Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Clin Transl Oncol ; 26(2): 363-374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103120

ABSTRACT

INTRODUCTION: The critical role of microRNA-128 (miR-128) in gastrointestinal-related diseases has been documented. In the current study, we tried to clarify the specific role miR-128 in gastrointestinal stromal tumor (GIST) and the underlying mechanism. METHODS: Differentially expressed genes in GIST were identified following bioinformatics analysis. Then, expression patterns of miR-128 and B-lymphoma Mo-MLV insertion region 1 (BMI-1) in clinical tissue samples and cell lines were characterized, followed by validation of their correlation. GIST-T1 cells were selected and transfected with different mimic, inhibitor, or siRNA plasmids, after which the biological functions were assayed. RESULTS: We identified low miR-128 and high BMI-1 expression in GIST tissues of 78 patients and 4 GIST cell lines. Ectopic expression of miR-128 or silencing of BMI-1 suppressed the malignant potentials of GIST-T1 cells. As a target of miR-128, BMI-1 re-expression could partly counteract the suppressive effect of miR-128 on the malignancy of GIST-T1 cells. CONCLUSION: Our study provided evidence that miR-128-mediated silencing of BMI-1 could prevent malignant progression of GIST, highlighting a promising anti-tumor target for combating GIST.


Subject(s)
Gastrointestinal Stromal Tumors , Lymphoma , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Cell Proliferation , RNA, Small Interfering/pharmacology , Cell Line, Tumor , Apoptosis
2.
Exp Eye Res ; 226: 109345, 2023 01.
Article in English | MEDLINE | ID: mdl-36509164

ABSTRACT

PURPOSE: To investigate the possible beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) in ischemic retinal angiogenesis and whether AMP-activated protein kinase (AMPK) is involved. METHODS: Human retinal microvascular endothelial cells (hRMECs) were exposed to dimethyloxalylglycine (DMOG), a hypoxia-inducible factor hydroxylase inhibitor, in the presence or absence of docosahexaenoic acid (DHA) and small interfering RNA (siRNA) for AMPKα for 24 h. Ischemic factors, endothelial mesenchymal transition marker, endothelial barrier integrity, cell migration, and tube formation were evaluated. Neonatal AMPKα2-/- and control wild-type (WT) mice were submitted to an oxygen-induced retinopathy (OIR) protocol; their nursing mother mice were either fed ω3-PUFAs or not. In the end, ischemic markers and endothelial cell proliferation were evaluated in neonatal mouse retinal tissue through immunohistochemical or immunofluorescent assays among all studied groups. RESULTS: Cells exposed to DMOG displayed increased expressions of hypoxic and endothelial mesenchymal transition (vimentin) markers and barrier disarrangement of Zonula Occludens-1 compared to the control, accompanied by increased cellular migration and tube formation (p < 0.05). AMPK activity was significantly decreased. Supplementation with DHA restored the mentioned alterations compared to DMOG (p<0.05). In siRNAAMPKα-treated cells, the beneficial effects observed with DHA were abolished. DHA upregulated G-protein receptor-120 (GPR120), which promptly increased intracellular levels of calcium (p ≤ 0.001), which consequently increased Calcium/calmodulin-dependent protein kinase kinase ß expression (CaMKKß) thus phosphorylating AMPKThr172. AMPKα2-/- and wild-type (WT) OIR mice exhibited similar retinal ischemic changes, and the oral supplementation with ω3-PUFA efficiently prevented the noticed ischemic alterations only in WT mice, suggesting that AMPKα2 is pivotal in the protective effects of ω3-PUFA. CONCLUSIONS: ω3-PUFAs protect the retina from the effects of ischemic conditions, and this effect occurs via the GPR120-CaMKKß-AMPK axis. A better understanding of this mechanism might improve the control of pathological angiogenesis in retinal ischemic diseases.


