Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.463
Filter
1.
RNA ; 30(7): 770-778, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38570183

ABSTRACT

30S subunits become inactive upon exposure to low Mg2+ concentration, because of a reversible conformational change that entails nucleotides (nt) in the neck helix (h28) and 3' tail of 16S rRNA. This active-to-inactive transition involves partial unwinding of h28 and repairing of nt 921-923 with nt 1532-1534, which requires flipping of the 3' tail by ∼180°. Growing evidence suggests that immature 30S particles adopt the inactive conformation in the cell, and transition to the active state occurs at a late stage of maturation. Here, we target nucleotides that form the alternative helix (hALT) of the inactive state. Using an orthogonal ribosome system, we find that disruption of hALT decreases translation activity in the cell modestly, by approximately twofold, without compromising ribosome fidelity. Ribosomes carrying substitutions at positions 1532-1533 support the growth of Escherichia coli strain Δ7 prrn (which carries a single rRNA operon), albeit at rates 10%-20% slower than wild-type ribosomes. These mutant Δ7 prrn strains accumulate free 30S particles and precursor 17S rRNA, indicative of biogenesis defects. Analysis of purified control and mutant subunits suggests that hALT stabilizes the inactive state by 1.2 kcal/mol with little-to-no impact on the active state or the transition state of conversion.


Subject(s)
Escherichia coli , Nucleic Acid Conformation , RNA, Ribosomal, 16S , Ribosome Subunits, Small, Bacterial , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ribosome Subunits, Small, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/genetics , Protein Biosynthesis , Magnesium/metabolism
2.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38569543

ABSTRACT

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Subject(s)
Bacteria , Cardiovascular Diseases , Cholesterol , Gastrointestinal Microbiome , Humans , Bacteria/metabolism , Cardiovascular Diseases/metabolism , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Feces/chemistry , Longitudinal Studies , Metabolome , Metabolomics , RNA, Ribosomal, 16S/metabolism
3.
Nat Commun ; 15(1): 3004, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589361

ABSTRACT

The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.


Subject(s)
Gastrointestinal Microbiome , Infant , Male , Adult , Female , Humans , Child , Aged , Infant, Newborn , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Multiomics , Metabolome , Feces/microbiology , Mothers
4.
J Transl Med ; 22(1): 369, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637862

ABSTRACT

BACKGROUND: Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS: Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS: The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS: Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , STAT3 Transcription Factor , Humans , Mice , Animals , Colitis, Ulcerative/therapy , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Fatty Acids, Volatile/adverse effects , Fatty Acids, Volatile/metabolism , Bacteria/metabolism , Disease Models, Animal , Inflammation , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Colon , Forkhead Box Protein O3/metabolism
5.
Microbiome ; 12(1): 74, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622632

ABSTRACT

BACKGROUND: The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. The observed changes, however, have not been linked to host function and therefore it remains unclear how specific changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non-invasive techniques to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabolomic changes in an equine model of non-steroidal anti-inflammatory drug (NSAID)-induced intestinal inflammation and (2) apply computational data integration methods to examine host-microbiota interactions. METHODS: Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phenylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoliated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all computational approaches. RESULTS: Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integration identified correlation of specific bacterial genera with expression of several genes and metabolites that were linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic reticulum stress and unfolded protein response within the intestinal mucosa. CONCLUSIONS: Results of integrative analysis identified an important role for oxidative stress, and subsequent cell signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non-invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota changes have broad application for the field of gastroenterology. Video Abstract.


Subject(s)
Microbiota , Animals , Horses/genetics , Intestinal Mucosa/metabolism , Metabolome , Feces/microbiology , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Inflammation/metabolism , Phenylbutazone/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
6.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38599770

ABSTRACT

Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.


