Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.932
Filter
1.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38955468

ABSTRACT

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Subject(s)
Cytosol , Mitochondria , Prohibitins , RNA, Double-Stranded , RNA, Mitochondrial , Humans , Cytosol/metabolism , Mitochondria/metabolism , RNA, Double-Stranded/metabolism , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Cell Line, Tumor , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA Transport , Exoribonucleases/metabolism , Exoribonucleases/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Mitochondrial Proteins
2.
Proc Natl Acad Sci U S A ; 121(25): e2322765121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865263

ABSTRACT

Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.


Subject(s)
RNA Viruses , Ribonuclease III , Ribonuclease III/metabolism , Ribonuclease III/genetics , RNA Viruses/immunology , RNA Viruses/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Ascomycota/virology , RNA Interference , Virus Replication/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , RNA, Double-Stranded/metabolism
3.
Biochem Soc Trans ; 52(3): 1131-1148, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38884803

ABSTRACT

The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.


Subject(s)
DEAD Box Protein 58 , Immunity, Innate , RNA, Viral , Receptors, Immunologic , Humans , RNA, Viral/metabolism , DEAD Box Protein 58/metabolism , Receptors, Immunologic/metabolism , Animals , RNA, Double-Stranded/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , DEAD-box RNA Helicases/metabolism , RNA Helicases/metabolism
4.
Bull Exp Biol Med ; 176(6): 751-755, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38896322

ABSTRACT

The removal of double-stranded RNA (dsRNA) contaminants during in vitro mRNA synthesis is one of the technological problems to be solved. Apparently, these contaminants are the result of the T7 RNA polymerase side activity. In this study, we used a modified method of mRNA purification based on the selective binding of dsRNA to cellulose in ethanol-containing buffer. It was shown both in vivo and in vitro that the cellulose-purified mRNA preparation leads neither to activation of the lymphocyte inflammatory marker CD69 nor to increased release of IFNα in mice, and does not contain impurities detectable by antibodies to dsRNA.


Subject(s)
RNA, Double-Stranded , RNA, Messenger , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Mice , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Interferon-alpha/genetics , Interferon-alpha/metabolism , Interferon-alpha/biosynthesis , Viral Proteins/metabolism , Viral Proteins/genetics
5.
Methods Mol Biol ; 2813: 235-244, 2024.
Article in English | MEDLINE | ID: mdl-38888782

ABSTRACT

Double-stranded RNA is produced by viruses during their replicative cycle. It is a potent immune modulator and indicator of viral infection within the body. Extracellular vesicles (EVs) are lipid-bound particles released from cells homeostatically. Recent studies have shown that a commercially available dsRNA, poly inosinic: poly cytidylic acid (poly IC), can be detected within EVs. This finding opens the door for studying EVs as (1) carriers for dsRNA and (2) indicators of viral infection. To study dsRNA-containing EVs, we must have reliable methods for producing, isolating, and detecting them. This chapter uses U937, a pro-monocytic, human myeloid leukemia cell line, as the EV producer following poly IC treatment, and an immunoblot using an anti-dsRNA antibody (J2) for detection. Two methods for isolating the EVs and two methods for isolating the RNA from these EVs are described. Together, these methods effectively produce, isolate, and detect long dsRNA from EVs.


Subject(s)
Extracellular Vesicles , Poly I-C , Humans , Extracellular Vesicles/metabolism , Poly I-C/pharmacology , U937 Cells , RNA, Double-Stranded/metabolism
6.
Parasit Vectors ; 17(1): 255, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863029

ABSTRACT

BACKGROUND: RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS: We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS: The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS: C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.


Subject(s)
Aedes , RNA Interference , RNA, Double-Stranded , Transfection , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Animals , Cell Line , Aedes/genetics , Gene Silencing , Semliki forest virus/genetics , Semliki forest virus/drug effects
7.
Cell Rep ; 43(6): 114287, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823018

ABSTRACT

Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.


