Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.216
Filter
1.
Braz J Microbiol ; 55(3): 2901-2906, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980651

ABSTRACT

With the successful control of rabies transmitted by dogs in Brazil, wild animals have played a relevant epidemiological role in the transmission of rabies virus (RABV). Bats, non-human primates and wild canines are the main wild animals that transmit RABV in the country. It is worth highlighting the possibility of synanthropic action of these species, when they become adapted to urban areas, causing infections in domestic animals and eventually in humans. This work aimed to evaluate the circulation of RABV in the Pedra Branca Forest, an Atlantic Forest area, located in the state of Rio de Janeiro, Southeast Brazil. Saliva and blood samples were obtained from 60 individuals of eight species of bats, captured with mist nets, and 13 individuals of callitrichid primates, captured with tomahawk traps. Saliva samples were subjected to Reverse Transcription Polymerase Chain Reaction (RT-PCR), targeting the RABV N gene, with all samples being negative. Blood samples of all animals were submitted to the Rapid Fluorescent Focus Inhibition Test (RFFIT) to detect neutralizing antibodies (Ab) for RABV. Six bat samples (8%) were seropositive for RABV with antibody titers greater than or equal to 0.1 IU/mL. The detection of Ab but not viral RNA indicates exposure rather than current RABV transmission in the analyzed populations. The results presented here reinforce the importance of serological studies in wildlife to access RABV circulation in a region.


Subject(s)
Animals, Wild , Antibodies, Viral , Chiroptera , Forests , Rabies virus , Rabies , Animals , Rabies virus/genetics , Rabies virus/isolation & purification , Rabies virus/immunology , Brazil/epidemiology , Rabies/veterinary , Rabies/epidemiology , Rabies/virology , Rabies/transmission , Chiroptera/virology , Animals, Wild/virology , Antibodies, Viral/blood , Saliva/virology , Mammals/virology
2.
Rev Soc Bras Med Trop ; 57: e00806, 2024.
Article in English | MEDLINE | ID: mdl-39082524

ABSTRACT

This report describes the occurrence of the rabies virus in two species of wild animals in the urban area of Montes Claros (MOC), Minas Gerais State, Brazil, in May 2023. The virus has been detected in frugivorous chiropterans (Artibeus sp) and marmosets (Callithrix penicillata). This is the first notified case of the rabies virus in the species C. penicillata in the urban area of MOC. Our findings show that the rabies virus is circulating in the urban area of MOC; therefore, permanent preventive measures must be adopted to avoid infection of other animals and humans.


Subject(s)
Callithrix , Rabies virus , Rabies , Animals , Rabies virus/isolation & purification , Brazil/epidemiology , Callithrix/virology , Rabies/veterinary , Rabies/epidemiology , Chiroptera/virology , Animals, Wild/virology
3.
Acta Trop ; 257: 107309, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955321

ABSTRACT

Bats are the second most diverse order of mammals and play a central role in ecosystem dynamics. They are also important reservoirs of potentially zoonotic microorganisms, of which rabies virus is the most lethal among the bat-transmitted zoonotic pathogens. Importantly, recent outbreaks of human rabies have been reported from the Brazilian Amazon. Here we present a survey of bat species and rabies virus (RABV) circulation in a bat assemblage in the Marajó region, northern Brazil. Using data from mist-net captures and bioacoustic sampling, 56 bat species were recorded along the Jacundá River basin over a 10-day expedition in November 2022. For the investigation of RABV, we used the direct fluorescent antibody test (DFAT) and the rapid fluorescent focus inhibition test (RFFIT). In total, 159 bat individuals from 22 species were investigated for RABV. Five adults of the common vampire bat, Desmodus rotundus, showed RABV-specific antibodies in serum samples. Additionally, we report on local residents with injuries caused by D. rotundus bites and the occurrence of colonies of non-hematophagous bats from different species roosting inside human residences. This scenario raises concerns about the risks of new cases of human rabies and other zoonotic diseases associated with bats in the region and highlights the need for epidemiological surveillance and mitigation measures to prevent outbreaks of emerging infectious diseases.


