Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.393
Filter
1.
J Cell Sci ; 137(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38841902

ABSTRACT

The model of RNA stability has undergone a transformative shift with the revelation of a cytoplasmic capping activity that means a subset of transcripts are recapped autonomously of their nuclear counterparts. The present study demonstrates nucleo-cytoplasmic shuttling of the mRNA-capping enzyme (CE, also known as RNA guanylyltransferase and 5'-phosphatase; RNGTT), traditionally acknowledged for its nuclear localization and functions, elucidating its contribution to cytoplasmic capping activities. A unique nuclear export sequence in CE mediates XPO1-dependent nuclear export of CE. Notably, during sodium arsenite-induced oxidative stress, cytoplasmic CE (cCE) congregates within stress granules (SGs). Through an integrated approach involving molecular docking and subsequent co-immunoprecipitation, we identify eIF3b, a constituent of SGs, as an interactive associate of CE, implying that it has a potential role in guiding cCE to SGs. We measured the cap status of specific mRNA transcripts from U2OS cells that were non-stressed, stressed and recovered from stress, which indicated that cCE-target transcripts lost their caps during stress but remarkably regained cap stability during the recovery phase. This comprehensive study thus uncovers a novel facet of cytoplasmic CE, which facilitates cellular recovery from stress by maintaining cap homeostasis of target mRNAs.


Subject(s)
Cytoplasm , Homeostasis , RNA, Messenger , Stress Granules , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Stress Granules/metabolism , Cytoplasm/metabolism , RNA Caps/metabolism , Arsenites/pharmacology , Oxidative Stress , Active Transport, Cell Nucleus , RNA Nucleotidyltransferases/metabolism , RNA Nucleotidyltransferases/genetics , Sodium Compounds/pharmacology , Exportin 1 Protein , Karyopherins/metabolism , Karyopherins/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cytoplasmic Granules/metabolism , RNA Stability , Cell Nucleus/metabolism , Cell Line, Tumor , Nucleotidyltransferases
2.
Nat Commun ; 15(1): 4617, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816363

ABSTRACT

The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.


Subject(s)
Introns , RNA Splicing , Spliceosomes , Humans , Introns/genetics , Spliceosomes/metabolism , HEK293 Cells , RNA Nucleotidyltransferases/metabolism , RNA Nucleotidyltransferases/genetics , Exons/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , HeLa Cells , RNA Splice Sites
3.
Nucleic Acids Res ; 52(10): 5987-6001, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38485701

ABSTRACT

Mycobacterium tuberculosis transfer RNA (tRNA) terminal nucleotidyltransferase toxin, MenT3, incorporates nucleotides at the 3'-CCA end of tRNAs, blocking their aminoacylation and inhibiting protein synthesis. Here, we show that MenT3 most effectively adds CMPs to the 3'-CCA end of tRNA. The crystal structure of MenT3 in complex with CTP reveals a CTP-specific nucleotide-binding pocket. The 4-NH2 and the N3 and O2 atoms of cytosine in CTP form hydrogen bonds with the main-chain carbonyl oxygen of P120 and the side chain of R238, respectively. MenT3 expression in Escherichia coli selectively reduces the levels of seryl-tRNASers, indicating specific inactivation of tRNASers by MenT3. Consistently, MenT3 incorporates CMPs into tRNASer most efficiently, among the tested E. coli tRNA species. The longer variable loop unique to class II tRNASers is crucial for efficient CMP incorporation into tRNASer by MenT3. Replacing the variable loop of E. coli tRNAAla with the longer variable loop of M. tuberculosis tRNASer enables MenT3 to incorporate CMPs into the chimeric tRNAAla. The N-terminal positively charged region of MenT3 is required for CMP incorporation into tRNASer. A docking model of tRNA onto MenT3 suggests that an interaction between the N-terminal region and the longer variable loop of tRNASer facilitates tRNA substrate selection.


Subject(s)
Mycobacterium tuberculosis , RNA, Transfer , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/enzymology , Substrate Specificity , RNA, Transfer/metabolism , RNA, Transfer/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Models, Molecular , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cytidine/chemistry , Cytidine/metabolism , Binding Sites , Crystallography, X-Ray , RNA Nucleotidyltransferases/metabolism , RNA Nucleotidyltransferases/chemistry , RNA Nucleotidyltransferases/genetics
4.
Nat Struct Mol Biol ; 31(5): 826-834, 2024 May.
Article in English | MEDLINE | ID: mdl-38374449

ABSTRACT

Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.


Subject(s)
Poly A , RNA Stability , RNA, Messenger , Humans , Kinetics , Poly A/metabolism , Poly A/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA, Messenger/chemistry , Adenosine/metabolism , Receptors, CCR4/metabolism , Receptors, CCR4/genetics , Exoribonucleases/metabolism , Exoribonucleases/chemistry , RNA Nucleotidyltransferases
5.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256188

ABSTRACT

Nucleotidyl transferases (NTPs) are common transferases in eukaryotes and play a crucial role in nucleotide modifications at the 3' end of RNA. In plants, NTPs can regulate RNA stability by influencing 3' end modifications, which in turn affect plant growth, development, stress responses, and disease resistance. Although the functions of NTP family members have been extensively studied in Arabidopsis, rice, and maize, there is limited knowledge about NTP genes in soybeans. In this study, we identified 16 members of the NTP family in soybeans, including two subfamilies (G1 and G2) with distinct secondary structures, conserved motifs, and domain distributions at the protein level. Evolutionary analysis of genes in the NTP family across multiple species and gene collinearity analysis revealed a relatively conserved evolutionary pattern. Analysis of the tertiary structure of the proteins showed that NTPs have three conserved aspartic acids that bind together to form a possible active site. Tissue-specific expression analysis indicated that some NTP genes exhibit tissue-specific expression, likely due to their specific functions. Stress expression analysis showed significant differences in the expression levels of NTP genes under high salt, drought, and cold stress. Additionally, RNA-seq analysis of soybean plants subjected to salt and drought stress further confirmed the association of soybean NTP genes with abiotic stress responses. Subcellular localization experiments revealed that GmNTP2 and GmNTP14, which likely have similar functions to HESO1 and URT1, are located in the nucleus. These research findings provide a foundation for further investigations into the functions of NTP family genes in soybeans.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nucleotidyltransferases , Glycine max/genetics , Cold-Shock Response , Nucleotides , RNA Nucleotidyltransferases
6.
Sci Rep ; 13(1): 20717, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001315

ABSTRACT

In reference to gene annotation, more than half of the tRNA species synthesized by Mycobacterium tuberculosis require the enzymatic addition of the cytosine-cytosine-adenine (CCA) tail, which is indispensable for amino acid charging and tRNA functionality. It makes the mycobacterial CCA-adding enzyme essential for survival of the bacterium and a potential target for novel pipelines in drug discovery avenues. Here, we described the rv3907c gene product, originally annotated as poly(A)polymerase (rv3907c, PcnA) as a functional CCA-adding enzyme (CCAMtb) essential for viability of M. tuberculosis. The depletion of the enzyme affected tRNAs maturation, inhibited bacilli growth, and resulted in abundant accumulation of polyadenylated RNAs. We determined the enzymatic activities displayed by the mycobacterial CCAMtb in vitro and studied the effects of inhibiting of its transcription in bacterial cells. We are the first to properly confirm the existence of RNA polyadenylation in mycobacteria, a previously controversial phenomenon, which we found promoted upon CCA-adding enzyme downexpression.


Subject(s)
Mycobacterium tuberculosis , Polyadenylation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Adenine , Cytosine , Nucleic Acid Conformation , RNA Nucleotidyltransferases/genetics , RNA, Transfer/metabolism
7.
Cell Rep ; 42(8): 112859, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37505984

ABSTRACT

Biomolecular condensates have been shown to interact in vivo, yet it is unclear whether these interactions are functionally meaningful. Here, we demonstrate that cooperativity between two distinct condensates-germ granules and P bodies-is required for transgenerational gene silencing in C. elegans. We find that P bodies form a coating around perinuclear germ granules and that P body components CGH-1/DDX6 and CAR-1/LSM14 are required for germ granules to organize into sub-compartments and concentrate small RNA silencing factors. Functionally, while the P body mutant cgh-1 is competent to initially trigger gene silencing, it is unable to propagate the silencing to subsequent generations. Mechanistically, we trace this loss of transgenerational silencing to defects in amplifying secondary small RNAs and the stability of WAGO-4 Argonaute, both known carriers of gene silencing memories. Together, these data reveal that cooperation between condensates results in an emergent capability of germ cells to establish heritable memory.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , RNA, Small Interfering/genetics , Gene Silencing , RNA Interference , Germ Cells/metabolism , RNA Nucleotidyltransferases/genetics
8.
J Biol Chem ; 299(9): 105100, 2023 09.
Article in English | MEDLINE | ID: mdl-37507019

ABSTRACT

In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.


Subject(s)
Adaptor Proteins, Signal Transducing , RNA Nucleotidyltransferases , Humans , Introns , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism , RNA Splicing , Adaptor Proteins, Signal Transducing/metabolism , Enzyme Activation/genetics , Protein Domains , Protein Binding , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Entamoeba histolytica/enzymology , Entamoeba histolytica/genetics , Metals, Heavy/metabolism
9.
Mol Cell ; 83(13): 2258-2275.e11, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37369199

ABSTRACT

The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.


Subject(s)
Trichothiodystrophy Syndromes , Animals , Mice , Introns/genetics , Trichothiodystrophy Syndromes/genetics , RNA Nucleotidyltransferases/genetics , RNA Splicing
10.
Plant Physiol ; 193(1): 271-290, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37177985

ABSTRACT

Viral RNAs can be uridylated in eukaryotic hosts. However, our knowledge of uridylation patterns and roles remains rudimentary for phytoviruses. Here, we report global 3' terminal RNA uridylation profiles for representatives of the main families of positive single-stranded RNA phytoviruses. We detected uridylation in all 47 viral RNAs investigated here, revealing its prevalence. Yet, uridylation levels of viral RNAs varied from 0.2% to 90%. Unexpectedly, most poly(A) tails of grapevine fanleaf virus (GFLV) RNAs, including encapsidated tails, were strictly monouridylated, which corresponds to an unidentified type of viral genomic RNA extremity. This monouridylation appears beneficial for GFLV because it became dominant when plants were infected with nonuridylated GFLV transcripts. We found that GFLV RNA monouridylation is independent of the known terminal uridylyltransferases (TUTases) HEN1 SUPPRESSOR 1 (HESO1) and UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) in Arabidopsis (Arabidopsis thaliana). By contrast, both TUTases can uridylate other viral RNAs like turnip crinkle virus (TCV) and turnip mosaic virus (TuMV) RNAs. Interestingly, TCV and TuMV degradation intermediates were differentially uridylated by HESO1 and URT1. Although the lack of both TUTases did not prevent viral infection, we detected degradation intermediates of TCV RNA at higher levels in an Arabidopsis heso1 urt1 mutant, suggesting that uridylation participates in clearing viral RNA. Collectively, our work unveils an extreme diversity of uridylation patterns across phytoviruses and constitutes a valuable resource to further decipher pro- and antiviral roles of uridylation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Uridine/metabolism , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA Nucleotidyltransferases/metabolism
11.
Nat Metab ; 5(3): 495-515, 2023 03.
Article in English | MEDLINE | ID: mdl-36941451

ABSTRACT

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.


Subject(s)
Failure to Thrive , RNA Nucleotidyltransferases , Animals , Humans , Mice , Mice, Knockout , Muscle Weakness/genetics , Muscles , RNA Nucleotidyltransferases/chemistry , RNA Nucleotidyltransferases/genetics , Zebrafish
13.
Biochimie ; 209: 95-102, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36646204

ABSTRACT

The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.


Subject(s)
Escherichia coli , RNA, Transfer , Escherichia coli/metabolism , RNA, Transfer/metabolism , RNA Nucleotidyltransferases/chemistry , Nucleotides , RNA Processing, Post-Transcriptional , Protein Biosynthesis
14.
J Lipid Res ; 64(3): 100337, 2023 03.
Article in English | MEDLINE | ID: mdl-36716821

ABSTRACT

Liver function indicators are often impaired in patients with type 2 diabetes mellitus (T2DM), who present higher concentrations of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase than individuals without diabetes. However, the mechanism of liver injury in patients with T2DM has not been clearly elucidated. In this study, we performed a lipidomics analysis on the liver of T2DM mice, and we found that phosphatidylethanolamine (PE) levels were low in T2DM, along with an increase in diglyceride, which may be due to a decrease in the levels of phosphoethanolamine cytidylyltransferase (Pcyt2), thus likely affecting the de novo synthesis of PE. The phosphatidylserine decarboxylase pathway did not change significantly in the T2DM model, although both pathways are critical sources of PE. Supplementation with CDP-ethanolamine (CDP-etn) to increase the production of PE from the CDP-etn pathway reversed high glucose and FFA (HG&FFA)-induced mitochondrial damage including increased apoptosis, decreased ATP synthesis, decreased mitochondrial membrane potential, and increased reactive oxygen species, whereas supplementation with lysophosphatidylethanolamine, which can increase PE production in the phosphatidylserine decarboxylase pathway, did not. Additionally, we found that overexpression of PCYT2 significantly ameliorated ATP synthesis and abnormal mitochondrial morphology induced by HG&FFA. Finally, the BAX/Bcl-2/caspase3 apoptosis pathway was activated in hepatocytes of the T2DM model, which could also be reversed by CDP-etn supplements and PCYT2 overexpression. In summary, in the liver of T2DM mice, Pcyt2 reduction may lead to a decrease in the levels of PE, whereas CDP-etn supplementation and PCYT2 overexpression ameliorate partial mitochondrial function and apoptosis in HG&FFA-stimulated L02 cells.


Subject(s)
Diabetes Mellitus, Type 2 , Phosphatidylethanolamines , Mice , Animals , Phosphatidylethanolamines/metabolism , Diabetes Mellitus, Type 2/metabolism , RNA Nucleotidyltransferases/metabolism , Ethanolamines/pharmacology , Ethanolamines/metabolism , Hepatocytes/metabolism , Mitochondria/metabolism , Apoptosis , Adenosine Triphosphate/metabolism
15.
Biochemistry ; 61(24): 2933-2939, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36484984

ABSTRACT

The RNA lariat debranching enzyme is the sole enzyme responsible for hydrolyzing the 2'-5' phosphodiester bond in RNA lariats produced by the spliceosome. Here, we test the ability of Dbr1 to hydrolyze branched RNAs (bRNAs) that contain a 2'-5'-phosphorothioate linkage, a modification commonly used to resist degradation. We attempted to cocrystallize a phosphorothioate-branched RNA (PS-bRNA) with wild-type Entamoeba histolytica Dbr1 (EhDbr1) but observed in-crystal hydrolysis of the phosphorothioate bond. The crystal structure revealed EhDbr1 in a product-bound state, with the hydrolyzed 2'-5' fragment of the PS-bRNA mimicking the binding mode of the native bRNA substrate. These findings suggest that product inhibition may contribute to the kinetic mechanism of Dbr1. We show that Dbr1 enzymes cleave phosphorothioate linkages at rates ∼10,000-fold more slowly than native phosphate linkages. This new product-bound crystal structure offers atomic details, which can aid inhibitor design. Dbr1 inhibitors could be therapeutic or investigative compounds for human diseases such as human immunodeficiency virus (HIV), amyotrophic lateral sclerosis (ALS), cancer, and viral encephalitis.


Subject(s)
RNA Nucleotidyltransferases , RNA , Humans , RNA/chemistry , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism , RNA Splicing , Phosphates/metabolism
16.
Cells ; 11(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36497000

ABSTRACT

The terminal nucleotidyltransferases TUT4 and TUT7 (TUT4/7) regulate miRNA and mRNA stability by 3' end uridylation. In humans, TUT4/7 polyuridylates both mRNA and pre-miRNA, leading to degradation by the U-specific exonuclease DIS3L2. We investigate the role of uridylation-dependent decay in maintaining the transcriptome by transcriptionally profiling TUT4/7 deleted cells. We found that while the disruption of TUT4/7 expression increases the abundance of a variety of miRNAs, the let-7 family of miRNAs is the most impacted. Eight let-7 family miRNAs were increased in abundance in TUT4/7 deleted cells, and many let-7 mRNA targets are decreased in abundance. The mRNAs with increased abundance in the deletion strain are potential direct targets of TUT4/7, with transcripts coding for proteins involved in cellular stress response, rRNA processing, ribonucleoprotein complex biogenesis, cell-cell signaling, and regulation of metabolic processes most affected in the TUT4/7 knockout cells. We found that TUT4/7 indirectly control oncogenic signaling via the miRNA let-7a, which regulates AKT phosphorylation status. Finally, we find that, similar to fission yeast, the disruption of uridylation-dependent decay leads to major rearrangements of the transcriptome and reduces cell proliferation and adhesion.


Subject(s)
MicroRNAs , RNA Nucleotidyltransferases , RNA Stability , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Nucleic Acids Res ; 50(18): 10614-10625, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36177876

ABSTRACT

In Arabidopsis, HESO1 and URT1 act cooperatively on unmethylated miRNA and mRNA uridylation to induce their degradation. Their collaboration significantly impacts RNA metabolism in plants. However, the molecular mechanism determining the functional difference and complementarity of these two enzymes remains unclear. We previously solved the three-dimensional structure of URT1 in the absence and presence of UTP. In this study, we further determined the structure of URT1 in complex with a 5'-AAAU-3' RNA stretch that mimics the post-catalytic state of the mRNA poly(A) tail after the addition of the first uridine. Structural analysis and enzymatic assays revealed that L527 and Y592 endow URT1 with a preference to interact with purine over pyrimidine at the -1 RNA binding position, thus controlling the optimal number of uridine added to the 3' extremity of poly(A) as two. In addition, we observed that a large-scale conformational rearrangement in URT1 occurs upon binding with RNA from an 'open' to a 'closed' state. Molecular dynamic simulation supports an open-closed conformational selection mechanism employed by URT1 to interact with RNA substrates and maintain distributive enzymatic activity. Based on the above results, a model regarding the catalytic cycle of URT1 is proposed to explain its di-uridylation activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA Nucleotidyltransferases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Purines/metabolism , RNA, Messenger/metabolism , Uridine Triphosphate/metabolism
18.
Proc Natl Acad Sci U S A ; 119(38): e2205842119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095196

ABSTRACT

RNA uridylation, catalyzed by terminal uridylyl transferases (TUTases), represents a conserved and widespread posttranscriptional RNA modification in eukaryotes that affects RNA metabolism. In plants, several TUTases, including HEN1 SUPPRESSOR 1 (HESO1) and UTP: RNA URIDYLYLTRANSFERASE (URT1), have been characterized through genetic and biochemical approaches. However, little is known about their physiological significance during plant development. Here, we show that HESO1 and URT1 act cooperatively with the cytoplasmic 3'-5' exoribonucleolytic machinery component SUPERKILLER 2 (SKI2) to regulate photosynthesis through RNA surveillance of the Calvin cycle gene TRANSKETOLASE 1 (TKL1) in Arabidopsis. Simultaneous dysfunction of HESO1, URT1, and SKI2 resulted in leaf etiolation and reduced photosynthetic efficiency. In addition, we detected massive illegitimate short interfering RNAs (siRNAs) from the TKL1 locus in heso1 urt1 ski2, accompanied by reduced TKL1/2 expression and attenuated TKL activities. Consequently, the metabolic analysis revealed that the abundance of many Calvin cycle intermediates is dramatically disturbed in heso1 urt1 ski2. Importantly, all these molecular and physiological defects were largely rescued by the loss-of-function mutation in RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), demonstrating illegitimate siRNA-mediated TKL silencing. Taken together, our results suggest that HESO1- and URT1-mediated RNA uridylation connects to the cytoplasmic RNA degradation pathway for RNA surveillance, which is crucial for TKL expression and photosynthesis in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Photosynthesis , RNA Nucleotidyltransferases , RNA Stability , RNA, Small Interfering , Transketolase , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Nucleotidyltransferases/metabolism , Photosynthesis/genetics , RNA Helicases/metabolism , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism , RNA Stability/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transketolase/genetics , Transketolase/metabolism , Uridine/metabolism
19.
Dev Biol ; 491: 43-55, 2022 11.
Article in English | MEDLINE | ID: mdl-36063869

ABSTRACT

Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Argonaute Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Germ Cells/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Male , RNA/metabolism , RNA Nucleotidyltransferases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism
20.
Nat Commun ; 13(1): 5260, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071058

ABSTRACT

TENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination. Together with rescue experiments, we characterize TENT-specific effects by deep sequencing, Northern blot and in vitro assays. We find that 3' tailing is not random but highly specific. In addition to its known adenylation, TENT2 contributes to guanylation and uridylation on mature miRNAs. TUT4 uridylates most miRNAs whereas TUT7 is dispensable. Removing adenylation has a marginal impact on miRNA levels. By contrast, abolishing uridylation leads to dysregulation of a set of miRNAs. Besides let-7, miR-181b and miR-222 are negatively regulated by TUT4/7 via distinct mechanisms while the miR-888 cluster is upregulated specifically by TUT7. Our results uncover the selective actions of TENTs in generating 3' isomiRs and pave the way to investigate their functions.


Subject(s)
DNA-Binding Proteins , MicroRNAs , Polynucleotide Adenylyltransferase , RNA Nucleotidyltransferases , mRNA Cleavage and Polyadenylation Factors , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , MicroRNAs/genetics , Polynucleotide Adenylyltransferase/genetics , RNA Nucleotidyltransferases/genetics , Uridine Monophosphate/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...