Subject(s)
RNA, Transfer , Ribosomes , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/metabolism , Cryoelectron Microscopy , Ribosomes/genetics , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Valine/analysis , Valine/metabolism
7.
Eur J Med Res ; 29(1): 240, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641655

ABSTRACT

BACKGROUND: Immunological liver injury (ILI) is a common liver disease associated with the microbiota-gut-liver axis. Jian Gan powder (JGP) exhibits both protective and therapeutic effects on hepatitis virus-induced ILI in the clinic. However, the underlying mechanisms remain elusive. The aim of this study is to investigate the hepatoprotective effects and associated mechanisms of JGP in the context of gut microbiota, utilizing a mouse model of ILI. METHODS: The mouse model was established employing Bacillus Calmette-Guérin (BCG) plus lipopolysaccharide (LPS). Following treatment with JGP (7.5, 15, or 30 g/kg), serum, liver, and fresh fecal samples were analyzed. 16S rRNA gene sequencing and untargeted metabolomics profiling were performed to assess the role of JGP on the gut microbiota and its metabolites. RESULTS: JGP treatment markedly reduced serum IFN-γ, IL-6, IL-22, and hepatic p-STAT3 (phosphorylated transducer and activator of transcription-3) expression. In contrast, JGP increased the percentage of proliferating cell nuclear antigen-positive liver cells in treated mice. Fecal 16S rRNA gene sequencing revealed that JGP treatment restored the levels of Alloprevotella, Burkholderia-Caballeronia-Paraburkholderia, Muribaculum, Streptococcus, and Stenotrophomonas. Additionally, metabolomics analysis of fecal samples showed that JGP restored the levels of allylestrenol, eplerenone, phosphatidylethanolamine (PE) (P-20:0/0:0), sphingomyelin (SM) d27:1, soyasapogenol C, chrysin, and soyasaponin I. CONCLUSIONS: JGP intervention improves ILI by restoring gut microbiota and modifying its metabolic profiles. These results provide a novel insight into the mechanism of JGP in treating ILI and the scientific basis to support its clinical application.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/genetics , Powders/metabolism , Powders/pharmacology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/metabolism , Liver/metabolism , Metabolome
8.
Sci Rep ; 14(1): 6064, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480864

ABSTRACT

Rumen microbes are crucial in the anaerobic fermentation of plant polysaccharides to produce volatile fatty acids. However, limited information exists about the specific microbial species and strains in the rumen that affect carcass traits, and it is unclear whether there is a relationship between rumen metabolic functions and these traits. This study investigated the relationship between the rumen microbiome and carcass traits in beef cattle using 16S rRNA amplicon and shotgun sequencing. Metagenomic sequencing was used to compare the rumen microbiome between high-carcass weight (HW) and low-carcass weight (LW) cattle, and high-marbling (HM) and low-marbling (LM) cattle. Prokaryotic communities in the rumen of HW vs. LW and HM vs. LM were separated using 16S rRNA amplicon sequencing. Notably, shotgun metagenomic sequencing revealed that HW cattle had more methane-producing bacteria and ciliate protozoa, suggesting higher methane emissions. Additionally, variations were observed in the abundances of certain glycoside hydrolases and polysaccharide lyases involved in the ruminal degradation of plant polysaccharides between HW and LW. From our metagenome dataset, 807 non-redundant metagenome-assembled genomes (MAGs) of medium to high quality were obtained. Among these, 309 and 113 MAGs were associated with carcass weight and marbling, respectively.


Subject(s)
Microbiota , Rumen , Cattle , Animals , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rumen/microbiology , Microbiota/genetics , Fermentation , Polysaccharides/metabolism , Methane/metabolism , Diet/veterinary , Animal Feed
9.
Water Res ; 253: 121354, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428359

ABSTRACT

DNA-based monitoring of microbial communities that are responsible for the performance of anaerobic digestion of sewage wastes has the potential to improve resource recoveries for wastewater treatment facilities. By treating sludge with propidium monoazide (PMA) prior to amplicon sequencing, this study explored how the presence of DNA from dead microbial biomass carried over with feed sludge may mislead process-relevant biomarkers, and whether primer choice impacts such assessments. Four common primers were selected for amplicon preparation, also to determine if universal primers have sufficient taxonomic or functional coverage for monitoring ecological performance; or whether two domain-specific primers for Bacteria and Archaea are necessary. Anaerobic sludges of three municipal continuously stirred-tank reactors in Victoria, Australia, were sampled at one time-point. A total of 240 amplicon libraries were sequenced on a Miseq using two universal and two domain-specific primer pairs. Untargeted metabolomics was chosen to complement biological interpretation of amplicon gene-based functional predictions. Diversity, taxonomy, phylogeny and functional potentials were systematically assessed using PICRUSt2, which can predict community wide pathway abundance. The two chosen universal primers provided similar diversity profiles of abundant Bacteria and Archaea, compared to the domain-specific primers. About 16 % of all detected prokaryotic genera covering 30 % of total abundances and 6 % of PICRUSt2-estimated pathway abundances were affected by PMA. This showed that dead biomass in the anaerobic digesters impacted DNA-based assessments, with implications for predicting active processes, such as methanogenesis, denitrification or the identification of organisms associated with biological foams. Hence, instead of running two sequencing runs with two different domain-specific primers, we propose conducting PMA-seq with universal primer pairs for routine performance monitoring. However, dead sludge biomass may have some predictive value. In principal component analysis the compositional variation of 239 sludge metabolites resembled that of 'dead-plus-alive' biomass, suggesting that dead organisms contributed to the potentially process-relevant sludge metabolome.


Subject(s)
Biological Monitoring , Sewage , Sewage/microbiology , Anaerobiosis , Bacteria/metabolism , Archaea/metabolism , DNA/metabolism , Victoria , Bioreactors/microbiology , Methane/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
10.
Appl Environ Microbiol ; 90(4): e0235123, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38517167

ABSTRACT

In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.


Subject(s)
Euryarchaeota , Oryza , Soil/chemistry , Oryza/microbiology , Fermentation , Tartrates/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Phylogeny , Base Composition , Sequence Analysis, DNA , Bacteria , Bacteria, Anaerobic/metabolism , Euryarchaeota/metabolism , Firmicutes/metabolism , Gram-Negative Bacteria/genetics , Methane/metabolism
11.
J Ethnopharmacol ; 328: 117956, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38428658

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY: This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS: 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1ß, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iß, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS: GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1ß, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1ß. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS: GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Humans , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/adverse effects , Inflammasomes/metabolism , Interleukin-18/metabolism , Interleukin-18/pharmacology , Interleukin-18/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Th17 Cells , Occludin/metabolism , RNA, Ribosomal, 16S/metabolism , Mice, Inbred CBA , Colitis/drug therapy , Cytokines/metabolism , Trinitrobenzenes/metabolism , Trinitrobenzenes/pharmacology , Trinitrobenzenes/therapeutic use , Anti-Inflammatory Agents/pharmacology , Body Weight , Caspases/metabolism , Disease Models, Animal , Colon
12.
Nutrition ; 122: 112371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430843

ABSTRACT

OBJECTIVE: To deepen the understanding of the influence of diet on weight gain and metabolic disturbances, we examined associations between diet-related inflammation and body composition and fecal bacteria abundances in participants of the Nutritionists' Health Study. METHODS: Early-life, dietary and clinical data were obtained from 114 women aged ≤45 years. A validated food frequency questionnaire was used to calculate the energy-adjusted dietary inflammatory index (E-DII). Participants' data were compared by E-DII quartiles using ANOVA or Kruskal-Wallis. Associations of DXA-determined body composition with the E-DII were tested by multiple linear regression using DAG-oriented adjustments. Fecal microbiota was analyzed targeting the V4 region of the 16S rRNA gene. Spearman correlation coefficients were used to test linear associations; differential abundance of genera across the E-DII quartiles was assessed by pair-wise comparisons. RESULTS: E-DII score was associated with total fat (b=1.80, p<0.001), FMI (b=0.08, p<0.001) and visceral fat (b=1.19, p=0.02), independently of maternal BMI, birth type and breastfeeding. E-DII score was directly correlated to HOMA-IR (r=0.30; p=0.004), C-reactive protein (r=0.29; p=0.003) and to the abundance of Actinomyces, and inversely correlated to the abundance of Eubacterium.xylanophilum.group. Actinomyces were significantly more abundant in the highest (most proinflammatory) E-DII quartile. CONCLUSIONS: Association of E-DII with markers of insulin resistance, inflammation, body adiposity and certain gut bacteria are consistent with beneficial effects of anti-inflammatory diet on body composition and metabolic profile. Bacterial markers, such as Actinomyces, could be involved in the association between the dietary inflammation with visceral adiposity. Studies designed to explore how a pro-inflammatory diet affects both central fat deposition and gut microbiota are needed.


Subject(s)
Adiposity , Gastrointestinal Microbiome , Humans , Female , RNA, Ribosomal, 16S/metabolism , Diet , Inflammation/metabolism , Obesity, Abdominal/complications , Bacteria/metabolism
13.
Chemosphere ; 355: 141806, 2024 May.
Article in English | MEDLINE | ID: mdl-38548087

ABSTRACT

Environmental challenges arising from organic pollutants pose a significant problem for modern societies. Efficient microbial resources for the degradation of these pollutants are highly valuable. In this study, the bacterial community structure of sludge samples from Taozi Lake (polluted by urban sewage) was studied using 16S rRNA sequencing. The bacterial phyla Proteobacteria, Bacteroidetes, and Chloroflexi, which are potentially important in organic matter degradation by previous studies, were identified as the predominant phyla in our samples, with relative abundances of 48.5%, 8.3%, and 6.6%, respectively. Additionally, the FAPROTAX and co-occurrence network analysis suggested that the core microbial populations in the samples may be closely associated with organic matter metabolism. Subsequently, sludge samples from Taozi Lake were subjected to enrichment cultivation to isolate organic pollutant-degrading microorganisms. The strain Sphingobacterium sp. GEMB-CSS-01, tolerant to sulfanilamide, was successfully isolated. Subsequent investigations demonstrated that Sphingobacterium sp. GEMB-CSS-01 efficiently degraded the endocrine-disrupting compound 17ß-Estradiol (E2). It achieved degradation efficiencies of 80.0% and 53.5% for E2 concentrations of 10 mg/L and 20 mg/L, respectively, within 10 days. Notably, despite a reduction in degradation efficiency, Sphingobacterium sp. GEMB-CSS-01 retained its ability to degrade E2 even in the presence of sulfanilamide concentrations ranging from 50 to 200 mg/L. The findings of this research identify potential microbial resources for environmental bioremediation, and concurrently provide valuable information about the microbial community structure and patterns within Taozi Lake.


Subject(s)
Environmental Pollutants , Sphingobacterium , Sewage/microbiology , Sphingobacterium/genetics , Sphingobacterium/metabolism , Lakes/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Estradiol/metabolism , Biodegradation, Environmental , Environmental Pollutants/metabolism , Sulfanilamides
14.
Molecules ; 29(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474489

ABSTRACT

Metabolism-associated fatty liver disease (MAFLD), a growing health problem worldwide, is one of the major risks for the development of cirrhosis and liver cancer. Oral administration of nobiletin (NOB), a natural citrus flavonoid, modulates the gut microbes and their metabolites in mice. In the present study, we established a mouse model of MAFLD by subjecting mice to a high-fat diet (HFD) for 12 weeks. Throughout this timeframe, NOB was administered to investigate its potential benefits on gut microbial balance and bile acid (BA) metabolism using various techniques, including 16S rRNA sequencing, targeted metabolomics of BA, and biological assays. NOB effectively slowed the progression of MAFLD by reducing serum lipid levels, blood glucose levels, LPS levels, and hepatic IL-1ß and TNF-α levels. Furthermore, NOB reinstated diversity within the gut microbial community, increasing the population of bacteria that produce bile salt hydrolase (BSH) to enhance BA excretion. By exploring further, we found NOB downregulated hepatic expression of the farnesoid X receptor (FXR) and its associated small heterodimer partner (SHP), and it increased the expression of downstream enzymes, including cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 27A1 (CYP27A1). This acceleration in cholesterol conversion within the liver contributes to mitigating MAFLD. The present findings underscore the significant role of NOB in regulating gut microbial balance and BA metabolism, revealing that long-term intake of NOB plays beneficial roles in the prevention or intervention of MAFLD.


Subject(s)
Flavones , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , RNA, Ribosomal, 16S/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Diet, High-Fat , Bile Acids and Salts/metabolism , Mice, Inbred C57BL
15.
Nutrients ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542753

ABSTRACT

The primary objective of this investigation was to elucidate the manner in which ginsenoside Rg5 (Rg5) ameliorates nonalcoholic fatty liver disease (NAFLD) via the modulation of the gut microbiota milieu. We administered either a standard diet (ND) or a high-fat diet (HFD), coupled with 12-week treatment employing two distinct doses of Rg5 (50 and 100 mg/kg/d), to male C57BL/6J mice. In comparison to the HFD cohort, the Rg5-treated group demonstrated significant enhancements in biochemical parameters, exemplified by a substantial decrease in lipid concentrations, as well as the reduced expression of markers indicative of oxidative stress and liver injury. This signifies a mitigation of hepatic dysfunction induced by an HFD. Simultaneously, Rg5 demonstrates the capacity to activate the LKB1/AMPK/mTOR signaling pathway, instigating energy metabolism and consequently hindering the progression of NAFLD. Furthermore, we underscored the role of Rg5 in the treatment of NAFLD within the gut-microbiota-liver axis. Analysis via 16S rRNA sequencing unveiled that Rg5 intervention induced alterations in gut microbiota composition, fostering an increase in beneficial bacteria, such as Bacteroides and Akkermansia, while concurrently reducing the relative abundance of detrimental bacteria, exemplified by Olsenella. Furthermore, employing fecal microbiota transplantation (FMT) experiments, we observed analogous outcomes in mice subjected to fecal bacterial transplants, providing additional verification of the capacity of Rg5 to mitigate NAFLD in mice by actively participating in the restoration of gut microbiota via FMT. Drawing from these data, the regulation of the gut microbiota is recognized as an innovative strategy for treating or preventing NAFLD and metabolic syndrome. Consequently, these research findings suggest that Rg5 holds promise as a potential therapeutic agent for NAFLD management.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Non-alcoholic Fatty Liver Disease , Humans , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Ginsenosides/metabolism , Diet, High-Fat/adverse effects , RNA, Ribosomal, 16S/metabolism , Mice, Inbred C57BL , Liver/metabolism , Bacteria , TOR Serine-Threonine Kinases/metabolism , Signal Transduction
16.
Biomed Pharmacother ; 173: 116405, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484559

ABSTRACT

BACKGROUND: Tangshen formula (TSF) has an ameliorative effect on hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD), but the role played by the gut microbiota in this process is unknown. METHOD: We conducted three batches of experiments to explore the role played by the gut microbiota: TSF administration, antibiotic treatment, and fecal microbial transplantation. NAFLD mice were induced with a high-fat diet to investigate the ameliorative effects of TSF on NAFLD features and intestinal barrier function. 16S rRNA sequencing and serum untargeted metabolomics were performed to further investigate the modulatory effects of TSF on the gut microbiota and metabolic dysregulation in the body. RESULTS: TSF ameliorated insulin resistance, hypercholesterolemia, lipid metabolism disorders, inflammation, and impairment of intestinal barrier function. 16S rRNA sequencing analysis revealed that TSF regulated the composition of the gut microbiota and increased the abundance of beneficial bacteria. Antibiotic treatment and fecal microbiota transplantation confirmed the importance of the gut microbiota in the treatment of NAFLD with TSF. Subsequently, untargeted metabolomics identified 172 differential metabolites due to the treatment of TSF. Functional predictions suggest that metabolisms of choline, glycerophospholipid, linoleic acid, alpha-linolenic acid, and arachidonic acid are the key metabolic pathways by which TSF ameliorates NAFLD and this may be influenced by the gut microbiota. CONCLUSION: TSF treats the NAFLD phenotype by remodeling the gut microbiota and improving metabolic profile, suggesting that TSF is a functional gut microbial and metabolic modulator for the treatment of NAFLD.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Liver , Diet, High-Fat/adverse effects , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL
17.
J Transl Med ; 22(1): 222, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429821

ABSTRACT

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Microbiota , Humans , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Fatty Acids, Volatile/metabolism , Colonoscopy , Butyric Acid/pharmacology , Butyric Acid/metabolism
18.
Sci Rep ; 14(1): 5716, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459150

ABSTRACT

Arsenic (As) is a significant contaminant whose unrestrained entrance into different ecosystems has created global concern. At the cellular level, As forms unsteady intermediates with genetic materials and perturbs different metabolic processes and proper folding of proteins. This study was the first in this region to explore, isolate, screen systematically, and intensively characterize potent As-tolerant bacterial strains from natural environments near Raiganj town of Uttar Dinajpur, West Bengal. In this study, two potent Gram-negative bacterial strains with high tolerance to the poisonous form of As, i.e., As(III) and As(V), were obtained. Both the isolates were identified using biochemical tests and 16S rRNA gene sequencing. These bacteria oxidized toxic As(III) into less poisonous As(V) and depicted tolerance towards other heavy metals. Comparative metabolic profiling of the isolates in control and As-exposed conditions through Fourier-transform infrared spectroscopy showed metabolic adjustments to cope with As toxicity. The metal removal efficiency of the isolates at different pH showed that one of the isolates, KG1D, could remove As efficiently irrespective of changes in the media pH. In contrast, the efficiency of metal removal by PF14 was largely pH-dependent. The cell mass of both the isolates was also found to favourably adsorb As(III). Whole genome sequence analysis of the isolates depicted the presence of the arsRBC genes of the arsenic operon conferring resistance to As. Owing to their As(III) oxidizing potential, high As bioaccumulation, and tolerance to other heavy metals, these bacteria could be used to bioremediate and reclaim As-contaminated sites.


Subject(s)
Arsenic , Metals, Heavy , Arsenic/metabolism , Bioaccumulation , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Ecosystem , Bacteria , Metals, Heavy/analysis , Biodegradation, Environmental , Genomics
19.
Microbiome ; 12(1): 49, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461313

ABSTRACT

BACKGROUND: Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS: Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION: In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.


Subject(s)
Gastrointestinal Microbiome , Photinia , Female , Humans , Gastrointestinal Microbiome/genetics , Photinia/chemistry , Photinia/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Metabolome , Lipoproteins/metabolism
20.
Eur J Med Res ; 29(1): 183, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500195

ABSTRACT

BACKGROUND: Renal fibrosis (RF) produced adverse effect on kidney function. Recently, intestinal dysbiosis is a key regulator that promotes the formation of renal fibrosis. This study will focus on exploring the protective mechanism of Kangxianling Formula (KXL) on renal fibrosis from the perspective of intestinal flora. METHODS: Unilateral Ureteral Obstruction (UUO) was used to construct rats' model with RF, and receive KXL formula intervention for 1 week. The renal function indicators were measured. Hematoxylin-eosin (HE), Masson and Sirus red staining were employed to detect the pathological changes of renal tissue in each group. The expression of α-SMA, Col-III, TGF-ß, FN, ZO-1, and Occuludin was detected by immunofluorescence and immunohistochemistry. Rat feces samples were collected and analyzed for species' diversity using high-throughput sequencing 16S rRNA. RESULTS: Rats in UUO groups displayed poor renal function as well as severe RF. The pro-fibrotic protein expression in renal tissues including α-SMA, Col-III, TGF-ß and FN was increased in UUO rats, while ZO-1 and Occuludin -1 expression was downregulated in colon tissues. The above changes were attenuated by KXL treatment. 16S rRNA sequencing results revealed that compared with the sham group, the increased abundance of pathogenic bacteria including Acinetobacter, Enterobacter and Proteobacteria and the decreased abundance of beneficial bacteria including Actinobacteriota, Bifidobacteriales, Prevotellaceae, and Lactobacillus were found in UUO group. After the administration of KXL, the growth of potential pathogenic bacteria was reduced and the abundance of beneficial bacteria was enhanced. CONCLUSION: KXL displays a therapeutical potential in protecting renal function and inhibiting RF, and its mechanism of action may be associated with regulating intestinal microbiota.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Kidney Diseases , Ureteral Obstruction , Rats , Animals , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rats, Sprague-Dawley , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Fibrosis , Transforming Growth Factor beta1
SELECTION OF CITATIONS
SEARCH DETAIL
...