Subject(s)
Antibodies, Viral , Chiroptera , Disease Outbreaks , Rabies virus , Rabies , Zoonoses , Chiroptera/virology , Animals , Brazil/epidemiology , Rabies virus/immunology , Rabies virus/isolation & purification , Rabies virus/classification , Rabies/epidemiology , Rabies/veterinary , Rabies/virology , Humans , Zoonoses/epidemiology , Zoonoses/virology , Antibodies, Viral/blood , Female , Male , Adult , Middle Aged , Adolescent
4.
J Virol Methods ; 327: 114948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718900

ABSTRACT

Rabies, a fatal zoonotic viral disease affecting mammals, including humans, remains a significant global health concern, particularly in low-income countries. The disease, primarily transmitted through infected animal saliva, prompts urgent diagnosis for timely post-exposure prophylaxis (PEP). The gold standard diagnostic test, direct fluorescent antibody test (dFAT), while sensitive, suffers from limitations such as subjective interpretation and high costs. As a confirmatory technique, the LN34 Pan-Lyssavirus RT-qPCR assay has emerged as a promising tool for universal Lyssavirus detection. This study evaluated its performance using 130 rabies virus isolates representing eleven Brazilian variants and 303 clinical samples from surveillance operations. The LN34 assay demonstrated 100% sensitivity and 98% specificity compared to dFAT. Additionally, it detected all samples, including those missed by dFAT, indicating superior sensitivity. The assay's specificity was confirmed through Sanger nucleotide sequencing, with only a minimal false-positive rate. Comparative analysis revealed higher accuracy and concordance with dFAT than traditional rabies tissue culture infection tests (RTCIT). False-negative RTCIT results were attributed to low viral load or suboptimal sampling. These findings underscore the LN34 assay's utility as a confirmatory technique, enhancing rabies surveillance and control in Brazil. Its widespread adoption could significantly improve diagnostic sensitivity, crucial for effective PEP and public health interventions.


Subject(s)
Rabies virus , Rabies , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Rabies/diagnosis , Rabies/veterinary , Rabies/virology , Brazil , Rabies virus/genetics , Rabies virus/isolation & purification , Rabies virus/classification , Humans , Animals , Real-Time Polymerase Chain Reaction/methods , Lyssavirus/genetics , Lyssavirus/isolation & purification , Lyssavirus/classification , RNA, Viral/genetics , Viral Load
5.
Zoonoses Public Health ; 71(5): 600-608, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38706119

ABSTRACT

BACKGROUND: Rabies virus (RABV) is the etiologic agent of rabies, a fatal brain disease in mammals. Rabies circulation has historically involved the dog has the main source of human rabies worldwide. Nevertheless, in Colombia, cats (Felis catus) have become a relevant species in the epidemiology of rabies. AIMS: To characterize rabies cases in humans in Colombia in the last three decades in the context of the epidemiology of the aggressor animal. MATERIALS AND METHODS: We conducted a retrospective longitudinal epidemiological study of human rabies caused by cats' aggression, collecting primary and secondary information. Variables considered included the demography of the patient, symptoms, information about the aggressor animal as the source of infection and the viral variant identified. RESULTS: We found that the distribution of rabies incidence over the years has been constant in Colombia. Nevertheless, between 2003 and 2012 a peak of cases occurred in rural Colombia where cats were the most frequent aggressor animal reported. Most cats involved in aggression were unvaccinated against rabies. Cat's clinical signs at the time of the report of the human cases included hypersalivation and changes in behaviour. Human patients were mostly children and female and the exposure primarily corresponded to bite and puncture lacerations in hands. The RABV lineage detected in most cases corresponded to variant 3, linked to the common vampire bat (Desmodus rotundus). The geographical presentation of cat borne RABV in humans occurred along the Andes mountains, epidemiologically known as the rabies red Andean corridor. DISCUSSION: By finding cats as the primary source of rabies spillover transmission in Colombia, this report highlights the importance of revising national rabies control and prevention protocol in countries in the Andes region. CONCLUSION: Our results demonstrate that rabies vaccination for outdoor cats needs to prioritize to reduce the number of rabies-related human deaths.