Subject(s)
Endoribonucleases , Immunity, Innate , Endoribonucleases/metabolism , Endoribonucleases/genetics , Humans , RNA Cleavage , Animals , RNA, Double-Stranded/metabolism , Mice , Ribonuclease, Pancreatic/metabolism
8.
Proc Natl Acad Sci U S A ; 121(26): e2322927121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885386

ABSTRACT

RNA interference (RNAi) is more efficient in coleopteran insects than other insects. StaufenC (StauC), a coleopteran-specific double-stranded RNA (dsRNA)-binding protein, is required for efficient RNAi in coleopterans. We investigated the function of StauC in the intracellular transport of dsRNA into the cytosol, where dsRNA is digested by Dicer enzymes and recruited by Argonauts to RNA-induced silencing complexes. Confocal microscopy and cellular organelle fractionation studies have shown that dsRNA is trafficked through the endoplasmic reticulum (ER) in coleopteran Colorado potato beetle (CPB) cells. StauC is localized to the ER in CPB cells, and StauC-knockdown caused the accumulation of dsRNA in the ER and a decrease in the cytosol, suggesting that StauC plays a key role in the intracellular transport of dsRNA through the ER. Using immunoprecipitation, we showed that StauC is required for dsRNA interaction with ER proteins in the ER-associated protein degradation (ERAD) pathway, and these interactions are required for RNAi in CPB cells. These results suggest that StauC works with the ERAD pathway to transport dsRNA through the ER to the cytosol. This information could be used to develop dsRNA delivery methods aimed at improving RNAi.


Subject(s)
Coleoptera , Cytosol , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum , RNA, Double-Stranded , RNA-Binding Proteins , Animals , Endoplasmic Reticulum/metabolism , RNA, Double-Stranded/metabolism , Cytosol/metabolism , Coleoptera/metabolism , Coleoptera/genetics , Endoplasmic Reticulum-Associated Degradation/physiology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , RNA Interference , Biological Transport
9.
Mol Cell ; 84(11): 2087-2103.e8, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38815579

ABSTRACT

RNA splicing is pivotal in post-transcriptional gene regulation, yet the exponential expansion of intron length in humans poses a challenge for accurate splicing. Here, we identify hnRNPM as an essential RNA-binding protein that suppresses cryptic splicing through binding to deep introns, maintaining human transcriptome integrity. Long interspersed nuclear elements (LINEs) in introns harbor numerous pseudo splice sites. hnRNPM preferentially binds at intronic LINEs to repress pseudo splice site usage for cryptic splicing. Remarkably, cryptic exons can generate long dsRNAs through base-pairing of inverted ALU transposable elements interspersed among LINEs and consequently trigger an interferon response, a well-known antiviral defense mechanism. Significantly, hnRNPM-deficient tumors show upregulated interferon-associated pathways and elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity by repressing cryptic splicing and suggest that targeting hnRNPM in tumors may be used to trigger an inflammatory immune response, thereby boosting cancer surveillance.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group M , Introns , Long Interspersed Nucleotide Elements , RNA Splicing , RNA, Double-Stranded , Humans , Heterogeneous-Nuclear Ribonucleoprotein Group M/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group M/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Long Interspersed Nucleotide Elements/genetics , Interferons/metabolism , Interferons/genetics , Animals , HEK293 Cells , Mice , Transcriptome , Exons , RNA Splice Sites , Alu Elements/genetics
10.
Cell Res ; 34(7): 504-521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811766

ABSTRACT

Bidirectional transcription of mammalian mitochondrial DNA generates overlapping transcripts that are capable of forming double-stranded RNA (dsRNA) structures. Release of mitochondrial dsRNA into the cytosol activates the dsRNA-sensing immune signaling, which is a defense mechanism against microbial and viral attack and possibly cancer, but could cause autoimmune diseases when unchecked. A better understanding of the process is vital in therapeutic application of this defense mechanism and treatment of cognate human diseases. In addition to exporting dsRNAs, mitochondria also export and import a variety of non-coding RNAs. However, little is known about how these RNAs are transported across mitochondrial membranes. Here we provide direct evidence showing that adenine nucleotide translocase-2 (ANT2) functions as a mammalian RNA translocon in the mitochondrial inner membrane, independent of its ADP/ATP translocase activity. We also show that mitochondrial dsRNA efflux through ANT2 triggers innate immunity. Inhibiting this process alleviates inflammation in vivo, providing a potential therapeutic approach for treating autoimmune diseases.


Subject(s)
Adenine Nucleotide Translocator 2 , Mitochondria , Mitochondrial Membranes , RNA, Double-Stranded , Animals , Adenine Nucleotide Translocator 2/metabolism , Adenine Nucleotide Translocator 2/genetics , Humans , RNA, Double-Stranded/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mice , Immunity, Innate , RNA Transport , HEK293 Cells , Mice, Inbred C57BL
11.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38761636

ABSTRACT

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Subject(s)
Encephalomyocarditis virus , Protein Multimerization , RNA, Double-Stranded , RNA, Viral , eIF-2 Kinase , eIF-2 Kinase/metabolism , eIF-2 Kinase/chemistry , Humans , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Encephalomyocarditis virus/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Poly I-C/pharmacology , Nucleic Acid Conformation
12.
Nat Commun ; 15(1): 4644, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821943

ABSTRACT

The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelles, the sites of replication of viral genomic RNA (vgRNA). To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain numerous vgRNA molecules along with the replication enzymes and clusters of viral double-stranded RNA (dsRNA). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of endoplasmic reticulum (ER) markers and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are encapsulated into DMVs, which have membranes derived from the host ER. These organelles merge into larger vesicle packets as infection advances. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.


Subject(s)
Endoplasmic Reticulum , Organelles , RNA, Viral , SARS-CoV-2 , Virus Replication , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Virus Replication/physiology , Humans , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Endoplasmic Reticulum/ultrastructure , Organelles/virology , Organelles/metabolism , Organelles/ultrastructure , Chlorocebus aethiops , Vero Cells , Animals , COVID-19/virology , COVID-19/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Microscopy, Fluorescence , Viral Replication Compartments/metabolism , RNA, Double-Stranded/metabolism
13.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728113

ABSTRACT

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Animals , Larva/growth & development , Larva/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Hydroxides/chemistry , Hydroxides/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Arachis/genetics , Arachis/chemistry , Arachis/growth & development , Arachis/metabolism , Pest Control, Biological , Coleoptera/genetics , Coleoptera/growth & development , Green Chemistry Technology , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Nanoparticles/chemistry
14.
Sci Signal ; 17(837): eadi9844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771918

ABSTRACT

Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.


Subject(s)
2',5'-Oligoadenylate Synthetase , Endoribonucleases , RNA, Double-Stranded , Zika Virus , Endoribonucleases/metabolism , Endoribonucleases/genetics , Endoribonucleases/chemistry , Humans , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Zika Virus/metabolism , Animals , Dengue Virus/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , RNA Stability , West Nile virus/metabolism , West Nile virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Enzyme Activation , HeLa Cells , HEK293 Cells
15.
J Agric Food Chem ; 72(22): 12508-12515, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788129

ABSTRACT

Nanotechnology-based RNA interference (RNAi) offers a promising approach to pest control. However, current methods for producing RNAi nanopesticides are mainly implemented in a batch-to-batch manner, lacking consistent quality control. Herein, we present a microfluidic-based nanoplatform for RNA nanopesticide preparation using lipid nanoparticles (LNPs) as nanocarriers, taking advantage of the enhanced mass transfer and continuous processing capabilities of microfluidic technology. The dsRNA@LNPs were rapidly formed within seconds, which showed uniform size distribution, improved leaf wettability, and excellent dispersion properties. The delivery efficiency of dsRNA@LNPs was evaluated by targeting the chitin synthetase B (CHSB) gene ofSpodoptera exigua. The dsRNA@LNPs can effectively resist nuclease-rich midgut fluid degradation. Importantly, dsCHSB@LNPs exhibited increased mortality rates, significant reduction of larvae growth, and enhanced gene suppression efficiency. Therefore, a continuous nanoplatform for RNAi nanopesticide preparation is demonstrated by utilizing microfluidic technology, representing a new route to produce RNAi nanopesticides with enhanced quality control and might accelerate their practical applications.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Spodoptera , Animals , Spodoptera/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Larva/growth & development , Larva/genetics , Nanoparticles/chemistry , Microfluidics/instrumentation , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Control/methods
16.
Nat Commun ; 15(1): 4127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750080

ABSTRACT

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Signal Transduction , Stress Granules , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Stress Granules/metabolism , RNA Helicases/metabolism , DNA Helicases/metabolism , DEAD Box Protein 58/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Immunity, Innate , RNA, Double-Stranded/metabolism , HEK293 Cells , HeLa Cells , Cytoplasmic Granules/metabolism , RNA Virus Infections/virology , RNA Virus Infections/metabolism , RNA Virus Infections/immunology , Receptors, Immunologic/metabolism
17.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691835

ABSTRACT

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Subject(s)
Ants , Insect Proteins , RNA Interference , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Ants/genetics , Insect Control/methods , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Pest Control, Biological/methods , Female , Fire Ants
18.
Elife ; 132024 May 15.
Article in English | MEDLINE | ID: mdl-38747717

ABSTRACT

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Double-Stranded , Ribonuclease III , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/chemistry , Ribonuclease III/genetics , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/chemistry
19.
Arch Insect Biochem Physiol ; 116(1): e22118, 2024 May.
Article in English | MEDLINE | ID: mdl-38713637

ABSTRACT

We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (Bombyx mori) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from B. mori Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5'-phosphorylated dsRNAs at the 20-nt site-counted from the 5'-phosphorylated end-and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.


Subject(s)
Bombyx , RNA, Double-Stranded , Ribonuclease III , Animals , Bombyx/genetics , Bombyx/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/genetics , Larva/growth & development , Magnesium/metabolism , Ribonuclease III/metabolism , Ribonuclease III/genetics , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism
20.
Nucleic Acids Res ; 52(11): 6718-6727, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38742627

ABSTRACT

The nucleic acid transport properties of the systemic RNAi-defective (SID) 1 family make them attractive targets for developing RNA-based therapeutics and drugs. However, the molecular basis for double-stranded (ds) RNA recognition by SID1 family remains elusive. Here, we report the cryo-EM structures of Caenorhabditis elegans (c) SID1 alone and in complex with dsRNA, both at a resolution of 2.2 Å. The dimeric cSID1 interacts with two dsRNA molecules simultaneously. The dsRNA is located at the interface between ß-strand rich domain (BRD)1 and BRD2 and nearly parallel to the membrane plane. In addition to extensive ionic interactions between basic residues and phosphate backbone, several hydrogen bonds are formed between 2'-hydroxyl group of dsRNA and the contact residues. Additionally, the electrostatic potential surface shows three basic regions are fitted perfectly into three major grooves of dsRNA. These structural characteristics enable cSID1 to bind dsRNA in a sequence-independent manner and to distinguish between DNA and RNA. The cSID1 exhibits no conformational changes upon binding dsRNA, with the exception of a few binding surfaces. Structural mapping of dozens of loss-of-function mutations allows potential interpretation of their diverse functional mechanisms. Our study marks an important step toward mechanistic understanding of the SID1 family-mediated dsRNA uptake.


Subject(s)
Caenorhabditis elegans Proteins , RNA, Double-Stranded , Animals , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Cryoelectron Microscopy , Models, Molecular , Protein Binding , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...