Subject(s)
AMP-Activated Protein Kinases , Fatty Acids, Omega-3 , Ischemia , Retinal Diseases , Animals , Humans , Mice , Adenylate Kinase/metabolism , AMP-Activated Protein Kinases/metabolism , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Docosahexaenoic Acids/pharmacology , Endothelial Cells/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Ischemia/prevention & control , Mice, Inbred C57BL , Retina/metabolism , Retinal Diseases/prevention & control , RNA, Small Interfering/pharmacology
3.
Braz. J. Pharm. Sci. (Online) ; 59: e22304, 2023. tab, graf
Article in English | LILACS | ID: biblio-1447564

ABSTRACT

Abstract Vascular endothelial growth factor (VEGF) is an essential angiogenic factor in breast cancer development and metastasis. Small interfering RNAs (siRNAs) can specifically silence genes via the RNA interference pathway, therefore were investigated as cancer therapeutics. In this study, we investigated the effects of siRNAs longer than 30 base pairs (bp) loaded into chitosan nanoparticles in triple-negative breast cancer cells, compared with conventional siRNAs. 35 bp long synthetic siRNAs inhibited VEGF gene expression by 51.2% and increased apoptosis level by 1.75-fold in MDA-MB-231 cell lines. Furthermore, blank and siRNA-loaded chitosan nanoparticles induced expression of IFN-γ in breast cancer cells. These results suggest that long synthetic siRNAs can be as effective as conventional siRNAs, when introduced into cells with chitosan nanoparticles


Subject(s)
RNA, Small Interfering/pharmacology , Vascular Endothelial Growth Factor A/analysis , Chitosan/adverse effects , Nanoparticles/classification , Triple Negative Breast Neoplasms/pathology , Neoplasm Metastasis/diagnosis
4.
Viruses ; 14(8)2022 07 26.
Article in English | MEDLINE | ID: mdl-35893693

ABSTRACT

Acutely infectious new world alphaviruses such as Venezuelan Equine Encephalitis Virus (VEEV) pose important challenges to the human population due to a lack of effective therapeutic intervention strategies. Small interfering RNAs that can selectively target the viral genome (vsiRNAs) has been observed to offer survival advantages in several in vitro and in vivo models of acute virus infections, including alphaviruses such as Chikungunya virus and filoviruses such as Ebola virus. In this study, novel vsiRNAs that targeted conserved regions in the nonstructural and structural genes of the VEEV genome were designed and evaluated for antiviral activity in mammalian cells in the context of VEEV infection. The data demonstrate that vsiRNAs were able to effectively decrease the infectious virus titer at earlier time points post infection in the context of the attenuated TC-83 strain and the virulent Trinidad Donkey strain, while the inhibition was overcome at later time points. Depletion of Argonaute 2 protein (Ago2), the catalytic component of the RISC complex, negated the inhibitory effect of the vsiRNAs, underscoring the involvement of the siRNA pathway in the inhibition process. Depletion of the RNAi pathway proteins Dicer, MOV10, TRBP2 and Matrin 3 decreased viral load in infected cells, alluding to an impact of the RNAi pathway in the establishment of a productive infection. Additional studies focused on rational combinations of effective vsiRNAs and delivery strategies to confer better in vivo bioavailability and distribution to key target tissues such as the brain can provide effective solutions to treat encephalitic diseases resulting from alphavirus infections.


Subject(s)
Encephalitis Virus, Venezuelan Equine , RNA, Small Interfering , Animals , Cell Line , Encephalitis Virus, Venezuelan Equine/physiology , Horses , Humans , RNA Helicases , RNA, Small Interfering/pharmacology , Virus Replication
5.
Am J Drug Alcohol Abuse ; 48(2): 165-175, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35377277

ABSTRACT

Background: Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) ionic channels are known to play a key role in the control of neuron excitability and have been proposed as a molecular target of ethanol. Previous studies in rats have shown that gene-induced overexpression of the HCN2 channel in the ventral tegmental area (VTA) increases the rewarding effects of ethanol and its intake by the animals.Objective: The aim of this work was to study the effects of VTA HCN2 gene knockdown in the voluntary ethanol consumption of alcohol-preferring UChB rats.Methods: Two lentiviral vectors were generated; LV-siRNA-HCN2, coding for a siRNA that elicited >95% reduction of HCN2 protein levels in vitro, and a control vector coding for a scrambled siRNA sequence. Female UChB naïve rats (n = 14) were microinjected into the VTA with LV-siRNA-HCN2 or the scrambled control vector (n = 11). Four days after, animals were given a daily free access to 10% ethanol and water for 10 days.Results: Rats treated with the LV-siRNA-HCN2 vector showed a ~ 70% reduction (p < .001) in their ethanol preference and ethanol intake compared to control animals. No changes were observed in the total fluid intake of both groups. HCN2 levels in the VTA were measured by Western blot showing a reduction of 40% (p < .05) in the rats injected with LV-siRNA-HCN2, compared to control animals.Conclusion: These results show that knockdown of HCN2 ionic channels in the VTA of UChB rats markedly reduces their voluntary ethanol intake, supporting the idea that HCN2 channels may constitute a therapeutic target for alcohol use disorders.