Subject(s)
Cat Diseases , Rabies virus , Rabies , Rabies/epidemiology , Rabies/veterinary , Animals , Cats , Humans , Colombia/epidemiology , Male , Female , Cat Diseases/epidemiology , Cat Diseases/virology , Retrospective Studies , Rabies virus/isolation & purification , Child , Adolescent , Adult , Child, Preschool , Bites and Stings/epidemiology , Young Adult , Middle Aged , Longitudinal Studies , Zoonoses/epidemiology , Incidence
6.
J Vet Diagn Invest ; 36(4): 522-528, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38653733

ABSTRACT

Rabies virus (RABV; Lyssavirus rabies) is a neurotropic virus that can be transmitted to mammals by the hematophagous bat Desmodus rotundus. An accurate, accessible method for the detection of RABV in cattle is necessary in Paraguay; thus, we evaluated the detection of RABV using 4 techniques: fluorescent antibody test (FAT), immunochromatography rapid detection test (RDT; Anigen Rapid Rabies Ag test kit; Bionote), a reverse-transcription PCR (RT-PCR) assay, and histologic lesions in different portions of the CNS of 49 Paraguayan cattle to determine the most sensitive and specific technique. By FAT and RDT, 15 of 49 (31%) samples were positive. By RT-PCR amplification of N and G genes, 13 of 49 (27%) and 12 of 49 (25%) were positive, respectively. RDT had high agreement with FAT (kappa = 1); sensitivity was 100% (95% CI: 97-100%) and specificity was 100% (95% CI: 99-100%). The amplification of the N and G genes resulted in substantial agreement (kappa of 0.9 and 0.8, respectively) compared with FAT, and the sensitivity and specificity of the N gene were 87% (95% CI: 66-100%) and 100% (95% CI: 98-100%), respectively, and those of the G gene were 80% (95% CI: 56-100%) and 100% (95% CI: 98-100%), respectively. Histologic lesions observed were lymphoplasmacytic meningoencephalitis, gliosis, and neuronophagia. The agreement observed between the FAT and RDT tests suggests that RDT is an accurate tool for the detection of RABV. Histopathology can be used to confirm lesions caused by RABV and to rule out other conditions; the RT-PCR assay is useful for molecular epidemiology studies.


Subject(s)
Cattle Diseases , Rabies virus , Rabies , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Animals , Rabies/veterinary , Rabies/diagnosis , Rabies/virology , Cattle , Paraguay , Rabies virus/isolation & purification , Rabies virus/genetics , Cattle Diseases/virology , Cattle Diseases/diagnosis , Cattle Diseases/pathology , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Fluorescent Antibody Technique/veterinary
7.
Emerg Infect Dis ; 30(5): 1039-1042, 2024 May.
Article in English | MEDLINE | ID: mdl-38666690

ABSTRACT

In Latin America, rabies virus has persisted in a cycle between Desmodus rotundus vampire bats and cattle, potentially enhanced by deforestation. We modeled bovine rabies virus outbreaks in Costa Rica relative to land-use indicators and found spatial-temporal relationships among rabies virus outbreaks with deforestation as a predictor.


Subject(s)
Cattle Diseases , Disease Outbreaks , Rabies virus , Rabies , Animals , Costa Rica/epidemiology , Rabies/epidemiology , Rabies/veterinary , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Conservation of Natural Resources , Chiroptera/virology , History, 21st Century
8.
Braz J Biol ; 84: e279112, 2024.
Article in English | MEDLINE | ID: mdl-38536975

ABSTRACT

The hematophagous bats are usually the main reservoir of sylvatic rabies, being one of the most important viral zoonoses affecting humans and livestock in Latin America. Despite the most countries have already studied spatio-temporal distribution of bovine rabies, however, in Ecuador, little has been reported about the state of rabies in the country. Aiming to this objective, a descriptive observational study was realized from 2007 to 2020 based on the formal reports by WAHI-OIE and surveillance of bovine rabies retrieved from its official website. During the study period in Ecuador, some 895 cases of rabies were confirmed in cattle. In addition, in the total of bovine rabies cases seen in Andean and Coast regions (185 effected bovines), Loja and Esmeraldas had 95 (6.16% cases per 10,000 animals) and 51 (1.7% cases per 10,000 animals), respectively. Furthermore, the Amazon region indicated higher rabies cases in cattle than to the observed in other regions (710 rabies cases) while it was highly fluctuating with respect to the years (9.74 to 42.82% cases per 10,000 animals). However, Zamora (292 rabies cases), Orellana (115 rabies cases) and Sucumbíos (113 rabies cases) yielded the highest incidence rates than other provinces (9 to 42% cases per 10,000 animals). Based on this evidence, it has been fundamental to assess the current national program for preventing and control of the sylvatic rabies, being also necessary to include concept of the ecology of the vampire bat. Regardless of these results, vaccination is vital for control programs to prevent rabies in livestock and need to be widely increased for limiting their geographic and temporal spread.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Cattle , Humans , Ecuador/epidemiology , Rabies/epidemiology , Rabies/veterinary , Rabies/prevention & control , Retrospective Studies , Cross-Sectional Studies
9.
Prev Vet Med ; 226: 106188, 2024 May.
Article in English | MEDLINE | ID: mdl-38513566

ABSTRACT

Rabies, a globally distributed and highly lethal zoonotic neglected tropical disease, has a significant impact in South America. In Ecuador, animal rabies cases are primarily linked to livestock, and hematophagous bats play a crucial role in disease transmission. This study aims to identify temporal trends, spatial patterns, and risk factors for animal rabies in Ecuador between 2014 and 2019. Epidemiological survey reports from the official Animal Rabies Surveillance Program of the Phyto and Zoosanitary Regulation and Control Agency of Ecuador (AGROCALIDAD) were used. The Animal Rabies Surveillance Program from AGROCALIDAD consists of an official passive surveillance program that receives reports from farmers or individuals (both trained or untrained) who have observed animals with neurological clinical signs and lesions compatible with bat bites, or who have seen or captured bats on their farms or houses. Once this report is made, AGROCALIDAD personnel is sent for field inspection, having to confirm the suspicion of rabies based on farm conditions and compatibility of signs. AGROCALIDAD personnel collect samples from all suspicious animals, which are further processed and analyzed using the Direct Fluorescent Antibody (DFA) test for rabies confirmatory diagnosis. In this case, study data comprised 846 bovine farms (with intra-farm sample sizes ranging from 1 to 16 samples) located in different ecoregions of Ecuador; out of these, 397 (46.93%) farms tested positive for animal rabies, revealing six statistically significant spatial clusters. Among these clusters, three high-risk areas were identified in the southeast of Ecuador. Seasonality was confirmed by the Ljung-Box test for both the number of cases (p < 0.001) and the positivity rate (p < 0.001). The Pacific Coastal lowlands and Sierra regions showed a lower risk of positivity compared to Amazonia (OR = 0.529; 95% CI = 0.318 - 0.883; p = 0.015 and OR = 0.633; 95% CI = 0.410 - 0.977; p = 0.039, respectively). The breeding of non-bovine animal species demonstrated a lower risk of positivity to animal rabies when compared to bovine (OR = 0.145; 95% CI = 0.062 - 0.339; p < 0.001). Similarly, older animals exhibited a lower risk (OR = 0.974; 95% CI = 0.967 - 0.981; p < 0.001). Rainfall during the rainy season was also found to decrease the risk of positivity to animal rabies (OR = 0.996; 95% CI = 0.995 - 0.998; p < 0.001). This study underscores the significance of strengthening the national surveillance program for the prevention and control of animal rabies in Ecuador and other countries facing similar epidemiological, social, and geographical circumstances.


Subject(s)
Cattle Diseases , Chiroptera , Rabies virus , Rabies , Animals , Cattle , Cattle Diseases/epidemiology , Chiroptera/physiology , Ecuador/epidemiology , Livestock , Rabies/epidemiology , Rabies/veterinary , Rabies/prevention & control , Risk Factors
10.
Rev Soc Bras Med Trop ; 57: e003002024, 2024.
Article in English | MEDLINE | ID: mdl-38359308

ABSTRACT

Human Rabies (HR) is a fatal zoonotic disease caused by lyssaviruses, with the rabies virus (RABV) identified as the causative agent. While the incidence of HR transmitted by dogs has decreased in Latin America, there has been a corresponding rise in transmission via wild animals. Given the lack of effective treatments and specific therapies, the management of HR relies on the availability of post-exposure prophylaxis and animal control measures. This review examines the dynamics and spread of HR during the global pandemic.


Subject(s)
COVID-19 , Rabies virus , Rabies , Humans , Animals , Dogs , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Pandemics/prevention & control , Brazil/epidemiology , COVID-19/epidemiology
11.
Mol Biotechnol ; 66(2): 354-364, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37162721

ABSTRACT

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.


Subject(s)
Ammonium Compounds , Rabies virus , Rabies , Animals , Sf9 Cells , Rabies virus/genetics , Glutamine , Baculoviridae/genetics , Recombinant Proteins/genetics , Culture Media, Serum-Free , Glutamic Acid , Lactates , Glucose , Spodoptera
12.
Acta Trop ; 249: 107073, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956818

ABSTRACT

Bat-mediated human rabies is a viral zoonotic disease that poses a serious threat to the public health of traditional peoples, especially indigenous populations that maintain primitive cultural and social habits, such as the Maxakali ethnic group, located in the southeastern region of Brazil. The sociocultural habit of this population led to the emergence between April and May 2022 of the viral spillover of rabies transmitted by bats, which decimated the lives of four children from this population who maintained contact with this animal as a recreational practice. Because the vampire bats Desmodus rotundus have exceptional ecology and social characteristics that can have important effects on the dynamics of viral dispersion in this indigenous population, I present the dynamics of contact between native children and the bat and the meaning of this relationship, which involves ritualistic and recreational significance. As important as knowing the reasons for this practice is discussing some intrinsic and extrinsic factors that imply risks that intensify the vulnerability of this population to the transmission of the rabies virus at any time. In view of this, I warn of the need to adopt efficient strategies to mitigate the risks of a new emergency in this region. Although emergency containment measures were carried out during the critical period of the outbreak, such animal and environmental control actions must become routine programmatic and structuring interventions. Essential for rabies surveillance in this population is to develop culturally adapted interethnic health education campaigns to guarantee the accessibility of the Maxakali indigenous people to the content taught, so that any attempt at domestication, captivity and recreational practices with bats of any species is discouraged, thus avoiding a possible re-emergence of this anthropozoonosis that has impacted not only the epidemiological scenario in this region, but throughout Brazil, and also throughout Latin America.


Subject(s)
Bites and Stings , Chiroptera , Rabies virus , Rabies , Animals , Child , Humans , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Brazil/epidemiology , Rabies virus/genetics , Ecology , Bites and Stings/epidemiology
13.
Vet. zootec ; 31: 1-7, 2024.
Article in English | LILACS, VETINDEX | ID: biblio-1552662

ABSTRACT

Rabies is a fatal zoonotic disease that affects several mammals. Hematophagous bats are recognized hosts of the rabies virus, and their main food source is the blood of other mammals, particularly cattle. During feeding, bats transmit the virus to cattle, which are victims of the disease, contributing to economic losses and increasing the risk of infection for humans. Based on this affinity in the rabies cycle between bats and cattle, the objective of this study was to analyze the phylogenetic relationships of rabies virus samples in cattle and bats. The G gene of the rabies virus was chosen for this study because it is directly related to the infection process. Nucleotide sequences of the viral G gene were selected from GenBank for samples obtained from infected cattle and bats. Maximum parsimony analyses were conducted using the Molecular Evolutionary Genetics Analysis software. The Maxima Parsimony tree indicated a phylogenetic relationship between the G genes of both hosts, indicating that the virus evolved from bats to cattle. Analysis of parsimoniously informative sites revealed that the viral G gene carried specific mutations in each host. Knowledge of the evolutionary relationships between the rabies virus and its hosts is critical for identifying potential new hosts and the possible routes of infection for humans.


A Raiva é uma zoonose fatal que infecta várias espécies de mamíferos. Os morcegos hematófagos são reconhecidos como hospedeiros do vírus da Raiva e sua principal fonte de alimento é o sangue de outros mamíferos, especialmente os bovinos. Quando se alimentam, os morcegos transmitem o vírus para o bovino os quais são vítimas da doença, contribuindo para perdas econômicas e riscos de infecção para humanos. Baseado nesta afinidade do ciclo da Raiva entre morcegos e bovinos, o objetivo deste estudo foi analisar as relações filogenéticas de amostras do vírus da Raiva em ambos os hospedeiros, bovinos e morcegos. O gene G do vírus da Raiva foi escolhido para esta pesquisa porque ele está diretamente relacionado ao processo de infecção. Sequências de nucleotídeos do gene G viral foram selecionadas no GenBank a partir de amostras obtidas de bovinos e morcegos infectados. Análises de Máxima Parcimônia foram conduzidas utilizando o software Molecular Evolutionary Genetics Analysis. A árvore de Máxima Parcimônia indicou uma relação filogenética entre o gene G de ambos os hospedeiros, indicando que o vírus evoluiu dos morcegos para os bovinos. A análise dos sítios parcimoniosamente informativos revelou que o gene G viral apresentou mutações específicas em cada hospedeiro. O conhecimento sobre as relações evolutivas do vírus da Raiva e seus hospedeiros é crucial para identificar nos hospedeiros potenciais e novas rotas possíveis de infecção para humanos.


La rabia es una zoonosis fatal que infecta a varias especies de mamíferos. Los murciélagos hematófagos son reconocidos como huéspedes del virus de la rabia y su principal fuente de alimentación es la sangre de otros mamíferos, especialmente del ganado. Al alimentarse, los murciélagos transmiten el virus al ganado que es víctima de la enfermedad, contribuyendo a pérdidas económicas y riesgos de infección para los humanos. Basado en esta afinidad del ciclo de la rabia entre murciélagos y ganado, el objetivo de este estudio fue analizar las relaciones filogenéticas de las muestras de virus de la rabia tanto en huéspedes, ganado y murciélagos. El gen G del virus de la rabia fue elegido para esta investigación porque está directamente relacionado con el proceso de infección. Las secuencias de nucleótidos del gen G viral se seleccionaron en GenBank a partir de muestras obtenidas de bovinos y murciélagos infectados. Los análisis de parsimonia máxima se realizaron utilizando el software Molecular Evolutionary Genetics Analysis. El árbol de Máxima Parsimônia indicó una relación filogenética entre el gen G de ambos huéspedes, indicando que el virus evolucionó de murciélagos a bovinos. El análisis de los sitios parsimoniosamente informativos reveló que el gen G viral presentaba mutaciones específicas en cada huésped. El conocimiento sobre las relaciones evolutivas del virus de la rabia y sus huéspedes es crucial para identificar huéspedes potenciales y nuevas posibles rutas de infección para humanos.


Subject(s)
Animals , Phylogeny , Rabies virus/genetics , Virus Diseases/veterinary , Chiroptera/virology
14.
Arch Virol ; 169(1): 3, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38071687

ABSTRACT

In this study, we examined various brain suspension concentrations and viral loads in Neuro-2a cell cultures using 20 rabies-positive bovine samples. The reproducibility of results varied: 65% showed consistent outcomes across all concentrations, while 35% disagreed in at least one. Viral titers ranged from less than 25 × 101 to 25 × 103.50 TCID50/mL, with 20% below 25 × 101 TCID50/mL. Concentrations between 5% and 20% yielded over 90% agreement in positive results, but at 30%, agreement dropped from 85% to 50%. Cell confluence was successfully maintained at 5%, 10%, and 20%, while concentrations of 30% and above led to confluence loss. Low viral loads also negatively impacted reproducibility. These results suggest that sample concentration has a direct influence on preservation of cell confluence and that low viral loads may influence the reproducibility of the rabies tissue culture infection test (RTCIT).


Subject(s)
Rabies virus , Rabies , Cattle , Animals , Rabies/diagnosis , Viral Load , Reproducibility of Results , Brain
15.
Rev. chil. infectol ; Rev. chil. infectol;40(6): 678-683, dic. 2023.
Article in Spanish | LILACS | ID: biblio-1529999

ABSTRACT

En la antigüedad ya se describía la rabia como una enfermedad zoonótica fatal cuyo pronóstico inexorable superaba todas las alter-nativas terapéuticas de los más célebres médicos. La realidad chilena sobre esta enfermedad a fines del siglo XIX fue descrita certeramente por el médico mártir Pedro Videla Órdenes en su tesis "La rabia" de 1879, destacando la descripción clínica de la rabia, su pronóstico fatal y la ausencia de tratamientos eficaces. Tan sólo seis años después, en 1885, el aclamado químico y microbiólogo Louis Pasteur desarrolló la vacuna antirrábica, logrando por primera vez en la historia de la humanidad prevenir esta terrible enfermedad. En Chile, se inició rápidamente la implementación de la vacuna Pasteur, vacunando al primer chileno el 7 de julio de 1896. Los doctores Milcíades Espinosa y Arturo Atria, en sus tesis "Generalidades sobre la rabia" (1898) y "Sobre la rabia y su profilaxia en Chile" (1905), respectivamente, abordaron esta primera etapa del desarrollo de la vacuna antirrábica en el país.


In antiquity, rabies was already described as a fatal zoonotic disease whose inexorable prognosis exceeded all the therapeutic alternatives of the most famous doctors. The Chilean reality about this disease at the end of the 19th century was accurately described by the martyred doctor Pedro Videla Ordenes in his thesis "La rabia" of 1879, highlighting in it his description about the unknown etiological agent, the fatal prognosis of the disease and the absence of effective treatments. Just six years later, in 1885, the acclaimed chemist and microbiologist Louis Pasteur developed the rabies vaccine, managing to prevent this terrible disease for the first time in human history. In Chile, the implementation of the Pasteur vaccine began rapidly, vaccinating the first Chilean on July 7, 1896. Doctors Milcíades Espinosa and Arturo Atria, in their theses "Generalidades sobre la rabia" (1898) and "Sobre la rabia y su profilaxia en Chile" (1905), respectively, addressed this first stage of the development of the rabies vaccine in the country.


Subject(s)
Humans , Rabies/history , Rabies Vaccines/history , Rabies/prevention & control , Rabies/epidemiology , Rabies virus/pathogenicity , Chile/epidemiology
16.
Braz J Microbiol ; 54(4): 3315-3320, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923877

ABSTRACT

Genetic characterizations of rabies viruses circulating in carnivore and non-carnivore animals were investigated for the first time in Arkhangai province, a central region of Mongolia. Also, glycoprotein gene of the rabies virus was sequenced for the first time in Mongolia. The nucleotide sequences of the glycoprotein and nucleoprotein genes were analysed, revealing the presence of multiple lineages in this area. Of particular concern are the lineages identified in carnivores, which might emerge to spread throughout Mongolia, further facilitating transboundary transmission to neighbouring countries, including China and Russia.


Subject(s)
Rabies virus , Rabies , Animals , Rabies virus/genetics , Rabies/epidemiology , Rabies/veterinary , Nucleoproteins/genetics , Mongolia , Phylogeny
17.
Arch Virol ; 168(11): 266, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37798456

ABSTRACT

The last record of a rabies case caused by the dog-specific rabies virus (RABV) lineage in dogs or cats in São Paulo State was in 1998. From 2002 to 2021, 57 cases of rabies in these animals were reported, and the vast majority (51) were genetically characterized as belonging to the Desmodus rotundus/Artibeus lituratus RABV lineage. However, it is not currently possible to infer which of these bats is the source of infection by genome sequencing of RABV isolates. The aims of this study were (a) to characterize the Desmodus rotundus/Artibeus lituratus lineage to determine the relationships between the RABV lineages and each reservoir, (b) to assess the phylogeny and common ancestors of the RABV lineages found in D. rotundus and A. lituratus, and (c) to further understand the epidemiology and control of rabies. In this study, we genetically analyzed 70 RABV isolates from São Paulo State that were received by the Virology Laboratory of the Pasteur Institute of São Paulo between 2006 and 2015. Of these isolates, 33 were associated with the hematophagous bat D. rotundus and 37 with the fruit bat A. lituratus. A genomic approach using phylogenetic analysis and nucleotide sequence comparisons demonstrated that these isolates belonged to the same genetic lineage of RABV. We also found that, in São Paulo State, the D. rotundus/A. lituratus lineage could be subdivided into at least four phylogenetic sublineages: two associated with D. rotundus and two with A. lituratus. These results are of importance for the epidemiological surveillance of rabies in São Paulo.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Dogs , Rabies/epidemiology , Rabies/veterinary , Phylogeny , Brazil/epidemiology
18.
J Med Virol ; 95(10): e29042, 2023 10.
Article in English | MEDLINE | ID: mdl-37885152

ABSTRACT

Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.


Subject(s)
Rabies virus , Rabies , Humans , Animals , United States , Rabies/epidemiology , Vaccination , Europe , Treatment Outcome , Post-Exposure Prophylaxis/methods
19.
Virus Genes ; 59(6): 817-822, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796410

ABSTRACT

Rabies is worldwide zoonosis caused by Lyssavirus rabies (RABV) a RNA negative sense virus with low level of fidelity during replication cycle. Nucleoprotein of RABV is the most conserved between all five proteins of the virus and is the most used gene for phylogenetic and phylogeographic studies. Despite of rabies been very important in Public Health concern, it demands continuous prophylactic care for herbivores with economic interest, such as cattle and horses. The main transmitter of RABV for these animals in Brazil is the hematophagous bats Desmodus rotundus. The aim of this study was to determine the dispersion over time and space of RABV transmitted by D. rotundus. Samples of RABV from the State of São Paulo (SP), Southeast Brazil isolated from the central nervous system (CNS) of cattle, were submitted to RNA extraction, RT-PCR, sequencing and phylogeographic analyzes with BEAST (Bayesian Evolutionary Analysis Sampling Trees) v 2.5 software. Was possible to identify high rate of diversification in starts sublineages of RABV what are correlated with a behavior of D. rotundus, the main transmitter of rabies to cattle. This study also highlights the importance of continuous monitoring of genetic lineages of RABV in Brazil.


Subject(s)
Chiroptera , Lyssavirus , Rabies virus , Rabies , Animals , Cattle , Rabies/veterinary , Lyssavirus/genetics , Phylogeny , Bayes Theorem , Brazil , RNA
20.
J Med Virol ; 95(8): e29046, 2023 08.
Article in English | MEDLINE | ID: mdl-37605969

ABSTRACT

Rabies is a fatal viral zoonosis caused by rabies virus (RABV). RABV infects the central nervous system and triggers acute encephalomyelitis in both humans and animals. Endemic in the Brazilian Northeast region, RABV emergence in distinct wildlife species has been identified as a source of human rabies infection and as such, constitutes a public health concern. Here, we performed post-mortem RABV analyses of 144 encephalic tissues from bats sampled from January to July 2022, belonging to 15 different species. We identified phylogenetically distinct RABV from Phyllostomidae and Molossidae bats circulating in Northeastern Brazil. Phylogenetic clustering revealed the close evolutionary relationship between RABV viruses circulating in bats and variants hosted in white-tufted marmosets, commonly captured to be kept as pets and linked to human rabies cases and deaths in Brazil. Our findings underline the urgent need to implement a phylogenetic-scale epidemiological surveillance platform to track multiple RABV variants which may pose a threat to both humans and animals.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Humans , Callithrix , Rabies virus/genetics , Rabies/epidemiology , Rabies/veterinary , Brazil/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL