Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.058
1.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Article En | MEDLINE | ID: mdl-38836054

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Glycoproteins , Rabies virus , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Rabies virus/physiology , Rabies virus/metabolism , Humans , Glycoproteins/metabolism , Glycoproteins/genetics , Oocytes/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Host-Pathogen Interactions , Protein Binding , Rabies/metabolism , Rabies/virology , Acetylcholine/metabolism , Acetylcholine/pharmacology , Neurotoxins/metabolism , Neurotoxins/pharmacology
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731834

Tripartite motif (TRIM) proteins are a multifunctional E3 ubiquitin ligase family that participates in various cellular processes. Recent studies have shown that TRIM proteins play important roles in regulating host-virus interactions through specific pathways, but their involvement in response to rabies virus (RABV) infection remains poorly understood. Here, we identified that several TRIM proteins are upregulated in mouse neuroblastoma cells (NA) after infection with the rabies virus using RNA-seq sequencing. Among them, TRIM44 was found to regulate RABV replication. This is supported by the observations that downregulation of TRIM44 inhibits RABV replication, while overexpression of TRIM44 promotes RABV replication. Mechanistically, TRIM44-induced RABV replication is brought about by activating autophagy, as inhibition of autophagy with 3-MA attenuates TRIM44-induced RABV replication. Additionally, we found that inhibition of autophagy with rapamycin reverses the TRIM44-knockdown-induced decrease in LC3B expression and autophagosome formation as well as RABV replication. The results suggest that TRIM44 promotes RABV replication by an autophagy-dependent mechanism. Our work identifies TRIM44 as a key host factor for RABV replication, and targeting TRIM44 expression may represent an effective therapeutic strategy.


Autophagy , Rabies virus , Tripartite Motif Proteins , Virus Replication , Autophagy/genetics , Animals , Mice , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Rabies virus/physiology , Rabies virus/genetics , Cell Line, Tumor , Humans , Rabies/virology , Rabies/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Host-Pathogen Interactions
3.
Sci Rep ; 14(1): 12559, 2024 05 31.
Article En | MEDLINE | ID: mdl-38822013

Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine.


Amino Acid Substitution , Rabies Vaccines , Rabies virus , Animals , Vero Cells , Chlorocebus aethiops , Rabies Vaccines/genetics , Rabies Vaccines/immunology , Rabies virus/genetics , Rabies virus/immunology , Humans , Rabies/prevention & control , Rabies/virology , Genome, Viral
4.
Viruses ; 16(5)2024 04 28.
Article En | MEDLINE | ID: mdl-38793581

Rabies is a fatal encephalitic infectious disease caused by the rabies virus (RABV). RABV is highly neurotropic and replicates in neuronal cell lines in vitro. The RABV fixed strain, HEP-Flury, was produced via passaging in primary chicken embryonic fibroblast cells. HEP-Flury showed rapid adaptation when propagated in mouse neuroblastoma (MNA) cells. In this study, we compared the growth of our previously constructed recombinant HEP (rHEP) strain-based on the sequence of the HEP (HEP-Flury) strain-with that of the original HEP strain. The original HEP strain exhibited higher titer than rHEP and a single substitution at position 80 in the matrix (M) protein M(D80N) after incubation in MNA cells, which was absent in rHEP. In vivo, intracerebral inoculation of the rHEP-M(D80N) strain with this substitution resulted in enhanced viral growth in the mouse brain and a significant loss of body weight in the adult mice. The number of viral antigen-positive cells in the brains of adult mice inoculated with the rHEP-M(D80N) strain was significantly higher than that with the rHEP strain at 5 days post-inoculation. Our findings demonstrate that a single amino acid substitution in the M protein M(D80N) is associated with neurovirulence in mice owing to adaptation to mouse neuronal cells.


Amino Acid Substitution , Brain , Rabies virus , Rabies , Viral Matrix Proteins , Animals , Rabies virus/genetics , Rabies virus/pathogenicity , Mice , Virulence , Brain/virology , Brain/pathology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Rabies/virology , Neurons/virology , Neurons/pathology , Virus Replication , Cell Line
5.
J Virol Methods ; 327: 114948, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718900

Rabies, a fatal zoonotic viral disease affecting mammals, including humans, remains a significant global health concern, particularly in low-income countries. The disease, primarily transmitted through infected animal saliva, prompts urgent diagnosis for timely post-exposure prophylaxis (PEP). The gold standard diagnostic test, direct fluorescent antibody test (dFAT), while sensitive, suffers from limitations such as subjective interpretation and high costs. As a confirmatory technique, the LN34 Pan-Lyssavirus RT-qPCR assay has emerged as a promising tool for universal Lyssavirus detection. This study evaluated its performance using 130 rabies virus isolates representing eleven Brazilian variants and 303 clinical samples from surveillance operations. The LN34 assay demonstrated 100% sensitivity and 98% specificity compared to dFAT. Additionally, it detected all samples, including those missed by dFAT, indicating superior sensitivity. The assay's specificity was confirmed through Sanger nucleotide sequencing, with only a minimal false-positive rate. Comparative analysis revealed higher accuracy and concordance with dFAT than traditional rabies tissue culture infection tests (RTCIT). False-negative RTCIT results were attributed to low viral load or suboptimal sampling. These findings underscore the LN34 assay's utility as a confirmatory technique, enhancing rabies surveillance and control in Brazil. Its widespread adoption could significantly improve diagnostic sensitivity, crucial for effective PEP and public health interventions.


Rabies virus , Rabies , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Rabies/diagnosis , Rabies/veterinary , Rabies/virology , Brazil , Rabies virus/genetics , Rabies virus/isolation & purification , Rabies virus/classification , Humans , Animals , Real-Time Polymerase Chain Reaction/methods , Lyssavirus/genetics , Lyssavirus/isolation & purification , Lyssavirus/classification , RNA, Viral/genetics , Viral Load
6.
Microbes Infect ; 26(4): 105321, 2024.
Article En | MEDLINE | ID: mdl-38461968

Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.


DEAD Box Protein 58 , Rabies virus , Rabies virus/immunology , Rabies virus/genetics , Rabies virus/pathogenicity , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Animals , Humans , Rabies/immunology , Rabies/virology , RNA, Viral/genetics , Receptors, Immunologic/metabolism , Rabies Vaccines/immunology , Cell Line , Signal Transduction , Mice , Virus Replication , Interferon Type I/metabolism , Interferon Type I/immunology
7.
Rev. cuba. med. trop ; 75(1)abr. 2023.
Article Es | LILACS, CUMED | ID: biblio-1550871

Introducción: La rabia es una enfermedad zoonótica asociada al virus RABV, el cual tiene características neurotrópicas. El virus se transmite por el contacto con saliva de animales infectados; la mordedura de un perro es la causa más común. Es un virus que causa la muerte de miles de personas cada año. Objetivo: Describir a profundidad los principios moleculares de la infección por rabia, así como su patogenia, diagnóstico y tratamiento. Métodos: Se realizó una búsqueda de bibliografía en PubMed, SciELO, Scopus, Researchgate; se consultaron 163 referencias y se seleccionaron 51 fuentes que contenían la información más relevante para cumplir con el objetivo del trabajo. Conclusión: Actualmente es posible entender de mejor manera los mecanismos de transmisión y propagación del virus en el organismo; existe nuevo conocimiento sobre los receptores involucrados, así como la función de estos en la replicación viral. Sin embargo, el objetivo de la erradicación de la rabia a corto plazo es complejo. La invasión de territorios selváticos vuelve a la rabia un posible patógeno reemergente; la vacunación de especies transmisoras es el medio ideal para conseguir el control de la enfermedad.


Introduction: Rabies is a zoonotic disease associated with the RABV virus, which has neurotropic characteristics. The virus is transmitted by contact with saliva from infected animals; a dog's bite is the most common cause. This virus causes the death of thousands of people every year. Objective: To describe in depth the molecular principles of rabies infection, as well as its pathogenesis, diagnosis and treatment. Methods: A literature search was conducted in PubMed, SciELO, Scopus, and Researchgate. A total of 163 references were consulted, and 51 sources containing the most relevant information were selected to fulfill the objective of the work. Conclusions: It is currently possible to better understand the mechanisms of transmission and spread of the virus in the organism; there is new knowledge about the receptors involved, as well as their function in viral replication. However, the goal of eradicating rabies in the short term is complex. The invasion of wild territories makes rabies a possible re-emerging pathogen; vaccination of transmitting species is the ideal means to achieve disease control.


Humans , Rabies/epidemiology , Rabies/virology
8.
J Virol ; 96(17): e0105022, 2022 09 14.
Article En | MEDLINE | ID: mdl-36005758

Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.


Blood-Brain Barrier/metabolism , Matrix Metalloproteinase 8/metabolism , Rabies virus , Rabies/virology , Animals , Brain , Endothelial Cells/metabolism , Matrix Metalloproteinase 8/genetics , Mice , NF-kappa B/metabolism
9.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article En | MEDLINE | ID: mdl-35805948

Mononegavirales is an order of viruses with a genome in the form of a non-segmented negative-strand RNA that encodes several proteins. The functional polymerase complex of these viruses is composed of two proteins: a large protein (L) and a phosphoprotein (P). The replication of viruses from this order depends on Hsp90 chaperone activity. Previous studies have demonstrated that Hsp90 inhibition results in the degradation of mononegaviruses L protein, with exception of the rabies virus, for which the degradation of P protein was observed. Here, we demonstrated that Hsp90 inhibition does not affect the expression of rabies L and P proteins, but it inhibits binding of the P protein and L protein into functional viral polymerase. Rabies and the vesicular stomatitis virus, but not the measles virus, L proteins can be expressed independently of the presence of a P protein and in the presence of an Hsp90 inhibitor. Our results suggest that the interaction of L proteins with P proteins and Hsp90 in the process of polymerase maturation may be a process specific to particular viruses.


HSP90 Heat-Shock Proteins , Rabies virus , Rabies , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Nucleotidyltransferases/metabolism , RNA-Dependent RNA Polymerase/metabolism , Rabies/virology , Rabies virus/metabolism , Virus Replication/genetics
10.
PLoS Pathog ; 18(5): e1010023, 2022 05.
Article En | MEDLINE | ID: mdl-35500026

The availability of pathogen sequence data and use of genomic surveillance is rapidly increasing. Genomic tools and classification systems need updating to reflect this. Here, rabies virus is used as an example to showcase the potential value of updated genomic tools to enhance surveillance to better understand epidemiological dynamics and improve disease control. Previous studies have described the evolutionary history of rabies virus, however the resulting taxonomy lacks the definition necessary to identify incursions, lineage turnover and transmission routes at high resolution. Here we propose a lineage classification system based on the dynamic nomenclature used for SARS-CoV-2, defining a lineage by phylogenetic methods for tracking virus spread and comparing sequences across geographic areas. We demonstrate this system through application to the globally distributed Cosmopolitan clade of rabies virus, defining 96 total lineages within the clade, beyond the 22 previously reported. We further show how integration of this tool with a new rabies virus sequence data resource (RABV-GLUE) enables rapid application, for example, highlighting lineage dynamics relevant to control and elimination programmes, such as identifying importations and their sources, as well as areas of persistence and routes of virus movement, including transboundary incursions. This system and the tools developed should be useful for coordinating and targeting control programmes and monitoring progress as countries work towards eliminating dog-mediated rabies, as well as having potential for broader application to the surveillance of other viruses.


Phylogeny , Rabies virus , Rabies , Animals , Dogs , Genomics , Rabies/virology , Rabies virus/genetics
11.
Viruses ; 14(2)2022 01 25.
Article En | MEDLINE | ID: mdl-35215832

A specialized and fine-tuned immune response of bats upon infection with viruses is believed to provide the basis for a "friendly" coexistence with these pathogens, which are often lethal for humans and other mammals. First insights into the immunity of bats suggest that bats have evolved to possess their own strategies to cope with viral infections. Yet, the molecular details for this innocuous coexistence remain poorly described and bat infection models are the key to unveiling these secrets. In Jamaican fruit bats (Artibeus jamaicensis), a New World bat species, infection experiments with its (putative) natural viral pathogens Tacaribe virus (TCRV), rabies virus (RABV), and the bat influenza A virus (IAV) H18N11, have contributed to an accurate, though still incomplete, representation of the bat-imposed immunity. Surprisingly, though many aspects of their innate and adaptive immune responses differ from that of the human immune response, such as a contraction of the IFN locus and reduction in the number of immunoglobulin subclasses, variations could also be observed between Jamaican fruit bats and other bat species.


Chiroptera/immunology , Chiroptera/virology , Virome , Virus Diseases/veterinary , Adaptive Immunity , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/veterinary , Arenaviridae Infections/virology , Arenaviruses, New World/isolation & purification , Immunity, Innate , Influenza A virus/isolation & purification , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Rabies/immunology , Rabies/veterinary , Rabies/virology , Rabies virus/isolation & purification , Virus Diseases/immunology
12.
PLoS Negl Trop Dis ; 16(2): e0010124, 2022 02.
Article En | MEDLINE | ID: mdl-35143490

An increasing number of countries are committing to meet the global target to eliminate human deaths from dog-mediated rabies by 2030. Mass dog vaccination is central to this strategy. To interrupt rabies transmission from dogs to humans, the World Health Organization recommends that vaccination campaigns should be carried out every year in all dog-owning communities vaccinating 70% of their susceptible dogs. Monitoring and evaluation of dog vaccination campaigns are needed to measure progress towards elimination. In this study, we measured the delivery performance of large-scale vaccination campaigns implemented in 25 districts in south-east Tanzania from 2010 until 2017. We used regression modelling to infer the factors associated with, and potentially influencing the successful delivery of vaccination campaigns. During 2010-2017, five rounds of vaccination campaigns were carried out, vaccinating in total 349,513 dogs in 2,066 administrative vaccination units (rural villages or urban wards). Progressively more dogs were vaccinated over the successive campaigns. The campaigns did not reach all vaccination units each year, with only 16-28% of districts achieving 100% campaign completeness (where all units were vaccinated). During 2013-2017 when vaccination coverage was monitored, approximately 20% of vaccination units achieved the recommended 70% coverage, with average coverage around 50%. Campaigns were also not completed at annual intervals, with the longest interval between campaigns being 27 months. Our analysis revealed that districts with higher budgets generally achieved higher completeness, with a twofold difference in district budget increasing the odds of a vaccination unit being reached by a campaign by slightly more than twofold (OR: 2.29; 95% CI: 1.69-3.09). However, higher budgets did not necessarily result in higher coverage within vaccination units that were reached. We recommend national programs regularly monitor and evaluate the performance of their vaccination campaigns, so as to identify factors hindering their effective delivery and to guide remedial action.


Dog Diseases/prevention & control , Rabies Vaccines/administration & dosage , Rabies virus/immunology , Rabies/prevention & control , Animals , Dog Diseases/epidemiology , Dog Diseases/virology , Dogs , Female , Health Promotion , Linear Models , Male , Rabies/epidemiology , Rabies/virology , Rabies virus/genetics , Tanzania/epidemiology , Vaccination
13.
Vet Microbiol ; 265: 109326, 2022 Feb.
Article En | MEDLINE | ID: mdl-34979406

Rabies, caused by rabies virus (RABV), is an ancient zoonotic disease that significantly affects human and animal health throughout the world. RABV causes acute encephalitis in mammals with a high fatality rate in developing countries. G protein-coupled receptor 17 (GPR17) is a vital gene in the central nervous system (CNS) that plays important roles in demyelinating diseases and ischemia brain. However, it is still unclear whether GPR17 participates in the regulation of RABV infection. Here, we found that upregulation or activation of GPR17 can reduce the virus titer; conversely, the inactivation or silence of GPR17 led to increased RABV replication in N2a cells. The recombinant RABV expressing GPR17 (rRABV-GPR17) showed reduced replication capacity compared to the parent virus rRABV. Moreover, overexpression of GPR17 can attenuate RABV pathogenicity in mice. Further study demonstrated that GPR17 suppressed RABV replication via BAK-mediated apoptosis. Our findings uncover an unappreciated role of GPR17 in suppressing RABV infection, where GPR17 mediates cell apoptosis to limit RABV replication and may be an attractive candidate for new therapeutic interventions in the treatment of rabies.


Nerve Tissue Proteins , Rabies virus , Rabies , Receptors, G-Protein-Coupled , Virus Replication , bcl-2 Homologous Antagonist-Killer Protein , Animals , Apoptosis , Mammals , Mice , Nerve Tissue Proteins/metabolism , Rabies/metabolism , Rabies/virology , Rabies virus/physiology , Receptors, G-Protein-Coupled/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism
14.
J Virol ; 96(2): e0147321, 2022 01 26.
Article En | MEDLINE | ID: mdl-34757839

Rabies is an old zoonotic disease caused by rabies virus (RABV), but the pathogenic mechanism of RABV is still not completely understood. Lipid droplets (LDs) have been reported to play a role in pathogenesis of several viruses. However, their role in RABV infection remains unclear. Here, we initially found that RABV infection upregulated LD production in multiple cells and mouse brains. After treatment with atorvastatin, a specific inhibitor of LDs, RABV replication in N2a cells decreased. Then we found that RABV infection could upregulate N-myc downstream regulated gene-1 (NDRG1), which in turn enhanced the expression of diacylglycerol acyltransferase 1/2 (DGAT1/2). DGAT1/2 could elevate cellular triglyceride synthesis and ultimately promote intracellular LD formation. Furthermore, we found that RABV-M and RABV-G, which were mainly involved in the viral budding process, could colocalize with LDs, indicating that RABV might utilize LDs as a carrier to facilitate viral budding and eventually increase virus production. Taken together, our study reveals that lipid droplets are beneficial for RABV replication, and their biogenesis is regulated via the NDRG1-DGAT1/2 pathway, which provides novel potential targets for developing anti-RABV drugs. IMPORTANCE Lipid droplets have been proven to play an important role in viral infections, but their role in RABV infection has not yet been elaborated. Here, we find that RABV infection upregulates the generation of LDs by enhancing the expression of N-myc downstream regulated gene-1 (NDRG1). Then NDRG1 elevated cellular triglycerides synthesis by increasing the activity of diacylglycerol acyltransferase 1/2 (DGAT1/2), which promotes the biogenesis of LDs. RABV-M and RABV-G, which are the major proteins involved in viral budding, could utilize LDs as a carrier for transport to cell membrane, resulting in enhanced virus budding. Our findings will extend the knowledge of lipid metabolism in RABV infection and help to explore potential therapeutic targets for RABV.


Lipid Droplets/metabolism , Rabies virus/physiology , Rabies/virology , Virus Release , Virus Replication , Animals , Anticholesteremic Agents/pharmacology , Atorvastatin/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Droplets/drug effects , Mice , Neurons/metabolism , Neurons/virology , Rabies/metabolism , Rabies virus/drug effects , Triglycerides/metabolism , Viral Structural Proteins/metabolism , Virus Release/drug effects , Virus Replication/drug effects
15.
J Virol ; 96(4): e0194221, 2022 02 23.
Article En | MEDLINE | ID: mdl-34878915

Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infections and suggests that OAA treatment is a strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to energy requirements after RABV infection. Our study also indicates the role OAA could play in neuronal protection by suppressing excessive neuroinflammation.


Brain/metabolism , Glucose/metabolism , Rabies virus/pathogenicity , Rabies/metabolism , Acetylation , Animals , Brain/drug effects , Brain/immunology , Brain/virology , Energy Metabolism , Inflammation , Mice , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/therapeutic use , Proteome/metabolism , Rabies/drug therapy , Rabies/virology
16.
PLoS Negl Trop Dis ; 15(12): e0009891, 2021 12.
Article En | MEDLINE | ID: mdl-34882672

The direct fluorescent antibody test (dFAT) using brain sample after opening the skull is the standard rabies diagnostic test in animal rabies. However, it is not feasible in many resource-limited settings. Lateral flow devices (LFD) combined with a simple sampling methodology is quicker, simpler, and less hazardous than the standard test and can be a useful tool. We conducted a prospective on-site study to evaluate the diagnostic accuracy of the LFD with the straw sampling method compared with that of the dFAT with the skull opening procedure for post-mortem canine rabies diagnosis. We collected 97 rabies-suspected animals between December 1, 2020 and March 31, 2021. Among the 97 samples, 53 and 50 cases were positive tests for dFAT and LFD, respectively. The sensitivity and specificity of LFD with straw sampling method were 94.3% (95% confidence interval [CI], 84.3-98.8%) and 100% (95% CI, 92.0-100%), respectively. The performance of LFD by the straw sampling method showed relatively high sensitivity and 100% specificity compared with that of dFAT performed on samples collected after opening the skull. This methodology can be beneficial and is a strong tool to overcome limited animal surveillance in remote areas. However, because of our limited sample size, more data using fresh samples on-site and the optimizations are urgently needed for the further implementation in endemic areas.


Brain/virology , Diagnostic Tests, Routine/veterinary , Rabies/diagnosis , Rabies/veterinary , Specimen Handling/instrumentation , Animals , Autopsy/instrumentation , Autopsy/methods , Chromatography, Affinity/instrumentation , Chromatography, Affinity/methods , Diagnostic Tests, Routine/instrumentation , Diagnostic Tests, Routine/methods , Dogs , Female , Immunologic Tests/methods , Male , Prospective Studies , Rabies/virology , Rabies virus/immunology , Sensitivity and Specificity
17.
Viruses ; 13(12)2021 11 25.
Article En | MEDLINE | ID: mdl-34960633

The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.


Encephalitis, Viral/immunology , Herpes Simplex/immunology , Immunity, Innate , Inflammation , Rabies virus/immunology , Rabies/immunology , Simplexvirus/immunology , Animals , Astrocytes/immunology , Astrocytes/virology , Blood-Brain Barrier/virology , Central Nervous System/immunology , Central Nervous System/virology , Encephalitis, Viral/virology , Herpes Simplex/virology , Humans , Microglia/immunology , Microglia/virology , Neuroglia/immunology , Neuroglia/virology , Rabies/virology , Signal Transduction
18.
Viruses ; 13(12)2021 11 27.
Article En | MEDLINE | ID: mdl-34960647

Lagos bat lyssavirus (LBV) comprising four lineages (A, B, C and D) can potentially cause the fatal disease rabies. Although LBV-B was initially isolated in Nigeria in 1956, there is no information on LBV lineages circulating in Nigeria. This study was undertaken for the first time to measure the neutralizing antibodies against four lineages of LBVs in straw-colored fruit bats (Eidolon helvum) in Makurdi, Nigeria. Serum samples (n = 180) collected during two periods (November 2017-March 2018 and November 2018-March 2019) from terminally bled bats captured for human consumption were tested using a modified fluorescent antibody virus neutralization (mFAVN) assay. A high proportion of bat sera (74%) neutralized at least one lineage of LBV (with reciprocal titers from 9 to >420.89) and most of them neutralized LBV-A (63%), followed by LBV-D (49%), LBV-C (45%) and LBV-B (24%). The majority of positive sera (75%, n = 100) neutralized multiple LBV lineages while the remaining 25% (n = 33) neutralized only a single lineage, i.e., LBV-A (n = 23), LBV-D (n = 8) and LBV-C (n = 2). None exclusively neutralized LBV-B. The results suggest that exposure to LBV is common in E. helvum and that LBV-A (but not LBV-B) is likely to be circulating in this region of Nigeria.


Antibodies, Viral/blood , Chiroptera/virology , Lyssavirus/immunology , Rabies/virology , Rhabdoviridae Infections/virology , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Lyssavirus/isolation & purification , Male , Middle Aged , Nigeria/epidemiology
19.
Viruses ; 13(12)2021 12 10.
Article En | MEDLINE | ID: mdl-34960742

Rabies is a viral zoonosis that is transmissible to humans via domestic and wild animals. There are two epidemiological cycles for rabies, the urban and the sylvatic cycles. In an attempt to study the epidemiological role of wild canidae in rabies transmission, the present study aimed to analyze the genetic characteristics of virus isolates and confirm prior suggestions that rabies is maintained through a dog reservoir in Tunisia. Virus strains isolated from wild canidae were subject to viral sequencing, and Bayesian phylogenetic analysis was performed using Beast2 software. Essentially, the virus strains isolated from wild canidae belonged to the Africa-1 clade, which clearly diverges from fox-related strains. Our study also demonstrated that genetic characteristics of the virus isolates were not as distinct as could be expected if a wild reservoir had already existed. On the contrary, the geographic landscape is responsible for the genetic diversity of the virus. The landscape itself could have also acted as a natural barrier to the spread of the virus.


Animals, Wild/virology , Canidae/virology , Rabies virus/genetics , Rabies/veterinary , Animals , Disease Reservoirs/virology , Dogs/virology , Evolution, Molecular , Foxes/virology , Genetic Variation , Jackals/virology , Molecular Epidemiology , Phylogeny , Rabies/epidemiology , Rabies/virology , Rabies virus/classification , Rabies virus/isolation & purification , Tunisia/epidemiology
20.
Viruses ; 13(12)2021 12 11.
Article En | MEDLINE | ID: mdl-34960753

The rabies virus (RABV) is characterized by a history dominated by host shifts within and among bats and carnivores. One of the main outcomes of long-term RABV maintenance in dogs was the establishment of variants in a wide variety of mesocarnivores. In this study, we present the most comprehensive phylogenetic and phylogeographic analysis, contributing to a better understanding of the origins, diversification, and the role of different host species in the evolution and diffusion of a dog-related variant endemic of South America. A total of 237 complete Nucleoprotein gene sequences were studied, corresponding to wild and domestic species, performing selection analyses, ancestral states reconstructions, and recombination analyses. This variant originated in Brazil and disseminated through Argentina and Paraguay, where a previously unknown lineage was found. A single host shift was identified in the phylogeny, from dog to the crab-eating fox (Cerdocyon thous) in the Northeast of Brazil. Although this process occurred in a background of purifying selection, there is evidence of adaptive evolution -or selection of sub-consensus sequences- in internal branches after the host shift. The interaction of domestic and wild cycles persisted after host switching, as revealed by spillover and putative recombination events.


Rabies virus/genetics , Rabies virus/isolation & purification , Rabies/veterinary , Animals , Animals, Domestic/virology , Animals, Wild/virology , Dog Diseases/epidemiology , Dog Diseases/virology , Dogs , Evolution, Molecular , Foxes/virology , Nucleoproteins/genetics , Phylogeny , Rabies/epidemiology , Rabies/virology , Rabies virus/classification , Recombination, Genetic , South America/epidemiology
...