Subject(s)
Alcoholism , Ventral Tegmental Area , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Alcoholism/genetics , Animals , Ethanol/pharmacology , Female , Gene Knockdown Techniques , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Rats , Ventral Tegmental Area/metabolism
6.
J Drug Target ; 30(6): 673-686, 2022 07.
Article in English | MEDLINE | ID: mdl-35289235

ABSTRACT

Diabetes is a disease that leads to proliferative diabetic retinopathy (PDR), which is associated with an increase of new vessels formation due to an overexpression of angiogenic factors, such as angiopoietin 2 (ANGPT2). The aim of this work was to design a siRNA targeting ANGPT2 to decrease the retinal neovascularization associated with PDR. Adult male Wistar rats weighing 325-375 g were used. Diabetes was induced by a single dose of streptozotocin (STZ, 60 mg/kg i.p.). The siRNAs were designed, synthesised, and administered intravitreally at the beginning of diabetes induction (t0), and after 4 weeks of diabetes evolution (t4), subsequently evaluated the retinal neovascularization (junctions and lacunarity) and ANGPT2 expression in the retina by RT-PCR, after 4 weeks of the siRNAs administration. The results showed that the administration of STZ produced significant increases in blood glucose levels, retinal neovascularization (augmented junctions and lower lacunarity), and ANGPT2 expression, while the administration of the ANGPT2-siRNAs at different groups (t0 and t4) reduces the junctions and increases the lacunarity in diabetic rats. Therefore, we conclude that the administration of siRNAs targeting ANGPT2 could be an option to decrease the retinal neovascularization associated with PDR and halt the progression of blindness caused by diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Retinal Neovascularization , Angiopoietin-2/genetics , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/genetics , Male , Neovascularization, Pathologic/genetics , RNA, Small Interfering/pharmacology , Rats , Rats, Wistar , Retina/metabolism , Retinal Neovascularization/complications , Retinal Neovascularization/genetics , Retinal Neovascularization/metabolism , Streptozocin
7.
Viruses ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35215929

ABSTRACT

Dengue virus is a ssRNA+ flavivirus, which produces the dengue disease in humans. Currently, no specific treatment exists. siRNAs regulate gene expression and have been used systematically to silence viral genomes; however, they require controlled release. Liposomes show favorable results encapsulating siRNA for gene silencing. The objective herein was to design and evaluate in vitro siRNAs bound to liposomes that inhibit DENV replication. siRNAs were designed against DENV1-4 from conserved regions using siDirect2.0 and Web-BLOCK-iT™ RNAiDesigner; the initial in vitro evaluation was carried out through transfection into HepG2 cells. siRNA with silencing capacity was encapsulated in liposomes composed of D-Lin-MC3-DMA, DSPC, Chol. Cytotoxicity, hemolysis, pro-inflammatory cytokine release and antiviral activity were evaluated using plaque assay and RT-qPCR. A working concentration of siRNA was established at 40 nM. siRNA1, siRNA2, siRNA3.1, and siRNA4 were encapsulated in liposomes, and their siRNA delivery through liposomes led to a statistically significant decrease in viral titers, yielded no cytotoxicity or hemolysis and did not stimulate release of pro-inflammatory cytokines. Finally, liposomes were designed with siRNA against DENV, which proved to be safe in vitro.


Subject(s)
Dengue Virus/drug effects , Liposomes/chemistry , RNA, Small Interfering/pharmacology , Virus Replication/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dengue Virus/genetics , Gene Silencing , Hep G2 Cells , Humans , RNA, Small Interfering/chemistry , Serogroup , Viral Load/drug effects , Viral Nonstructural Proteins/genetics
8.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34445288

