokine production, and increased insulin level. Gene expressions and protein levels of Bax, caspase 3, and cytochrome c were significantly increased, while Bcl-2 was significantly decreased in the livers of diabetic rats, effects that were significantly ameliorated after TXF treatment. The results of the TUNEL assay supported the apoptotic pathway. Additionally, TXF significantly decreased lipid peroxidation and enhanced antioxidant enzyme activity in diabetic rats. Liver enzymes and histopathological changes also showed improvement. CONCLUSIONS: TXF mitigated diabetes-associated hepatic damage by reducing hyperglycemia, oxidative stress, inflammation, and modulating anti-/pro-apoptotic genes and proteins. A dose of 50 mg/kg TXF was more effective than 25 mg/kg and is recommended for consumption.


Subject(s)
Apoptosis , Caspase 3 , Diabetes Mellitus, Experimental , Liver , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2 , Quercetin , Signal Transduction , bcl-2-Associated X Protein , Animals , Quercetin/pharmacology , Quercetin/analogs & derivatives , Quercetin/therapeutic use , Oxidative Stress/drug effects , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Signal Transduction/drug effects , Male , Caspase 3/metabolism , Caspase 3/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Apoptosis/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Blood Glucose/metabolism , Blood Glucose/drug effects , Insulin/metabolism
10.
Sci Rep ; 14(1): 18690, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134561

ABSTRACT

Styphnolobium japonicum leaves are considered a rich source of flavonoids, which are the prospective basis for various therapeutic effects. However, there has been a lack of comprehensive cytotoxic studies conducted on these leaves. Therefore, this ongoing investigation aimed to detect and isolate the flavonoids present in S. japonicum leaves, and assess their antioxidant and anticancer properties. The defatted extract from S. japonicum leaves was analyzed using HPLC, which resulted in the identification of seven phenolics and six flavonoids. Rutin and quercetin were found to be the most abundant. Furthermore, a comprehensive profile of flavonoids was obtained through UPLC/ESI-MS analysis in negative acquisition mode. Fragmentation pathways of the identified flavonoids were elucidated to gain relevant insights into their structural characteristics. Furthermore, genistein 7-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 6)-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranoside were isolated and characterized. The defatted extract rich in flavonoids exhibited significant antioxidant, iron-reducing, free radicals scavenging impacts, and remarkable cytotoxicity against the liver cell line (IC50 337.9µg/ mL) and lung cell line (IC50 55.0 µg/mL). Furthermore, the antioxidant and anticancer capacities of the three isolated flavonoids have been evaluated, and it has been observed that their effects are concentration-dependent. The findings of this research highlight the promising impact of flavonoids in cancer therapy. It is recommended that future scientific investigations prioritize the exploration of the distinct protective and therapeutic characteristics of S. japonicum leaves, which hold significant potential as a valuable natural resource.


Subject(s)
Antioxidants , Flavonoids , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Egypt , Cell Line, Tumor , Chromatography, High Pressure Liquid , Quercetin/pharmacology , Quercetin/analogs & derivatives , Quercetin/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Phenols/pharmacology , Phenols/chemistry , Rutin/pharmacology , Rutin/chemistry , Sophora japonica
11.
Oxid Med Cell Longev ; 2024: 5632260, 2024.
Article in English | MEDLINE | ID: mdl-39139212

ABSTRACT

This study aimed to investigate the mechanism of quercetin increasing growth performance and decreasing incidence of diarrhea in weaned piglets. Forty-eight Duroc × Landrace × Large White weaned piglets with similar body weight (7.48 ± 0.20 kg, 28 days of age) were randomly divided into four treatments (control, 250 mg/kg quercetin, 500 mg/kg quercetin, and 750 mg/kg quercetin treatments) and fed with basal diet or experimental diet supplemented with quercetin. Performance, diarrhea rate and index, and content of serum anti-inflammatory factors were determined and calculated in weaned piglets; colonic flora and signaling pathways related to anti-inflammation were measured using 16S rDNA sequencing and RNA-seq, respectively. The results showed that compared with control, feed-to-gain ratio and content of serum interferon gamma (IFN-γ) were significantly decreased in the 500 and 750 mg/kg quercetin treatments (P < 0.05); quercetin significantly decreased diarrhea rate and diarrhea index (P < 0.05) and significantly increased the content of serum transforming growth factor (TGF-ß) in weaned piglets (P < 0.05); the content of serum NF-κB was significantly decreased in the 750 mg/kg quercetin treatment (P < 0.05); moreover, quercetin significantly increased diversity of colonic flora (P < 0.05), and at the phylum level, the relative abundance of Actinobacteria in the 500 and 750 mg/kg treatments was significantly increased (P < 0.05), and the relative abundance of Proteobacteria in the three quercetin treatments were significantly decreased (P < 0.05) in the colon of weaned piglets; at the genus level, the relative abundance of Clostridium-sensu-stricto-1, Turicibacter, unclassified_f_Lachnospiraceae, Phascolarctobacterium, and Family_XIII _AD3011_group was significantly increased (P < 0.05); the relative abundance of Subdollgranulum and Blautia was significantly decreased in the 500 and 750 mg/kg treatments (P < 0.05); the relative abundance of Eschericha-Shigella, Terrisporobacter, and Eubacterium-coprostanoligenes was significantly increased (P < 0.05); the relative abundance of Streptocococcus, Sarcina, Staphylococcus, and Ruminococcaceae_UCG-008 was significantly decreased in the three quercetin treatments (P < 0.05); the relative abundance of Ruminococcaceae_UCG_014 was significantly increased in the 250 mg/kg quercetin treatment in the colon of weaned piglets (P < 0.05). The results of Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differentially expressed genes (DEGs) from the quercetin treatments were significantly enriched in nuclear transcription factor-κB (NF-κB) signal pathway (P < 0.05); mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1R1 (IL-1R1), conserved helix-loop-helix ubiquitous kinase (CHUK), toll-like receptor 4 (TLR4), and IL-1ß from quercetin treatments were significantly decreased in colonic mucosa of weaned piglets (P < 0.05). In summary, quercetin increased feed conversion ratio and decreased diarrhea through regulating NF-κB signaling pathway, controlling the balance between anti-inflammatory and proinflammatory factors, and modulating intestinal flora, thus promoting the absorption of nutrients in weaned piglets. These results provided the theoretical foundation for applying quercetin in preventing weaning piglets' diarrhea and animal husbandry practices.


Subject(s)
Diarrhea , Quercetin , Weaning , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Swine , Diarrhea/veterinary , Diarrhea/drug therapy , Gastrointestinal Microbiome/drug effects , Swine Diseases/microbiology , Swine Diseases/drug therapy , Incidence
12.
Medicine (Baltimore) ; 103(33): e39352, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39151530

ABSTRACT

This study explored the mechanism of Huangbai liniment (HB) for the treatment of oral lichen planus (OLP) through network pharmacology and molecular docking techniques. The study identified HB' active ingredients, therapeutic targets for OLP, and associated signaling pathways. The chemical composition of HB was screened using the HERB database. The disease targets of OLP were obtained through the GeneCards and OMIM databases. A protein-protein interactions network was constructed with the String platform. Topological analysis was performed using Cytoscape software to identify core targets. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the Hiplot database, and the active ingredients and core targets were verified by molecular docking. Date analysis showed that the active composition of HB in the treatment of OLP were quercetin, wogonin, kaempferol, and luteolin. This survey identified 10 potential therapeutic targets, including TNF, CXCL8, IL-6, IL1B, PIK3R1, ESR1, JUN, AKT1, PIK3CA, and CTNNB1. Molecular docking revealed stable interactions between OLP' key targets and HB. These key targets were predominantly involved in the PI3K-Akt signaling pathway, AGE-RAGE signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway. HB plays a crucial role in the treatment of OLP, acting on multiple targets and pathways, particularly the PI3K-Akt signaling pathway. It regulated biological processes like the proliferation of epithelial cells and lymphocytes and mediates the expression of transcription factors, cytokines, and chemokines. Therefore, this study provides a theoretical basis for the clinical trial and application of HB in the therapy of OLP.


Subject(s)
Drugs, Chinese Herbal , Lichen Planus, Oral , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Humans , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Lichen Planus, Oral/drug therapy , Lichen Planus, Oral/metabolism , Flavanones/pharmacology , Flavanones/therapeutic use , Signal Transduction/drug effects , Kaempferols/pharmacology , Kaempferols/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Luteolin/pharmacology , Luteolin/therapeutic use
13.
Chem Biol Drug Des ; 104(2): e14604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39147995

ABSTRACT

This study aimed to investigate the mechanism of action of myrrh in breast cancer (BC) treatment and identify its effective constituents. Data on the compounds and targets of myrrh were collected from the TCMSP, PubChem, and Swiss Target Prediction databases. BC-related targets were obtained from the Genecard database. A protein-protein interaction (PPI) analysis, gene ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted on the intersecting targets of the disease and drug. The key targets of myrrh in BC treatment were identified based on the PPI network. The active constituents of myrrh were determined through reverse-screening using the top 20 KEGG pathways. Macromolecular docking studies, molecular dynamic (MD) simulations, and cell assays were utilized to validate the active constituents and critical targets. Network pharmacology indicated that VEGFA, TP53, ESR1, EGFR, and AKT1 are key targets of myrrh. Pelargonidin chloride, Quercetin, and Naringenin were identified as the active constituents of myrrh. Macromolecular docking showed that Quercetin and Naringenin have strong docking capabilities with ESR1. The results of MD simulation experiments align with those of molecular docking experiments. Cell and western blot assays demonstrated that Quercetin and Naringenin could inhibit MCF-7 cells and significantly reduce the expression of ESR1 protein. The findings reveal the active constituents, key targets, and molecular mechanisms of myrrh in BC treatment, providing scientific evidence that supports the role of myrrh in BC therapy. Furthermore, the results suggest that network pharmacology predictions require experimental validation for reliability.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation , Network Pharmacology , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Molecular Dynamics Simulation , MCF-7 Cells , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/metabolism , Commiphora/chemistry , Commiphora/metabolism , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/metabolism , Protein Interaction Maps/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
14.
Sci Rep ; 14(1): 15983, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987427

ABSTRACT

Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.


Subject(s)
Flavonoids , Hydroxybenzoates , Molecular Docking Simulation , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Humans , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Binding , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/metabolism , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/metabolism , HEK293 Cells
15.
Sci Rep ; 14(1): 16047, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992105

ABSTRACT

ß-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. ß-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated ß-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are ß-glucan and alginate sealing made slow and sustained release of the Quercetin from the ß-glucan particles. Morphological analysis of the hollow and Quercetin loaded ß-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow ß-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived ß-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.


Subject(s)
Agaricus , Antineoplastic Agents , Antioxidants , Quercetin , Saccharomyces cerevisiae , beta-Glucans , Quercetin/pharmacology , Quercetin/chemistry , beta-Glucans/pharmacology , beta-Glucans/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Agaricus/chemistry , Saccharomyces cerevisiae/drug effects , Cell Survival/drug effects , PC-3 Cells , Cell Line, Tumor , Reactive Oxygen Species/metabolism
17.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 604-608, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38991959

ABSTRACT

OBJECTIVE: To investigate the protective effect of quercetin (QR) on acute liver injury induced by diquat (DQ) poisoning in mice and its mechanism. METHODS: Eighty healthy male C57BL/6 mice with SPF grade were randomly divided into control group, DQ model group, QR treatment group, and QR control group, with 20 mice in each group. The DQ poisoning model was established by a one-time intraperitoneal injection of DQ solution (40 mg/kg); the control and QR control groups received equivalent amounts of distilled water through intraperitoneal injection. Four hours after modeling, the QR treatment group and the QR control group received 0.5 mL QR solution (50 mg/kg) through gavage. Meanwhile, an equivalent amount of distilled water was given orally to the control group and the DQ model group. The treatments above were administered once daily for seven consecutive days. Afterwards, the mice were anesthetized, blood and liver tissues were collected for following tests: changes in the structure of mice liver tissue were observed using transmission electron microscopy; the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected using enzyme linked immunosorbent assay (ELISA); the levels of glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) in liver tissues were measured using the water-soluble tetrazolium-1 (WST-1) method, the thiobarbituric acid (TBA) method, and enzymatic methods, respectively; the protein expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Kelch-like ECH-associated protein 1 (Keap1), and activated caspase-9 in liver tissues were detected using Western blotting. RESULTS: Severe mitochondrial damage was observed in the liver tissues of mice in the DQ model group using transmission electron microscopy, yet mitochondrial damage in the QR treatment group showed significant alleviation. Compared to the control group, the DQ model group had significantly increased levels of MDA in liver tissue, serum AST, and ALT, yet had significantly decreased levels of GSH and SOD in liver tissue. In comparison to the DQ model group, the QR treatment group exhibited significant reductions in serum levels of ALT and AST, as well as MDA levels in liver tissue [ALT (U/L): 52.60±6.44 vs. 95.70±8.00, AST (U/L): 170.45±19.33 vs. 251.10±13.09, MDA (nmol/mg): 12.63±3.41 vs. 18.04±3.72], and notable increases in GSH and SOD levels in liver tissue [GSH (µmol/mg): 39.49±6.33 vs. 20.26±3.96, SOD (U/mg): 121.40±11.75 vs. 81.67±10.01], all the differences were statistically significant (all P < 0.01). Western blotting results indicated that the protein expressions of Nrf2 and HO-1 in liver tissues of the DQ model group were significantly decreased compared to the control group. On the other hand, the protein expressions of Keap1 and activated caspase-9 were conspicuously higher when compared to the control group. In comparison to the DQ model group, the QR treatment group showed a significant increase in the protein expressions of Nrf2 and HO-1 in liver tissues (Nrf2/ß-actin: 1.17±0.08 vs. 0.92±0.45, HO-1/ß-actin: 1.53±0.17 vs. 0.84±0.09). By contrast, there was a notable decrease in the protein expressions of Keap1 and activated caspase-9 (Keap1/ß-actin: 0.48±0.06 vs. 1.22±0.09, activated caspase-9/ß-actin: 1.17±0.12 vs. 1.59±0.30), the differences were statistically significant (all P < 0.01). CONCLUSIONS: QR may reduce acute liver injury induced by DQ poisoning in mice via activating Keap1/Nrf2 signaling pathway.


Subject(s)
Chemical and Drug Induced Liver Injury , Diquat , Liver , Mice, Inbred C57BL , Quercetin , Animals , Male , Mice , Quercetin/pharmacology , Liver/drug effects , Liver/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Caspase 9/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Alanine Transaminase/blood , Membrane Proteins , Heme Oxygenase-1
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 552-558, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948281

ABSTRACT

Objective: This study aims to systematically evaluate the protective role of quercetin (QCT), a naturally occurring flavonoid, against oxidative damage in human endometrial stromal cells (HESCs) induced by hydrogen peroxide (H2O2). Oxidative stress, such as that induced by H2O2, is known to contribute significantly to cellular damage and has been implicated in various reproductive health issues. The study is focused on investigating how QCT interacts with specific molecular pathways to mitigate this damage. Special attention was given to the p38 MAPK/NOX4 signaling pathway, which is crucial to the regulation of oxidative stress responses in cellular systems. By elucidating these mechanisms, the study seeks to confirm the potential of QCT not only as a protective agent against oxidative stress but also as a therapeutic agent that could be integrated in treatments of conditions characterized by heightened oxidative stress in endometrial cells. Methods: I n vitro cultures of HESCs were treated with QCT at different concentrations (0, 10, 20, and 40 µmol/L) for 24 h to verify the non-toxic effects of QCT on normal endometrial cells. Subsequently, 250 µmol/L H2O2 was used to incubate the cells for 12 h to establish an H2O2-induced HESCs injury model. HESCs were pretreated with QCT for 24 h, which was followed by stimulation with H2O2. Then, CCK-8 assay was performed to examine the cell viability and to screen for the effective intervention concentration. HESCs were divided into 3 groups, the control group, the H2O2 model group, and the H2O2+QCT group. Intracellular levels of reactive oxygen species (ROS) were precisely quantified using the DCFH-DA fluorescence assay, a method known for its accuracy in detecting and quantifying oxidative changes within the cell. The mitochondrial membrane potential was determined by JC-1 staining. Annexin Ⅴ/PI double staining and flow cytometry were performed to determine the effect of QCT on H2O2-induced apoptosis of HESCs. Furthermore, to delve deeper into the cellular mechanisms underlying the observed effects, Western blot analysis was conducted to measure the expression levels of the critical proteins involved in oxidative stress response, including NADPH oxidase 4 (NOX4), p38 mitogen-activated protein kinase (p38 MAPK), and phosphorylated p38 MAPK (p-p38 MAPK). This analysis helps increase understanding of the specific intracellular signaling pathways affected by QCT treatment, giving special attention to its potential for modulation of the p38 MAPK/NOX4 pathway, which plays a significant role in cellular defense mechanisms against oxidative stress. Results: In this study, we started off by assessing the toxicity of QCT on normal endometrial cells. Our findings revealed that QCT at various concentrations (0, 10, 20, and 40 µmol/L) did not exhibit any cytotoxic effects, which laid the foundation for further investigation into its protective roles. In the H2O2-induced HESCs injury model, a significant reduction in cell viability was observed, which was linked to the generation of ROS and the resultant oxidative damage. However, pretreatment with QCT (10 µmol/L and 20 µmol/L) significantly enhanced cell viability after 24 h (P<0.05), with the 20 µmol/L concentration showing the most substantial effect. This suggests that QCT can effectively reverse the cellular damage caused by H2O2. Furthermore, the apoptosis assays demonstrated a significant increase in the apoptosis rates in the H2O2 model group compared to those in the control group (P<0.01). However, co-treatment with QCT significantly reversed this trend (P<0.05), indicating QCT's potential protective role in mitigating cell apoptosis. ROS assays showed that, compared to that in the control group, the average fluorescence intensity of ROS in the H2O2 model group significantly increased (P<0.01). QCT treatment significantly reduced the ROS fluorescence intensity in the H2O2+QCT group compared to the that in the H2O2 model group, suggesting an effective alleviation of oxidative damage (P<0.05). JC-1 staining for mitochondrial membrane potential changes revealed that compared to that in the control, the proportion of cells with decreased mitochondrial membrane potential significantly increased in the H2O2 model group (P<0.01). However, this proportion was significantly reduced in the QCT-treated group compared to that of the H2O2 model group (P<0.05). Finally, Western blot analysis indicated that the expression levels of NOX4 and p-p38 MAPK proteins were elevated in the H2O2 model group compared to those of the control group (P<0.05). Following QCT treatment, these protein levels significantly decreased compared to those of the H2O2 model group (P<0.05). These results suggest that QCT may exert its protective effects against oxidative stress by modulating the p38 MAPK/NOX4 signaling pathway. Conclusion: QCT has demonstrated significant protective effects against H2O2-induced oxidative damage in HESCs. This protection is primarily achieved through the effective reduction of ROS accumulation and the inhibition of critical signaling pathways involved in the oxidative stress response, notably the p38 MAPK/NOX4 pathway. The results of this study reveal that QCT's ability to modulate these pathways plays a key role in alleviating cellular damage associated with oxidative stress conditions. This indicates not only its potential as a protective agent against cellular oxidative stress, but also highlights its potential for therapeutic applications in treating conditions characterized by increased oxidative stress in the endometrium, thereby offering the prospect of enhancing reproductive health. Future studies should explore the long-term effects of QCT and its clinical efficacy in vivo, thereby providing a clear path toward its integration into therapeutic protocols.


Subject(s)
Endometrium , Hydrogen Peroxide , Oxidative Stress , Quercetin , Signal Transduction , Stromal Cells , Female , Humans , Apoptosis/drug effects , Cells, Cultured , Endometrium/cytology , Endometrium/drug effects , Endometrium/metabolism , Hydrogen Peroxide/toxicity , NADPH Oxidase 4/metabolism , Oxidative Stress/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism
19.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063176

ABSTRACT

Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated multiple health benefits, including anticancer properties. This study investigated the therapeutic potential of QRC in the treatment of GC. We utilized advanced molecular techniques to assess the impact of QRC on GC cells, examining its effects on cellular pathways and gene expression. Our findings indicate that QRC significantly inhibits GC cell proliferation and induces apoptosis, suggesting its potential as a safer therapeutic option for GC treatment. Further research is required to validate these results and explore the clinical applications of QRC in cancer therapy.


Subject(s)
Apoptosis , Cell Proliferation , Computational Biology , Quercetin , Stomach Neoplasms , Quercetin/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Computational Biology/methods , Gene Expression Regulation, Neoplastic/drug effects
20.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062932

ABSTRACT

Flavonoids, a class of natural compounds with anticancer activity, exhibit varying biological activities and potencies based on their structural differences. Acylation, including acetylation of flavonoids, generally increases their structural diversity, which is closely related to the diversity of bioactivity within this group of compounds. However, it remains largely unknown how acetylation affects the bioactivity of many flavonoids. Based on our previous findings that O-acetylation enhances quercetin's bioactivity against various cancer cells, we synthesized 12 acetylated flavonoids, including seven novel compounds, to investigate their anticancer activities in the MDA-MB-231, HCT-116, and HepG2 cell lines. Our results showed that acetylation notably enhanced the cell proliferation inhibitory effect of quercetin and kaempferol across all cancer cell lines tested. Interestingly, while the 5,7,4'-O-triacetate apigenin (3Ac-A) did not show an enhanced the effect of inhibition of cell proliferation through acetylation, it exhibited significantly strong anti-migration activity in MDA-MB-231 cells. In contrast, the 7,4'-O-diacetate apigenin (2Ac-Q), which lacks acetylation at the 5-position hydroxy group, showed enhanced cell proliferation inhibitory effect but had weaker anti-migration effects compared to 3Ac-A. These results indicated that acetylated flavonoids, especially quercetin, kaempferol, and apigenin derivatives, are promising for anticancer applications, with 3Ac-A potentially having unique anti-migration pathways independent of apoptosis induction. This study highlights the potential application of flavonoids in novel chemopreventive strategies for their anti-cancer activity.


Subject(s)
Cell Proliferation , Flavonoids , Humans , Acetylation/drug effects , Flavonoids/pharmacology , Flavonoids/chemistry , Cell Proliferation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Quercetin/pharmacology , Quercetin/chemistry , Kaempferols/pharmacology , Kaempferols/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/prevention & control , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Hep G2 Cells , Apigenin/pharmacology , Apigenin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL