Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.890
Filter
1.
RNA Biol ; 21(1): 31-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38952121

ABSTRACT

Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of ß-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Peptidyl Transferases , Protein Biosynthesis , RNA, Ribosomal , Ribosomes , Peptidyl Transferases/metabolism , Peptidyl Transferases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ribosomes/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal, 23S/metabolism , RNA, Ribosomal, 23S/genetics , Kinetics
2.
RNA Biol ; 21(1): 23-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38913872

ABSTRACT

Ribosomes are large macromolecular complexes composed of both proteins and RNA, that require a plethora of factors and post-transcriptional modifications for their biogenesis. In human mitochondria, the ribosomal RNA is post-transcriptionally modified at ten sites. The N4-methylcytidine (m4C) methyltransferase, METTL15, modifies the 12S rRNA of the small subunit at position C1486. The enzyme is essential for mitochondrial protein synthesis and assembly of the mitoribosome small subunit, as shown here and by previous studies. Here, we demonstrate that the m4C modification is not required for small subunit biogenesis, indicating that the chaperone-like activity of the METTL15 protein itself is an essential component for mitoribosome biogenesis.


Subject(s)
Methyltransferases , Mitochondrial Ribosomes , RNA, Ribosomal , Methyltransferases/metabolism , Methyltransferases/genetics , Humans , Mitochondrial Ribosomes/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Mitochondria/metabolism , Mitochondria/genetics , Methylation
3.
Nanoscale ; 16(24): 11739-11748, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38864270

ABSTRACT

Ribosomal RNA (rRNA) plays a key role in protein synthesis and ribosomal biogenesis. The exclusively used commercial dye for RNA staining is SYTO RNASelect, which works in fixed cells only. To overcome this constraint, we synthesized NIR-emissive, highly photostable, and biocompatible carbon nanodots (CNDs) as a fluorescent biomarker for rRNA. The synthesized CNDs could stain rRNA in both live and fixed cells. We were able to visualize rRNA at different sites in eukaryotic cells using super-resolution microscopy (SRM). The CNDs localized rRNA in the dense fibrillar components (DFCs) of the nucleolus, nuclear membrane, and rough endoplasmic reticulum (RER). The super-resolved hollow ring-structured DFC with an FWHM of 140 nm, nuclear membrane with an FWHM of 120 nm, and ER with an FWHM of 115 nm were observed. We further found a marked contrast between the pre-RNA synthesized in cancer cells and normal cells. We believe that these CNDs have great potential in rRNA imaging and comprehending the complex relationships between rRNA dynamics and basic biological processes, disease development, or drug interactions.


Subject(s)
Carbon , Cell Nucleolus , RNA, Ribosomal , Humans , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , Carbon/chemistry , Cell Nucleolus/metabolism , Quantum Dots/chemistry , Microscopy, Fluorescence , HeLa Cells , Fluorescent Dyes/chemistry
4.
Nat Commun ; 15(1): 5006, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866738

ABSTRACT

Body mass results from a complex interplay between genetics and environment. Previous studies of the genetic contribution to body mass have excluded repetitive regions due to the technical limitations of platforms used for population scale studies. Here we apply genome-wide approaches, identifying an association between adult body mass and the copy number (CN) of 47S-ribosomal DNA (rDNA). rDNA codes for the 18 S, 5.8 S and 28 S ribosomal RNA (rRNA) components of the ribosome. In mammals, there are hundreds of copies of these genes. Inter-individual variation in the rDNA CN has not previously been associated with a mammalian phenotype. Here, we show that rDNA CN variation associates with post-pubertal growth rate in rats and body mass index in adult humans. rDNA CN is not associated with rRNA transcription rates in adult tissues, suggesting the mechanistic link occurs earlier in development. This aligns with the observation that the association emerges by early adulthood.


Subject(s)
Body Mass Index , DNA Copy Number Variations , DNA, Ribosomal , Animals , Humans , DNA, Ribosomal/genetics , Male , Rats , Female , Adult , Mammals/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
5.
Biochem Soc Trans ; 52(3): 1317-1325, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38695725

ABSTRACT

Ribosomes are universally conserved cellular machines that catalyze protein biosynthesis. The active sites underly immense evolutionary conservation resulting in virtually identical core structures of ribosomes in all domains of life including organellar ribosomes. However, more peripheral structures of cytosolic ribosomes changed during evolution accommodating new functions and regulatory options. The expansion occurred at the riboprotein level, including more and larger ribosomal proteins and at the RNA level increasing the length of ribosomal RNA. Expansions within the ribosomal RNA occur as clusters at conserved sites that face toward the periphery of the cytosolic ribosome. Recent biochemical and structural work has shed light on how rRNA-specific expansion segments (ESs) recruit factors during translation and how they modulate translation dynamics in the cytosol. Here we focus on recent work on yeast, human and trypanosomal cytosolic ribosomes that explores the role of two specific rRNA ESs within the small and large subunit respectively. While no single regulatory strategy exists, the absence of ESs has consequences for proteomic stability and cellular fitness, rendering them fascinating evolutionary tools for tailored protein biosynthesis.


Subject(s)
Protein Biosynthesis , RNA, Ribosomal , Ribosomes , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Humans , Ribosomes/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Nucleic Acid Conformation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
6.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732249

ABSTRACT

Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-ß2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-ß2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-ß2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-ß2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-ß2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-ß2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.


Subject(s)
Chondrocytes , Protein Biosynthesis , RNA, Ribosomal , Ribosomes , Transforming Growth Factor beta2 , Chondrocytes/metabolism , Chondrocytes/drug effects , Ribosomes/metabolism , Humans , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Internal Ribosome Entry Sites , Cell Line
7.
Clin Transl Med ; 14(5): e1705, 2024 May.
Article in English | MEDLINE | ID: mdl-38797935

ABSTRACT

Ribosomal RNA (rRNA) modifications, essential components of ribosome structure and function, significantly impact cellular proteomics and cancer biology. These chemical modifications transcend structural roles, critically shaping ribosome functionality and influencing cellular protein profiles. In this review, the mechanisms by which rRNA modifications regulate both rRNA functions and broader cellular physiological processes are critically discussed. Importantly, by altering the translational output, rRNA modifications can shift the cellular equilibrium towards oncogenesis, thus playing a key role in cancer development and progression. Moreover, a special focus is placed on the functions of mitochondrial rRNA modifications and their aberrant expression in cancer, an area with profound implications yet largely uncharted. Dysregulation in these modifications can lead to metabolic dysfunction and apoptosis resistance, hallmark traits of cancer cells. Furthermore, the current challenges and future perspectives in targeting rRNA modifications are highlighted as a therapeutic approach for cancer treatment. In conclusion, rRNA modifications represent a frontier in cancer research, offering novel insights and therapeutic possibilities. Understanding and harnessing these modifications can pave the way for breakthroughs in cancer treatment, potentially transforming the approach to combating this complex disease.


Subject(s)
Neoplasms , RNA, Ribosomal , Ribosomes , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Ribosomes/metabolism , Ribosomes/genetics , RNA Processing, Post-Transcriptional/genetics
8.
Cell Rep ; 43(5): 114203, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722744

ABSTRACT

Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.


Subject(s)
Pseudouridine , RNA, Transfer , Ribosomes , Pseudouridine/metabolism , Ribosomes/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , Leishmania/metabolism , Leishmania/genetics , Cryoelectron Microscopy , RNA, Ribosomal/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Nucleic Acid Conformation , Models, Molecular
9.
DNA Repair (Amst) ; 139: 103692, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759435

ABSTRACT

Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Genomic Instability , RNA, Ribosomal , Humans , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Animals , Mitosis , Meiosis
10.
Curr Opin Genet Dev ; 86: 102204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759459

ABSTRACT

Recent advances have highlighted the significant roles of post-transcriptional modifications in rRNA in various cancers. Evidence suggests that dysregulation of rRNA modifications acts as a common denominator in cancer development, with alterations in these modifications conferring competitive advantages to cancer cells. Specifically, rRNA modifications modulate protein synthesis and favor the specialized translation of oncogenic programs, thereby contributing to the formation of a protumorigenic proteome in cancer cells. These findings reveal a novel regulatory layer mediated by changes in the deposition of rRNA chemical modifications. Moreover, inhibition of these modifications in vitro and in preclinical studies demonstrates potential therapeutic applications. The recurrence of altered rRNA modification patterns across different types of cancer underscores their importance in cancer progression, proposing them as potential biomarkers and novel therapeutic targets. This review will highlight the latest insights into how post-transcriptional rRNA modifications contribute to cancer progression and summarize the main developments and ongoing challenges in this research area.


Subject(s)
Neoplasms , RNA Processing, Post-Transcriptional , RNA, Ribosomal , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA Processing, Post-Transcriptional/genetics , Animals , Gene Expression Regulation, Neoplastic , Protein Biosynthesis
11.
Hum Mol Genet ; 33(R1): R19-R25, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779769

ABSTRACT

Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.


Subject(s)
DNA, Mitochondrial , Mitochondria , RNA Processing, Post-Transcriptional , RNA, Mitochondrial , Humans , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondria/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Transcription, Genetic , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
12.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791231

ABSTRACT

Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.


Subject(s)
Peptidyl Transferases , Protein Biosynthesis , RNA, Ribosomal , Saccharomyces cerevisiae , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Peptidyl Transferases/metabolism , Peptidyl Transferases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Ribosomes/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA Processing, Post-Transcriptional , RNA, Fungal/genetics , RNA, Fungal/metabolism , Mutation
13.
Nat Commun ; 15(1): 4272, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769321

ABSTRACT

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.


Subject(s)
Mitochondrial Ribosomes , RNA, Transfer , Humans , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Mitochondrial Ribosomes/metabolism , Mitochondrial Ribosomes/chemistry , Ligands , Molecular Dynamics Simulation , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mitochondria/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/chemistry , Guanosine Diphosphate/metabolism , Polyamines/metabolism , Polyamines/chemistry , Protein Binding
14.
Nucleic Acids Res ; 52(11): 6360-6375, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38682589

ABSTRACT

Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase , Ku Autoantigen , RNA Precursors , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Humans , RNA Precursors/metabolism , RNA Precursors/genetics , Cell Line, Tumor , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Phosphorylation , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Animals , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
15.
Prostate ; 84(10): 967-976, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38632701

ABSTRACT

BACKGROUND: Ribosome biogenesis is excessively activated in tumor cells, yet it is little known whether oncogenic transcription factors (TFs) are involved in the ribosomal RNA (rRNA) transactivation. METHODS: Nucleolar proteomics data and large-scale immunofluorescence were re-analyzed to jointly identify the proteins localized at nucleolus. RNA-Seq data of five prostate cancer (PCa) cohorts were combined and integrated with multi-dimensional data to define the upregulated nucleolar TFs in PCa tissues. Then, ChIP-Seq data of PCa cell lines and two PCa clinical cohorts were re-analyzed to reveal the TF binding patterns at ribosomal DNA (rDNA) repeats. The TF binding at rDNA was validated by ChIP-qPCR. The effect of the TF on rRNA transcription was determined by rDNA luciferase reporter, nascent RNA synthesis, and global protein translation assays. RESULTS: In this study, we reveal the role of oncogenic TF FOXA1 in regulating rRNA transcription within nucleolar organization regions. By analyzing human TFs in prostate cancer clinical datasets and nucleolar proteomics data, we identified that FOXA1 is partially localized in the nucleolus and correlated with global protein translation. Our extensive FOXA1 ChIP-Seq analysis provides robust evidence of FOXA1 binding across rDNA repeats in prostate cancer cell lines, primary tumors, and castration-resistant variants. Notably, FOXA1 occupancy at rDNA repeats correlates with histone modifications associated with active transcription, namely H3K27ac and H3K4me3. Reducing FOXA1 expression results in decreased transactivation at rDNA, subsequently diminishing global protein synthesis. CONCLUSIONS: Our results suggest FOXA1 regulates aberrant ribosome biogenesis downstream of oncogenic signaling in prostate cancer.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha , Prostatic Neoplasms , RNA, Ribosomal , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal/biosynthesis , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Cell Line, Tumor , Transcription, Genetic , Gene Expression Regulation, Neoplastic , Cell Nucleolus/metabolism
16.
Mitochondrion ; 76: 101876, 2024 May.
Article in English | MEDLINE | ID: mdl-38599301

ABSTRACT

Ribosome biogenesis, involving processing/assembly of rRNAs and r-proteins is a vital process. In Saccharomyces cerevisiae mitochondria, ribosomal small subunit comprises 15S rRNA (15S). While the 15S 5'-end processing uses Ccm1p and Pet127p, the mechanisms of the 3'-end processing remain unclear. We reveal involvement of Rmd9p in safeguarding/processing 15S 3'-end. Rmd9p deficiency results in a cleavage at a position 183 nucleotides upstream of 15S 3'-end, and in the loss of the 3'-minor domain. Rmd9p binds to the sequences in the 3'-end region of 15S, and a genetic interaction between rmd9 and dss1 indicates that Rmd9p regulates/limits mtEXO activity during the 3'-end spacer processing.


Subject(s)
RNA, Ribosomal , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Mitochondria/metabolism , Mitochondria/genetics , RNA 3' End Processing , RNA Processing, Post-Transcriptional , RNA, Fungal/metabolism , RNA, Fungal/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
17.
Curr Opin Hematol ; 31(4): 199-206, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38568093

ABSTRACT

PURPOSE OF REVIEW: Ribosomal RNAs (rRNAs) are transcribed within nucleoli from rDNA repeats by RNA Polymerase I (Pol I). There is variation in rRNA transcription rates across the hematopoietic tree, and leukemic blast cells have prominent nucleoli, indicating abundant ribosome biogenesis. The mechanisms underlying these variations are poorly understood. The purpose of this review is to summarize findings of rDNA binding and Pol I regulation by hematopoietic transcription factors. RECENT FINDINGS: Our group recently used custom genome assemblies optimized for human and mouse rDNA mapping to map nearly 2200 ChIP-Seq datasets for nearly 250 factors to rDNA, allowing us to identify conserved occupancy patterns for multiple transcription factors. We confirmed known rDNA occupancy of MYC and RUNX factors, and identified new binding sites for CEBP factors, IRF factors, and SPI1 at canonical motif sequences. We also showed that CEBPA degradation rapidly leads to reduced Pol I occupancy and nascent rRNA in mouse myeloid cells. SUMMARY: We propose that a number of hematopoietic transcription factors bind rDNA and potentially regulate rRNA transcription. Our model has implications for normal and malignant hematopoiesis. This review summarizes the literature, and outlines experimental considerations to bear in mind while dissecting transcription factor roles on rDNA.


Subject(s)
Hematopoiesis , RNA, Ribosomal , Transcription Factors , Humans , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Gene Expression Regulation , Mice , Transcription, Genetic , RNA Polymerase I/metabolism , RNA Polymerase I/genetics
18.
RNA ; 30(7): 807-823, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38580456

ABSTRACT

Ribosomes translate mRNA into proteins and are essential for every living organism. In eukaryotes, both ribosomal subunits are rapidly assembled in a strict hierarchical order, starting in the nucleolus with the transcription of a common precursor ribosomal RNA (pre-rRNA). This pre-rRNA encodes three of the four mature rRNAs, which are formed by several, consecutive endonucleolytic and exonucleolytic processing steps. Historically, northern blots are used to analyze the variety of different pre-rRNA species, only allowing rough length estimations. Although this limitation can be overcome with primer extension, both approaches often use radioactivity and are time-consuming and costly. Here, we present "Riboprobing," a linker ligation-based workflow followed by reverse transcription and PCR for easy and fast detection and characterization of pre-rRNA species and their 5' as well as 3' ends. Using standard molecular biology laboratory equipment, "Riboprobing" allows reliable discrimination of pre-rRNA species not resolved by northern blot (e.g., 27SA2, 27SA3, and 27SB pre-rRNA). The method can successfully be used for the analysis of total cell extracts as well as purified pre-ribosomes for a straightforward evaluation of the impact of mutant gene versions or inhibitors. In the course of method development, we identified and characterized a hitherto undescribed aberrant pre-rRNA arising from LiCl inhibition. This pre-rRNA fragment spans from processing site A1 to E, forming a small RNP that lacks most early joining assembly factors. This finding expands our knowledge of how the cell deals with severe pre-rRNA processing defects and demonstrates the strict requirement for the 5'ETS (external transcribed spacer) for the assembly process.


Subject(s)
RNA Precursors , RNA, Ribosomal , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Workflow , RNA Processing, Post-Transcriptional
19.
Mol Cell ; 84(8): 1400-1402, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38640892

ABSTRACT

Nucleolar stress has been consistently linked to age-related diseases. In this issue, Sirozh et al.1 find that the common molecular signature of nucleolar stress is the accumulation of free ribosomal proteins, which leads to premature aging in mice; however, it can be reversed by mTOR inhibition.


Subject(s)
Cell Nucleolus , Ribosomal Proteins , Mice , Animals , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , RNA, Ribosomal/metabolism
20.
PLoS One ; 19(4): e0298521, 2024.
Article in English | MEDLINE | ID: mdl-38662801

ABSTRACT

In Trypanosoma brucei, gene expression is primarily regulated posttranscriptionally making RNA metabolism critical. T. brucei has an epitranscriptome containing modified RNA bases. Yet, the identity of the enzymes catalyzing modified RNA base addition and the functions of the enzymes and modifications remain unclear. Homology searches indicate the presence of numerous T. brucei cytosine RNA methyltransferase homologs. One such homolog, TbNop2 was studied in detail. TbNop2 contains the six highly conserved motifs found in cytosine RNA methyltransferases and is evolutionarily related to the Nop2 protein family required for rRNA modification and processing. RNAi experiments targeting TbNop2 resulted in reduced levels of TbNop2 RNA and protein, and a cessation of parasite growth. Next generation sequencing of bisulfite-treated RNA (BS-seq) detected the presence of two methylation sites in the large rRNA; yet TbNop2 RNAi did not result in a significant reduction of methylation. However, TbNop2 RNAi resulted in the retention of 28S internal transcribed spacer RNAs, indicating a role for TbNop2 in rRNA processing.


Subject(s)
RNA Processing, Post-Transcriptional , RNA, Ribosomal , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , RNA, Protozoan/metabolism , RNA, Protozoan/genetics , RNA Interference , Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...