ABSTRACT

Inflammatory Breast Cancer (IBC) is an aggressive form of invasive breast cancer, highly metastatic, representing 2-4% of all breast cancer cases in the United States. Despite its rare nature, IBC is responsible for 7-10% of all breast cancer deaths, with a 5-year survival rate of 40%. Thus, targeted and effective therapies against IBC are needed. Here, we proposed Lipocalin-2 (LCN2)-a secreted glycoprotein aberrantly abundant in different cancers-as a plausible target for IBC. In immunoblotting, we observed higher LCN2 protein levels in IBC cells than non-IBC cells, where the LCN2 levels were almost undetectable. We assessed the biological effects of targeting LCN2 in IBC cells with small interference RNAs (siRNAs) and small molecule inhibitors. siRNA-mediated LCN2 silencing in IBC cells significantly reduced cell proliferation, viability, migration, and invasion. Furthermore, LCN2 silencing promoted apoptosis and arrested the cell cycle progression in the G0/G1 to S phase transition. We used in silico analysis with a library of 25,000 compounds to identify potential LCN2 inhibitors, and four out of sixteen selected compounds significantly decreased cell proliferation, cell viability, and the AKT phosphorylation levels in SUM149 cells. Moreover, ectopically expressing LCN2 MCF7 cells, treated with two potential LCN2 inhibitors (ZINC00784494 and ZINC00640089) showed a significant decrease in cell proliferation. Our findings suggest LCN2 as a promising target for IBC treatment using siRNA and small molecule inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Inflammatory Breast Neoplasms/drug therapy , Lipocalin-2/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inflammatory Breast Neoplasms/genetics , Inflammatory Breast Neoplasms/pathology , Lipocalin-2/genetics , MCF-7 Cells , Molecular Targeted Therapy/methods , Neoplasm Invasiveness , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use
9.
Biochim Biophys Acta Gen Subj ; 1865(9): 129938, 2021 09.
Article in English | MEDLINE | ID: mdl-34062235

ABSTRACT

BACKGROUND: The use of RNA interference (iRNA) therapy has proved to be an interesting target therapy for the cancer treatment; however, siRNAs are unstable and quickly eliminated from the bloodstream. To face these barriers, the use of biocompatible and efficient nanocarriers emerges as an alternative to improve the success application of iRNA to the cancer, including breast cancer. RESULTS: A hybrid nanocarrier composed of calcium phosphate as the inorganic phase and a block copolymer containing polyanions as organic phase, named HNPs, was developed to deliver VEGF siRNA into metastatic breast cancer in mice. The particles presented a rounded shape by TEM images with average size measured by DLS suitable and biocompatible for biomedical applications. The XPS and EDS spectra confirmed the hybrid composition of the nanoparticles. Moreover, after intravenous administration, the particles accumulated mainly in the tumor site and kidneys, which demonstrates the tumor targeting accumulation through the Enhanced Permeability and Retention Effect (EPR). A significant decrease in size of the tumors treated with the nanoparticles containing siVEGF (HNPs-siVEGF) was observed and the reduction was related to enhanced tumor accumulation of siRNA as well as in vivo VEGF silencing at gene and protein levels. CONCLUSION: The hybrid system prepared was successful in promoting the RNAi effect in vivo with very low toxicity. GENERAL SIGNIFICANCE: This study shows the valuable development of a hybrid nanoparticle carrying VEGF siRNA, as well as their tumor targeting, accumulation and reduction in mice triple-negative breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Nanoparticles/chemistry , RNA, Small Interfering/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Particle Size , RNA, Small Interfering/chemistry , Vascular Endothelial Growth Factor A/metabolism
10.
BMC Cancer ; 21(1): 207, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33648461

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide; it is the fourth leading cause of death in the world and the third in Brazil. Mutations in the APC, DCC, KRAS and TP53 genes have been associated with the progression of sporadic CRC, occurring at defined pathological stages of the tumor progression and consequently modulating several genes in the corresponding signaling pathways. Therefore, the identification of gene signatures that occur at each stage during the CRC progression is critical and can present an impact on the diagnosis and prognosis of the patient. In this study, our main goal was to determine these signatures, by evaluating the gene expression of paired colorectal adenoma and adenocarcinoma samples to identify novel genetic markers in association to the adenoma-adenocarcinoma stage transition. METHODS: Ten paired adenoma and adenocarcinoma colorectal samples were subjected to microarray gene expression analysis. In addition, mutations in APC, KRAS and TP53 genes were investigated by DNA sequencing in paired samples of adenoma, adenocarcinoma, normal tissue, and peripheral blood from ten patients. RESULTS: Gene expression analysis revealed a signature of 689 differentially expressed genes (DEG) (fold-change> 2, p< 0.05), between the adenoma and adenocarcinoma paired samples analyzed. Gene pathway analysis using the 689 DEG identified important cancer pathways such as remodeling of the extracellular matrix and epithelial-mesenchymal transition. Among these DEG, the ETV4 stood out as one of the most expressed in the adenocarcinoma samples, further confirmed in the adenocarcinoma set of samples from the TCGA database. Subsequent in vitro siRNA assays against ETV4 resulted in the decrease of cell proliferation, colony formation and cell migration in the HT29 and SW480 colorectal cell lines. DNA sequencing analysis revealed KRAS and TP53 gene pathogenic mutations, exclusively in the adenocarcinomas samples. CONCLUSION: Our study identified a set of genes with high potential to be used as biomarkers in CRC, with a special emphasis on the ETV4 gene, which demonstrated involvement in proliferation and migration.


Subject(s)
Adenocarcinoma/genetics , Adenoma/genetics , Colorectal Neoplasms/genetics , Genes, Neoplasm , Neoplasm Proteins/physiology , Proto-Oncogene Proteins c-ets/physiology , Adenocarcinoma/chemistry , Adenocarcinoma/pathology , Adenoma/chemistry , Adenoma/pathology , Aged , Biomarkers, Tumor/genetics , Brazil , Cell Division/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/chemistry , Colorectal Neoplasms/pathology , DNA, Neoplasm/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Male , Middle Aged , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Tissue Array Analysis , Transcriptome , Tumor Stem Cell Assay
11.
Biochem J ; 478(3): 597-617, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33600595

ABSTRACT

A sequence of interconnected events known as the metastatic cascade promotes tumor progression by regulating cellular and molecular interactions between tumor, stromal, endothelial, and immune cells both locally and systemically. Recently, a new concept has emerged to better describe this process by defining four attributes that metastatic cells should undergo. Every individual hallmark represents a unique trait of a metastatic cell that impacts directly in the outcome of the metastasis process. These critical features, known as the hallmarks of metastasis, include motility and invasion, modulation of the microenvironment, cell plasticity and colonization. They are hierarchically regulated at different levels by several factors, including galectins, a highly conserved family of ß-galactoside-binding proteins abundantly expressed in tumor microenvironments and sites of metastasis. In this review, we discuss the role of galectins in modulating each hallmark of metastasis, highlighting novel therapeutic opportunities for treating the metastatic disease.


Subject(s)
Galectins/physiology , Neoplasm Metastasis/prevention & control , Neoplasm Proteins/physiology , Adaptive Immunity , Animals , Antibodies, Neutralizing/pharmacology , Aptamers, Nucleotide/pharmacology , Carbohydrates/pharmacology , Cell Movement , Clinical Trials, Phase I as Topic , Epithelial-Mesenchymal Transition/physiology , Extracellular Matrix/metabolism , Galectins/antagonists & inhibitors , Humans , Immunity, Innate , Mice , Neoplasm Invasiveness , Neoplasm Metastasis/immunology , Neoplasm Metastasis/physiopathology , Neoplasm Proteins/antagonists & inhibitors , Neoplastic Cells, Circulating , Neovascularization, Pathologic/metabolism , Oligopeptides/pharmacology , Peptides/pharmacology , Polysaccharides/physiology , RNA, Small Interfering/pharmacology , Stromal Cells/metabolism , Tumor Microenvironment/physiology
12.
J Infect Dev Ctries ; 15(12): 1868-1875, 2021 12 31.
Article in English | MEDLINE | ID: mdl-35044945

ABSTRACT

INTRODUCTION: The use of small interfering RNA (siRNA) gene silencing is a promising therapeutic option as it does not impose selective pressure on bacteria that is often associated with the development of resistance. The study assessed the effect of siRNA targeted to sarA and agrA in S. aureus and the relationship between the transcriptional response, biofilm formation and pathogenicity. METHODOLOGY: siRNAs designed against agrA and sarA were electroporated into methicillin-resistant and methicillin-susceptible S. aureus strains. mRNA levels, growth kinetics, biofilm formation and minimal inhibitory concentration were measured. Efficacy of siRNA in bacteria was assessed using survival assays in a C. elegans model. Differences in gene expression before and after siRNA treatment were anaysed using the paired t-test, while the log rank test was used to assess the significance of any difference among survival rates of nematodes. RESULTS: Biofilm formation decreased significantly in siRNA treated strains and growth rates of siRNA treated strains were significantly higher compared to untreated strains. We observed significant decreases in the transcriptional response in siRNA treated strains, with concomitant significant increases in the lifespan of C. elegans worms exposed to siRNA-treated versus untreated strains. CONCLUSIONS: siRNA targeted to agrA and sarA lowered mRNA transcription and pathogenicity of S. aureus.


Subject(s)
RNA, Small Interfering/genetics , Staphylococcal Infections/genetics , Animals , Bacterial Proteins/genetics , Biofilms , Caenorhabditis elegans/genetics , Gene Targeting , Humans , Methicillin Resistance/genetics , Microbial Sensitivity Tests , RNA, Small Interfering/pharmacology , Staphylococcal Infections/microbiology
13.
Biomed Res Int ; 2020: 6759346, 2020.
Article in English | MEDLINE | ID: mdl-32802864

ABSTRACT

The disease caused by the Zika virus (ZIKV) has positioned itself as one of the main public health problems in Mexico. One of the main reasons is it causes microcephaly and other birth defects. The transmission of ZIKV is through Aedes aegypti and Ae. albopictus mosquitoes, which are found in a larger space of the national territory. In addition, it can also be transmitted via blood transfusion, sexual relations, and maternal-fetal route. So far, there are no vaccines or specific treatments to deal with this infection. Currently, some new therapeutics such as small interfering RNAs (siRNAs) are able to regulate or suppress transcription in viruses. Therefore, in this project, an in silico siRNA was designed for the 3'UTR region of ZIKV via bioinformatics tools. The designed siRNA was synthesized and transfected into the C6/36 cell line, previously infected with ZIKV in order to assess the ability of the siRNA to inhibit viral replication. The designed siRNA was able to inhibit significantly (p < 0.05) ZIKV replication; this siRNA could be considered a potential therapeutic towards the disease that causes ZIKV and the medical problems generated.


Subject(s)
3' Untranslated Regions , RNA, Small Interfering , RNA, Viral/metabolism , Virus Replication/drug effects , Zika Virus/physiology , Cell Line , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , RNA, Viral/genetics , Virus Replication/genetics
14.
Int J Mol Sci ; 21(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575507

ABSTRACT

Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.


Subject(s)
Lipocalin-2/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasms/metabolism , Up-Regulation , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cell Proliferation , Gene Editing , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipocalin-2/antagonists & inhibitors , Molecular Targeted Therapy , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/drug therapy , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Up-Regulation/drug effects
15.
J Leukoc Biol ; 108(3): 883-893, 2020 09.
Article in English | MEDLINE | ID: mdl-32293058

ABSTRACT

We recently reported, for the first time, the expression and regulation of the PDZ polarity proteins Scrib and Dlg1 in human APCs, and also described the viral targeting of these proteins by NS1 of influenza A virus in human dendritic cells (DCs). Scrib plays an important role in reactive oxygen species (ROS) production in Mϕs and uropod formation and migration in T cells, while Dlg1 is important for T cell downstream activation after Ag recognition. Nevertheless, the functions of these proteins in human DCs remain unknown. Here, we knocked-down the expression of both Scrib and Dlg1 in human DCs and then evaluated the expression of co-stimulatory molecules and cytokine production during maturation. We demonstrated that Scrib is necessary for adequate CD86 expression, while Dlg1 is important for CD83 up-regulation and IL-6 production upon maturation, suggesting that Scrib and Dlg1 participate in separate pathways in DCs. Additionally, both proteins are required for adequate IL-12 production after maturation. Furthermore, we showed that the inefficient maturation of DCs induced by Scrib or Dlg1 depletion leads to impaired T cell activation. Our results revealed the previously unknown contribution of Scrib and Dlg1 in human DCs pivotal functions, which may be able to impact innate and adaptive immune response.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , Discs Large Homolog 1 Protein/physiology , Membrane Proteins/physiology , Tumor Suppressor Proteins/physiology , Adaptive Immunity , Antigens, CD/biosynthesis , Antigens, CD/genetics , B7-2 Antigen/biosynthesis , B7-2 Antigen/genetics , Cells, Cultured , Cytokines/biosynthesis , Cytokines/genetics , Discs Large Homolog 1 Protein/antagonists & inhibitors , Discs Large Homolog 1 Protein/genetics , Gene Knockdown Techniques , Humans , Immunity, Innate , Immunoglobulins/biosynthesis , Immunoglobulins/genetics , Interleukin-12/metabolism , Interleukin-6/biosynthesis , Interleukin-6/genetics , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Post-Synaptic Density/physiology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Up-Regulation , CD83 Antigen
16.
Mater Sci Eng C Mater Biol Appl ; 109: 110555, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228895

ABSTRACT

Breast cancer is a major cause of death among women worldwide. Resistance to conventional therapies has been observed in HER2-positive breast cancer patients, indicating the need for more effective treatments. Small interfering RNA (siRNA) therapy is an attractive strategy against HER2-positive tumors, but its success depends largely on the efficient delivery of agents to target tissues. In this study, we prepared a magnetic hybrid nanostructure composed of iron oxide nanoparticles coated with caffeic acid and stabilized by layers of calcium phosphate and PEG-polyanion block copolymer for incorporation of siRNA. Transmission electron microscopy images showed monodisperse, neutrally charged compact spheres sized <100 nm. Dynamic light scattering and nanoparticle tracking analysis revealed that the nanostructure had an average hydrodynamic diameter of 130 nm. Nanoparticle suspensions remained stable over 42 days of storage at 4 and 25 °C. Unloaded caffeic acid-magnetic calcium phosphate (Caf-MCaP) nanoparticles were not cytotoxic, and loaded nanoparticles were successfully taken up by the HER2-positive breast cancer cell line HCC1954, even more so under magnetic guidance. Nanoparticles escaped endosomal degradation and delivered siRNA into the cytoplasm, inducing HER2 gene silencing.


Subject(s)
Breast Neoplasms , Drug Delivery Systems , Magnetic Fields , Nanoparticles , RNA, Small Interfering , Receptor, ErbB-2 , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice , NIH 3T3 Cells , Nanoparticles/chemistry , Nanoparticles/therapeutic use , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
17.
Drug Deliv Transl Res ; 10(3): 646-660, 2020 06.
Article in English | MEDLINE | ID: mdl-32060883

ABSTRACT

Since psoriasis is an immuno-mediated skin disease, long-term therapies are necessary for its treatment. In clinical investigations, tacrolimus (TAC), a macrolide immunosuppressive inhibitor of calcineurin, arises as an alternative for the treatment of psoriasis, acting in some cytokines involved in the pathogenesis of the disease. Here, we aim to study the psoriasis treatment with TAC and siRNA for one of most cytokines expressed in psoriasis, the TNF-α. A multifunctional nanostructure lipid carrier (NLC) was developed to co-delivery TAC and siRNA. Results showed that the particle size and zeta potential were around 230 nm and + 10 mV, respectively. The release study demonstrated a controlled release of TAC, and the permeation and retention profile in the skin tissue show to be promising for topical application. The cell viability and uptake in murine fibroblast presented low toxicity associated to uptake of NLC in 4 h, and finally, the in vivo animal model demonstrates the efficiency of the NLC multifunctional, exhibiting a reduction of the cytokine TNF-α expression about 7-fold and presenting a synergic effect between the TAC and TNF-α siRNA. The developed system was successfully to treat in vivo psoriatic animal model induced by imiquimod and the synergic combination was reported here for the first time. Graphical abstract.


Subject(s)
Imiquimod/adverse effects , Psoriasis/drug therapy , RNA, Small Interfering/administration & dosage , Tacrolimus/administration & dosage , Tumor Necrosis Factor-alpha/genetics , Administration, Cutaneous , Animals , Delayed-Action Preparations , Disease Models, Animal , Down-Regulation , Drug Synergism , Female , Liposomes , Male , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Nanoparticles , Particle Size , Psoriasis/chemically induced , Psoriasis/genetics , RNA, Small Interfering/pharmacology , Tacrolimus/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors
18.
Clin Transl Oncol ; 22(8): 1355-1363, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31900845

ABSTRACT

PURPOSE: Epithelial to mesenchymal transition (EMT) plays an important role in acquired resistance to gefitinib in lung cancer. This study aimed to explore the underlying mechanism of gefitinib-induced EMT in lung adenocarcinoma cells harboring EGFR mutation. METHODS: CXC chemokine receptor 4 (CXCR4) expression was determined through qRT-PCR, Western blot and flow cytometry assays in lung cancer cell line (PC9) bearing mutated EGFR. Functional role of CXCR4 was inhibited applying siRNAs as well as the specific antagonist AMD3100. The expression of EMT markers was determined, and the migration of PC9 cells was measured with transwell assay. RESULTS: We found that gefitinib promoted the migratory capacity of PC9 cells in vitro, which correlated with EMT occurrence through upregulation of CXCR4. Blocking CXCR4 significantly suppressed gefitinib-induced enhancement of migration and EMT. Moreover, we determined that the upregulation of CXCR4 by gefitinib was dependent on TGF-ß1/Smad2 signaling activity. CONCLUSIONS: Our study suggested a potential mechanism by which gefitinib induced EMT in cells harboring EGFR mutation through a pathway involving TGF-ß1 and CXCR4. Thus, the combination of CXCR4 antagonist and TGFßR inhibitors might provide an alternative strategy to overcome progression of lung cancer after gefitinib treatment.


Subject(s)
Adenocarcinoma of Lung/pathology , Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/genetics , Gefitinib/pharmacology , Lung Neoplasms/pathology , Receptors, CXCR4/metabolism , Transforming Growth Factor beta1/metabolism , Adenocarcinoma of Lung/genetics , Benzylamines/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CXCL12/metabolism , Cyclams/pharmacology , Humans , Lung Neoplasms/genetics , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Small Interfering/pharmacology , Receptors, CXCR4/antagonists & inhibitors , Smad2 Protein/metabolism , Up-Regulation
19.
Biochim Biophys Acta Mol Cell Res ; 1867(1): 118569, 2020 01.
Article in English | MEDLINE | ID: mdl-31676353

ABSTRACT

Water influx through aquaporin-1 (AQP-1) has been linked to the ability of different cell types to migrate, and therefore plays an important part in processes like metastasis and angiogenesis. Since the erythroid growth factor erythropoietin (Epo) is now recognized as an angiogenesis promoter, we investigated the participation of AQP-1 as a downstream effector of this cytokine in the migration of endothelial cells. Inhibition of AQP-1 with either mercury ions (Hg2+) or a specific siRNA led to an impaired migration of EA.hy926 endothelial cells exposed to Epo (wound-healing assays). Epo also induced the expression of AQP-1 at mRNA and protein levels, an effect which was dependent on the influx of extracellular calcium through L-type calcium channels as well as TRPC3 channels. The relationship between Epo and AQP-1 was further confirmed at shorter exposure times, as the cytokine was unable to trigger calcium influxes in cells where AQP-1 had previously been knocked down. Moreover, Epo promoted changes in the subcellular localization of AQP-1 as well as rearrangements in the actin cytoskeleton, which are consistent with a migratory phenotype. Worthy of note, carbamylated erythropoietin (cEpo), the non-erythropoietic and non-promigratory derivative of Epo, was incapable of AQP-1 modulation. The therapeutical implications of aquaporin targeting in angiogenesis-related diseases highlight the importance of the present results in the context of the relationship between AQP-1 and Epo.


Subject(s)
Aquaporin 1/physiology , Cell Movement/drug effects , Erythropoietin/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , A549 Cells , Aquaporin 1/antagonists & inhibitors , Cell Movement/genetics , Cells, Cultured , Erythropoietin/physiology , Humans , RNA, Small Interfering/pharmacology , Wound Healing/drug effects , Wound Healing/genetics
20.
Int J Mol Sci ; 20(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845661

ABSTRACT

Glioblastoma (GBM) is the most aggressive type of brain tumor, with an overall survival of 17 months under the current standard of care therapy. CD99, an over-expressed transmembrane protein in several malignancies, has been considered a potential target for immunotherapy. To further understand this potentiality, we analyzed the differential expression of its two isoforms in human astrocytoma specimens, and the CD99 involved signaling pathways in glioma model U87MG cell line. CD99 was also analyzed in GBM molecular subtypes. Whole transcriptomes by RNA-Seq of CD99-siRNA, and functional in vitro assays in CD99-shRNA, that are found in U87MG cells, were performed. Astrocytoma of different malignant grades and U87MG cells only expressed CD99 isoform 1, which was higher in mesenchymal and classical than in proneural GBM subtypes. Genes related to actin dynamics, predominantly to focal adhesion, and lamellipodia/filopodia formation were down-regulated in the transcriptome analysis, when CD99 was silenced. A decrease in tumor cell migration/invasion, and dysfunction of focal adhesion, were observed in functional assays. In addition, a striking morphological change was detected in CD99-silenced U87MG cells, further corroborating CD99 involvement in actin cytoskeleton rearrangement. Inhibiting the overexpressed CD99 may improve resectability and decrease the recurrence rate of GBM by decreasing tumor cells migration and invasion.


Subject(s)
12E7 Antigen/genetics , 12E7 Antigen/metabolism , Brain Neoplasms/genetics , Gene Expression Profiling/methods , Glioblastoma/genetics , Up-Regulation , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genes, src/genetics , Glioblastoma/metabolism , Humans , Neoplasm Invasiveness , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/pharmacology , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL