Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70.624
1.
Front Cell Infect Microbiol ; 14: 1347345, 2024.
Article En | MEDLINE | ID: mdl-38828262

Background: To date, more than 770 million individuals have become coronavirus disease 2019 (COVID-19) convalescents worldwide. Emerging evidence highlights the influence of COVID-19 on the oral microbiome during both acute and convalescent disease phases. Front-line healthcare workers are at an elevated risk of exposure to viral infections, and the effects of COVID-19 on their oral microbiome remain relatively unexplored. Methods: Oropharyngeal swab specimens, collected one month after a negative COVID-19 test from a cohort comprising 55 healthcare workers, underwent 16S rRNA sequencing. We conducted a comparative analysis between this post-COVID-19 cohort and the pre-infection dataset from the same participants. Community composition analysis, indicator species analysis, alpha diversity assessment, beta diversity exploration, and functional prediction were evaluated. Results: The Shannon and Simpson indexes of the oral microbial community declined significantly in the post-COVID-19 group when compared with the pre-infection cohort. Moreover, there was clear intergroup clustering between the two groups. In the post-COVID-19 group, the phylum Firmicutes showed a significant increase. Further, there were clear differences in relative abundance of several bacterial genera in contrast with the pre-infection group, including Streptococcus, Gemella, Granulicatella, Capnocytophaga, Leptotrichia, Fusobacterium, and Prevotella. We identified Gemella enrichment in the post-COVID-19 group, potentially serving as a recovery period performance indicator. Functional prediction revealed lipopolysaccharide biosynthesis downregulation in the post-COVID-19 group, an outcome with host inflammatory response modulation and innate defence mechanism implications. Conclusion: During the recovery phase of COVID-19, the oral microbiome diversity of front-line healthcare workers failed to fully return to its pre-infection state. Despite the negative COVID-19 test result one month later, notable disparities persisted in the composition and functional attributes of the oral microbiota.


Bacteria , COVID-19 , Health Personnel , Microbiota , Oropharynx , RNA, Ribosomal, 16S , SARS-CoV-2 , Humans , COVID-19/microbiology , Oropharynx/microbiology , Oropharynx/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Adult , RNA, Ribosomal, 16S/genetics , Male , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Middle Aged , Cohort Studies
2.
Environ Microbiol ; 26(6): e16664, 2024 Jun.
Article En | MEDLINE | ID: mdl-38830671

Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.


Microbiota , Milk , Nutrients , RNA, Ribosomal, 16S , Animals , Milk/microbiology , Nutrients/metabolism , RNA, Ribosomal, 16S/genetics , Macaca mulatta/microbiology , Female , Cercopithecidae/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biological Evolution
3.
Curr Microbiol ; 81(7): 203, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831185

Three Gram-stain-positive bacterial strains were isolated from traditional Chinese pickle and characterized using a polyphasic taxonomic approach. Results of 16S rRNA gene sequence analysis indicated that strain 74-4T was most closely related to the type strains of Lacticaseibacillus suibinensis and Lacticaseibacillus suilingensis, having 99.9% and 100% 16S rRNA gene sequence similarities, respectively, and that strains 419-1.2T and 262-4 were most closely related to the type strains of Companilactobacillus heilongjiangensis, Companilactobacillus nantensis, Companilactobacillus huachuanensis, and Companilactobacillus nuruki, having 98.5-99.7% 16S rRNA gene sequence similarities. The phylogenomic trees indicated that strain 74-4T was related to the type strains of L. suibinensis and L. suilingensis, and that strains 419-1.2T and 262-4 were related to the type strains of C. heilongjiangensis, C. nantensis, C. huachuanensis, and Companilactobacillus zhachilii. The ANI and dDDH values between strain 74-4T and type strains of phylogenetically related species were less than 92.7% and 49.9%, respectively. The ANI and dDDH values between strains 419-1.2T and 262-4 and type strains of phylogenetically related species were less than 93.4% and 51.7%, respectively. Based upon the data of polyphasic characterization obtained in the present study, two novel species, Lacticaseibacillus salsurivasis sp. nov. and Companilactobacillus muriivasis sp. nov., are proposed and the type strains are 74-4T (= JCM 35890T = CCTCC AB 2022414T) and 419-1.2T (= JCM 35891T = CCTCC AB 2022413T), respectively.


DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Bacterial Typing Techniques , Base Composition , Fermented Foods/microbiology , Sequence Analysis, DNA , Fatty Acids/analysis , Food Microbiology , Lacticaseibacillus
4.
Article En | MEDLINE | ID: mdl-38832855

During a study on the diversity of culturable actinobacteria from coastal halophytes in Thailand, strain LSe6-5T was isolated from leaves of sea purslane (Sesuvium portulacastrum L.), and a polyphasic approach was employed to determine its taxonomic position. The 16S rRNA gene sequences analysis indicated that the strain was most closely related to Klenkia brasiliensis Tu 6233T (99.2 %), Klenkia marina YIM M13156T (99.1 %), and Klenkia terrae PB261T (98.7 %). The genome of strain LSe6-5T was estimated to be 4.33 Mbp in size, with DNA G+C contents of 74.3%. A phylogenomic tree based on whole-genome sequences revealed that strain LSe6-5T formed a clade with Klenkia marina DSM 45722T, indicating their close relationship. However, the average nucleotide identity (ANI)-blast, ANI-MUMmer, and dDDH values between strain LSe6-5T with K. marina DSM 45722T (87.1, 88.9, and 33.0 %) were below the thresholds of 95-96 % ANI and 70 % dDDH for identifying a novel species. Furthermore, strain LSe6-5T showed morphological and chemotaxonomic characteristics of the genus Klenkia. Cells were motile, rod-shaped, and Gram-stain-positive. Optimal growth of strain LSe6-5T occurred at 28 °C, pH 7.0, and 0-3 % NaCl. The whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid, with galactose, glucose, mannose, and ribose as whole-cell sugars. The predominant menaquinones were MK-9(H4) and MK-9(H0). The polar lipid profile was composed of diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, an unidentified phospholipid, and an unidentified lipid. Major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, and iso-C17 : 0. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, it is supported that strain LSe6-5T represents a novel species of the genus Klenkia, for which the name Klenkia sesuvii sp. nov. is proposed. The type strain is strain LSe6-5T (=TBRC 16417T= NBRC 115929T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Salt-Tolerant Plants , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Plant Leaves/microbiology , Thailand , Salt-Tolerant Plants/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phospholipids/analysis , Whole Genome Sequencing , Genome, Bacterial
5.
Article En | MEDLINE | ID: mdl-38832859

The genera Rhodobaca and Roseinatronobacter are phylogenetically related genera within the family Paracoccaceae. Species of these genera were described using 16S rRNA gene-based phylogeny and phenotypic characteristics. However, the 16S rRNA gene identity and phylogeny reveal the controversy of the taxonomic status of these two genera. In this work, we examined the taxonomic positions of members of both genera using 16S rRNA gene phylogeny, phylogenomic analysis and further validated using overall genome-related indexes, including digital DNA-DNA hybridization, average nucleotide identity, average amino acid identity and percentage of conserved proteins. Based on phylogenetic and phylogenomic results, the current four species of the two genera clustered tightly into one clade with high bootstrap values, suggesting that the genus Rhodobaca should be merged with Roseinatronobacter. In addition, a novel species isolated from a soda soil sample collected from Anda City, PR China, and designated as HJB301T was also described. Phenotypic, chemotaxonomic, genomic and phylogenetic properties suggested that strain HJB301T (=CCTCC AB 2021113T=KCTC 82977T) represents a novel species of the genus Roseinatronobacter, for which the name Roseinatronobacter alkalisoli sp. nov. is proposed.


Bacterial Typing Techniques , DNA, Bacterial , Genome, Bacterial , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Base Composition , Fatty Acids
6.
Article En | MEDLINE | ID: mdl-38832864

Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated strains F2T and PGU16, were isolated from the midgut crypts of the bordered plant bug Physopelta gutta, collected in Okinawa prefecture, Japan. Although these strains were derived from different host individuals collected at different times, their 16S rRNA gene sequences were identical and showed the highest similarity to Paraburkholderia caribensis MWAP64T (99.3 %). The genome of strain F2T consisted of two chromosomes and two plasmids, and its size and G+C content were 9.28 Mb and 62.4 mol% respectively; on the other hand, that of strain PGU16 consisted of two chromosomes and three plasmids, and its size and G+C content were 9.47 Mb and 62.4 mol%, respectively. Phylogenetic analyses revealed that these two strains are members of the genus Paraburkholderia. The digital DNA-DNA hybridization value between these two strains was 92.4 %; on the other hand, the values between strain F2T and P. caribensis MWAP64T or phylogenetically closely related Paraburkholderia species were 44.3 % or below 49.1 %. The predominant fatty acids of both strains were C16 : 0, C17 : 0 cyclo, summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), and C19 : 0 cyclo ω8c, and their respiratory quinone was ubiquinone 8. Based on the above genotypic and phenotypic characteristics, strains F2T and PGU16 represent a novel species of the genus Paraburkholderia for which the name Paraburkholderia largidicola sp. nov. is proposed. The type strain is F2T (=NBRC 115765T=LMG 32765T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Symbiosis , DNA, Bacterial/genetics , Animals , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Japan , Heteroptera/microbiology , Gastrointestinal Tract/microbiology
7.
Antonie Van Leeuwenhoek ; 117(1): 87, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833203

Two novel Gram-stain-negative strains designated P7T and P8T, were isolated from the soil of a paddy field in Goyang, Republic of Korea, and identified as new species within the genus Roseateles through a polyphasic taxonomic approach. These aerobic, rod-shaped, non-sporulating strains demonstrated optimal growth at 30 °C, pH 7, and in the absence of NaCl (0% w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated close relationships with Roseateles saccharophilus DSM654T (98.7%) and Roseateles puraquae CCUG 52769T (98.96%), respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates with the most closely related strains with publicly available whole genomes were 82.0-85.5% and 25.0-30.2%, respectively. The predominant fatty acids identified were C16:0 and summed feature 3 (composed of C16:1 ω6c and/or C16:1 ω7c), with minor amounts of C12:0, C10:0 3-OH and summed feature 8 (composed of C18:1 ω7c and/or C18:1 ω6c; 26.4%). Ubiquinone 8 was the main quinone, and the polar lipid profile included phosphatidylethanolamine, phosphatidylglycerol, two unidentified phosphoaminolipids, one unidentified phosphoglycolipid, three unidentified phospholipids, and one unidentified aminolipid. The draft genome sequences revealed genomic DNA G + C contents of 70.1% for P7T and 68.2% for P8T. Comprehensive physiological, biochemical, and 16S rRNA sequence analyses confirm these isolates as novel species of the genus Roseateles, proposed to be named Roseateles caseinilyticus sp. nov for strain P7T (= KACC 22504T = TBRC 15694T) and Roseateles cellulosilyticus sp. nov. for strain P8T (= KACC 22505T = TBRC 15695T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Oryza , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Republic of Korea , Methylobacteriaceae/genetics , Methylobacteriaceae/classification , Methylobacteriaceae/isolation & purification , Nucleic Acid Hybridization , Phospholipids/analysis , Sequence Analysis, DNA
8.
Food Res Int ; 188: 114463, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823831

To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.


Biofilms , Food Microbiology , Lipase , Milk , Pasteurization , Pseudomonas , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/growth & development , Milk/microbiology , Animals , Biofilms/growth & development , Lipase/metabolism , China , Phylogeny , Peptide Hydrolases/metabolism , RNA, Ribosomal, 16S/genetics , Food Contamination/analysis , Temperature
9.
Zhonghua Nei Ke Za Zhi ; 63(6): 605-612, 2024 Jun 01.
Article Zh | MEDLINE | ID: mdl-38825930

Objective: To observe the characteristics and differences of gut microbiota in asthma patients with different inflammatory types through metagenomic analysis. Methods: Adults aged ≥18 years who visited the Respiratory Clinic of Peking University Third Hospital from August 1, 2021 to August 31, 2022 and were primarily diagnosed with asthma were selected as the study subjects. Finally, 29 patients with stable asthma were included. Fresh fecal samples were collected and the fecal DNA was extracted for high-throughput 16sRNA sequencing of gut microbiota. The diversity and community structure of gut microbiota in different groups of asthma patients were compared, and the species differences were analyzed through random forest and LEfSe analysis. Results: There were sex-based differences in asthma patients with different types of inflammation, and the proportion of female patients was higher in neutrophilic asthma patients (χ2=4.14, P=0.042). There was no significant intergroup difference in the alpha diversity of gut microbiota among asthma patients with different inflammatory types, but there were significant differences in the microbiome. Patients with neutrophilic asthma had higher relative abundance of Bacillales (P=0.029) and Oscillospiraceae (P=0.015). In species LEfSe analysis, patients with eosinophilic asthma had a higher relative abundance of fungi. Conclusion: There are intergroup differences in the gut microbiota of asthma patients with different inflammation types, and fungi are biomarkers that distinguish the differences in gut microbiota between patients with eosinophilic asthma and neutrophilic asthma.


Asthma , Feces , Gastrointestinal Microbiome , Inflammation , Humans , Asthma/microbiology , Feces/microbiology , Inflammation/microbiology , Female , Male , RNA, Ribosomal, 16S/genetics , Adult
10.
Appl Microbiol Biotechnol ; 108(1): 356, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822843

The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while ß-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest ß-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.


Bacteria , Gastrointestinal Microbiome , Gastrointestinal Tract , Goats , RNA, Ribosomal, 16S , Animals , Goats/microbiology , Gastrointestinal Tract/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Phylogeny , DNA, Bacterial/genetics , Biodiversity , Female
11.
Sci Rep ; 14(1): 12621, 2024 06 01.
Article En | MEDLINE | ID: mdl-38824201

Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.


Anaplasma , Anaplasmosis , Animals, Domestic , Ehrlichia , Genetic Variation , Goats , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , China/epidemiology , Ehrlichia/genetics , Ehrlichia/isolation & purification , Goats/microbiology , Dogs , Cattle , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Prevalence , Animals, Domestic/microbiology , RNA, Ribosomal, 16S/genetics , Ticks/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Phylogeny
12.
Environ Microbiol Rep ; 16(3): e13279, 2024 Jun.
Article En | MEDLINE | ID: mdl-38855918

Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.


Bacteria , Hemiptera , Microbiota , RNA, Ribosomal, 16S , Symbiosis , Animals , Hemiptera/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , Electron Transport Complex IV/genetics
13.
Antonie Van Leeuwenhoek ; 117(1): 89, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38861000

Strain MP-1014T, an obligate halophilic actinobacterium, was isolated from the mangrove soil of Thandavarayancholanganpettai, Tamil Nadu, India. A polyphasic approach was utilized to explore its phylogenetic position completely. The isolate was Gram-positive, filamentous, non-motile, and coccoid in older cultures. Ideal growth conditions were seen at 30 °C and pH 7.0, with 5% NaCl (W/V), and the DNA G + C content was 73.3%. The phylogenic analysis of this strain based upon 16S rRNA gene sequence revealed 97-99.8% similarity to the recognized species of the genus Isoptericola. Strain MP-1014T exhibits the highest similarity to I. sediminis JC619T (99.7%), I. chiayiensis KCTC19740T (98.9%), and subsequently to I. halotolerans KCTC19646T (98.6%), when compared with other members within the Isoptericola genus (< 98%). ANI scores of strain MP-1014T are 86.4%, 84.2%, and 81.5% and dDDH values are 59.7%, 53.6%, and 34.8% with I. sediminis JC619T, I. chiayiensis KCTC19740T and I. halotolerans KCTC19646T respectively. The major polar lipids of the strain MP-1014T were phosphatidylinositol, phosphatidylglycerol, diphosphotidylglycerol, two unknown phospholipids, and glycolipids. The predominant respiratory menaquinones were MK9 (H4) and MK9 (H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C14:0, C15:0, and C16:0. Also, initial genome analysis of the organism suggests it as a biostimulant for enhancing agriculture in saline environments. Based on phenotypic and genetic distinctiveness, the strain MP-1014 T represents the novel species of the genus Isoptericola assigned Isoptericola haloaureus sp. nov., is addressed by the strain MP-1014 T, given its phenotypic, phylogenetic, and hereditary uniqueness. The type strain is MP-1014T [(NCBI = OP672482.1 = GCA_036689775.1) ATCC = BAA 2646T; DSMZ = 29325T; MTCC = 13246T].


Base Composition , DNA, Bacterial , Nitrogen Fixation , Phylogeny , RNA, Ribosomal, 16S , Salt Tolerance , India , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Wetlands , Fatty Acids/metabolism , Fatty Acids/analysis , Geologic Sediments/microbiology , Bacterial Typing Techniques , Soil Microbiology , Phospholipids/analysis , Sequence Analysis, DNA , Sodium Chloride/metabolism , Actinobacteria/genetics , Actinobacteria/classification , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Actinobacteria/physiology
14.
Article En | MEDLINE | ID: mdl-38869948

Hungatella xylanolytica X5-1T is an anaerobic, xylan-fermenting bacterium first isolated from methane-producing cattle manure. Initially identified as Bacteroides xylanolyticus, this species was later reclassified as H. xylanolytica in 2019. Although this reclassification found support through Genome blast Distance Phylogeny analysis which placed H. xylanolytica X5-1T into the same clade as Hungatella effluvii DSM 24995T, it was contradicted by 16S rRNA gene phylogenetic analysis, which associated it with a set of misnamed Clostridium species later reassigned into the genus Lacrimispora. To ascertain its taxonomic position, comparative analyses were performed to re-examine the relationship between H. xylanolytica X5-1T and all species of the genera Hungatella and Lacrimispora. The ranges of 16S rRNA gene sequence similarity, average amino acid identity, and percentage of conserved protein prediction values were higher between H. xylanolytica X5-1T and species of the genus Lacrimispora than Hungatella. In addition, H. xylanolytica X5-1T was found to harbour genes and pathways conserved and exclusive to species within the genus Lacrimispora but not Hungatella. Essentially, in both the 16S rRNA gene phylogenetic tree and the core-genome phylogenomic tree, H. xylanolytica X5-1T clustered into the same clade as species of the genus Lacrimispora, distinct from species of the genus Hungatella. It is thus clear that H. xylanolytica X5-1T represents a species within the genus Lacrimispora, which we propose to reclassify as Lacrimispora xylanisolvens nom. nov. Finally, based on the results from the phylogenetic and comparative analyses, the genus Hungatella was transferred to the family Lachnospiraceae.


Bacterial Typing Techniques , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Clostridiales/classification , Clostridiales/genetics , Clostridiales/isolation & purification , Genome, Bacterial , Animals , Cattle
15.
Sci Rep ; 14(1): 13650, 2024 06 13.
Article En | MEDLINE | ID: mdl-38871760

Intestinal parasitic infections (IPIs) can lead to significant morbidity and mortality in cancer patients. While they are unlikely to cause severe disease and are self-limiting in healthy individuals, cancer patients are especially susceptible to opportunistic parasitic infections. The gut microbiota plays a crucial role in various aspects of health, including immune regulation and metabolic processes. Parasites occupy the same environment as bacteria in the gut. Recent research suggests intestinal parasites can disrupt the normal balance of the gut microbiota. However, there is limited understanding of this co-infection dynamic among cancer patients in Malaysia. A study was conducted to determine the prevalence and relationship between intestinal parasites and gut microbiota composition in cancer patients. Stool samples from 134 cancer patients undergoing active treatment or newly diagnosed were collected and examined for the presence of intestinal parasites and gut microbiota composition. The study also involved 17 healthy individuals for comparison and control. Sequencing with 16S RNA at the V3-V4 region was used to determine the gut microbial composition between infected and non-infected cancer patients and healthy control subjects. The overall prevalence of IPIs among cancer patients was found to be 32.8%. Microsporidia spp. Accounted for the highest percentage at 20.1%, followed by Entamoeba spp. (3.7%), Cryptosporidium spp. (3.0%), Cyclospora spp. (2.2%), and Ascaris lumbricoides (0.8%). None of the health control subjects tested positive for intestinal parasites. The sequencing data analysis revealed that the gut microbiota diversity and composition were significantly different in cancer patients than in healthy controls (p < 0.001). A significant dissimilarity was observed in the bacterial composition between parasite-infected and non-infected patients based on Bray-Curtis (p = 0.041) and Jaccard (p = 0.021) measurements. Bacteria from the genus Enterococcus were enriched in the parasite-infected groups, while Faecalibacterium prausnitzii reduced compared to non-infected and control groups. Further analysis between different IPIs and non-infected individuals demonstrated a noteworthy variation in Entamoeba-infected (unweighted UniFrac: p = 0.008), Cryptosporidium-infected (Bray-Curtis: p = 0.034) and microsporidia-infected (unweighted: p = 0.026; weighted: p = 0.019; Jaccard: p = 0.031) samples. No significant dissimilarity was observed between Cyclospora-infected groups and non-infected groups. Specifically, patients infected with Cryptosporidium and Entamoeba showed increased obligate anaerobic bacteria. Clostridiales were enriched with Entamoeba infections, whereas those from Coriobacteriales decreased. Bacteroidales and Clostridium were found in higher abundance in the gut microbiota with Cryptosporidium infection, while Bacillales decreased. Additionally, bacteria from the genus Enterococcus were enriched in microsporidia-infected patients. In contrast, bacteria from the Clostridiales order, Faecalibacterium, Parabacteroides, Collinsella, Ruminococcus, and Sporosarcina decreased compared to the non-infected groups. These findings underscore the importance of understanding and managing the interactions between intestinal parasites and gut microbiota for improved outcomes in cancer patients.


Gastrointestinal Microbiome , Intestinal Diseases, Parasitic , Neoplasms , Humans , Malaysia/epidemiology , Male , Female , Middle Aged , Intestinal Diseases, Parasitic/epidemiology , Adult , Neoplasms/microbiology , Aged , Feces/microbiology , Feces/parasitology , Tertiary Care Centers , Hospitals, Teaching , Prevalence , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Entamoeba/isolation & purification , Entamoeba/genetics , Microsporidia/isolation & purification , Coinfection/microbiology , Coinfection/epidemiology , RNA, Ribosomal, 16S/genetics
16.
Front Cell Infect Microbiol ; 14: 1375872, 2024.
Article En | MEDLINE | ID: mdl-38846355

Introduction: Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods: The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 µg/ml, with a slightly lower pyocyanin-based MIC of 38.5 µg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion: These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.


Antifungal Agents , Candida albicans , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Plasmids , Pseudomonas aeruginosa , Pyocyanine , RNA, Ribosomal, 16S , Soil Microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/growth & development , RNA, Ribosomal, 16S/genetics , India , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Antibiosis
18.
Article En | MEDLINE | ID: mdl-38848117

Two Gram-stain-negative, straight rods, non-motile, asporogenous, catalase-negative and obligately anaerobic butyrate-producing strains, HLW78T and CYL33, were isolated from faecal samples of two healthy Taiwanese adults. Phylogenetic analyses of 16S rRNA and DNA mismatch repair protein MutL (mutL) gene sequences revealed that these two novel strains belonged to the genus Faecalibacterium. On the basis of 16S rRNA and mutL gene sequence similarities, the type strains Faecalibacterium butyricigenerans AF52-21T(98.3-98.1 % and 79.0-79.5 % similarity), Faecalibacterium duncaniae A2-165T(97.8-97.9 % and 70.9-80.1 %), Faecalibacterium hattorii APC922/41-1T(97.1-97.3 % and 80.3-80.5 %), Faecalibacterium longum CM04-06T(97.8-98.0% and 78.3 %) and Faecalibacterium prausnitzii ATCC 27768T(97.3-97.4 % and 82.7-82.9 %) were the closest neighbours to the novel strains HLW78T and CYL33. Strains HLW78T and CYL33 had 99.4 % both the 16S rRNA and mutL gene sequence similarities, 97.9 % average nucleotide identity (ANI), 96.3 % average amino acid identity (AAI), and 80.5 % digital DNA-DNA hybridization (dDDH) values, indicating that these two strains are members of the same species. Phylogenomic tree analysis indicated that strains HLW78T and CYL33 formed an independent robust cluster together with F. prausnitzii ATCC 27768T. The ANI, AAI and dDDH values between strain HLW78T and its closest neighbours were below the species delineation thresholds of 77.6-85.1 %, 71.4-85.2 % and 28.3-30.9 %, respectively. The two novel strains could be differentiated from the type strains of their closest Faecalibacterium species based on their cellular fatty acid compositions, which contained C18 : 1 ω7c and lacked C15 : 0 and C17 : 1 ω6c, respectively. Phenotypic, chemotaxonomic and genotypic test results demonstrated that the two novel strains HLW78T and CYL33 represented a single, novel species within the genus Faecalibacterium, for which the name Faecalibacterium taiwanense sp. nov. is proposed. The type strain is HLW78T (=BCRC 81397T=NBRC 116372T).


Bacterial Typing Techniques , DNA, Bacterial , Faecalibacterium , Fatty Acids , Feces , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Feces/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Taiwan , DNA, Bacterial/genetics , Fatty Acids/analysis , Adult , Faecalibacterium/genetics , Faecalibacterium/isolation & purification , Faecalibacterium/classification , Base Composition , MutL Proteins/genetics
19.
Environ Geochem Health ; 46(7): 222, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849580

In previous studies, iron-based nanomaterials, especially biochar (BC)-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC), have been widely used for the remediation of soil contaminants. However, its potential risks to the soil ecological environment are still unknown. This study aims to explore the effects of 3% added S-nZVI/BC on soil environment and microorganisms during the remediation of Cd contaminated yellow-brown soil of paddy field. The results showed that after 49 d of incubation, S-nZVI/BC significantly reduced physiologically based extraction test (PBET) extractable Cd concentration (P < 0.05), and increased the immobilization efficiency of Cd by 16.51% and 17.43% compared with S-nZVI and nZVI/BC alone, respectively. Meanwhile, the application of S-nZVI/BC significantly increased soil urease and sucrase activities by 0.153 and 0.446 times, respectively (P < 0.05), improving the soil environmental quality and promoting the soil nitrogen cycle and carbon cycle. The results from the analysis of the 16S rRNA genes indicated that S-nZVI/BC treatment had a minimal effect on the bacterial community and did not appreciably alter the species of the original dominant bacterial phylum. Importantly, compared to other iron-based nanomaterials, incorporating S-nZVI/BC significantly increased the soil organic carbon (OC) content and decreased the excessive release of iron (P < 0.05). This study also found a significant negative correlation between OC content and Fe(II) content (P < 0.05). It might originate from the reducing effect of Fe-reducing bacteria, which consumed OC to promote the reduction of Fe(III). Accompanying this process, the redistribution of Cd and Fe mineral phases in the soil as well as the generation of secondary Fe(II) minerals facilitated Cd immobilization. Overall, S-nZVI/BC could effectively reduce the bioavailability of Cd, increase soil nutrients and enzyme activities, with less toxic impacts on the soil microorganisms.


Cadmium , Charcoal , Iron , Soil Microbiology , Soil Pollutants , Charcoal/chemistry , Cadmium/chemistry , Iron/chemistry , Oryza , Soil/chemistry , Bacteria/metabolism , Environmental Restoration and Remediation/methods , RNA, Ribosomal, 16S , Biodegradation, Environmental
20.
Curr Microbiol ; 81(7): 214, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849626

A Gram-staining-positive actinomycete named YZH12T was isolated from the sediment of the Yangtze River in Nanjing, Jiangsu province, China. Cells were aerobic, non-spore forming, non-motile, short rod (0.4-0.6 × 0.5-1.0 µm) or coccus (0.4-0.6 µm in diameter). Colonies were circular, smooth, and beige to yellowish. Growth occurred at 15-42 °C (optimal 28 °C), pH 5.0-9.0 (optimal 7.0), and 0-10% (w/v) NaCl (optimal 2%). The strain could tolerate 1500 mg/L of imazamox. Strain YZH12T showed 98.7% 16S rRNA gene sequence similarity Nocardioides zeae JM-1068T and less than 97% similarities with other type strains in the genus Nocardioides. Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that strain YZH12T was phylogenetically affiliated to the genus Nocardioides and formed a subclade with N. zeae JM-1068T and N. alkalitolerans DSM 16699T. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between YZH12T and closely related type strain N. zeae JM-1068T were 79.9% and 35.2%, respectively. The major fatty acids (> 5%) were C18: 1ω9c, iso-C16: 0, C16: 0, C17: 1ω8cand C18: 0; the major respiratory quinone was MK-8(H4); and the polar lipids profiles were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), glycolipid (GL), two aminophospholipids (APL1, APL2), and an unknown polar lipid (L). The genomic DNA G + C content is 73.5%. Based on the phenotypic, chemotaxonomic, phylogenetic analyses, and genomic data, strain YZH12T represents a novel species of the genus Nocardioides, for which the name Nocardioides imazamoxiresistens YZH12T is proposed, with strain YZH12T (= KCTC 49964T = MCCC 1K0892T) as the type strain.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sewage , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/analysis , Sewage/microbiology , China , Sequence Analysis, DNA , Actinomycetales/classification , Actinomycetales/genetics , Actinomycetales/isolation & purification , Nucleic Acid Hybridization , Geologic Sediments/microbiology
...