Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.911
Filter
1.
Sci Rep ; 14(1): 18509, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122768

ABSTRACT

Rabies virus (RABV) is the causative agent of rabies, a lethal neurological disease in mammals. RABV strains can be classified into fixed strains (laboratory strains) and street strains (field/clinical strains), which have different properties including cell tropism and neuroinvasiveness. RABV Toyohashi strain is a street strain isolated in Japan from an imported case which had been bitten by rabid dog in the Philippines. In order to facilitate molecular studies of RABV, we established a reverse genetics (RG) system for the study of the Toyohashi strain. The recombinant virus was obtained from a cDNA clone of Toyohashi strain and exhibited similar growth efficiency as the original virus in cultured cell lines. Both the original and recombinant strains showed similar pathogenicity with high neuroinvasiveness in mice, and the infected mice developed a long and inconsistent incubation period, which is characteristic of street strains. We also generated a recombinant Toyohashi strain expressing viral phosphoprotein (P protein) fused with the fluorescent protein mCherry, and tracked the intracellular dynamics of the viral P protein using live-cell imaging. The presented reverse genetics system for Toyohashi strain will be a useful tool to explore the fundamental molecular mechanisms of the replication of RABV street strains.


Subject(s)
Rabies virus , Rabies , Reverse Genetics , Rabies virus/genetics , Rabies virus/pathogenicity , Animals , Reverse Genetics/methods , Mice , Rabies/virology , Dogs , Humans , Cell Line , Virus Replication/genetics , Philippines
2.
Emerg Microbes Infect ; 13(1): 2389115, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39129566

ABSTRACT

Rabies is a lethal zoonotic disease that threatens human health. As the only viral surface protein, the rabies virus (RABV) glycoprotein (G) induces main neutralizing antibody (Nab) responses; however, Nab titre is closely correlated with the conformation of G. Virus-like particles (VLP) formed by the co-expression of RABV G and matrix protein (M) improve retention and antigen presentation, inducing broad, durable immune responses. RABV nucleoprotein (N) can elicit humoral and cellular immune responses. Hence, we developed a series of nucleoside-modified RABV mRNA vaccines encoding wild-type G, soluble trimeric RABV G formed by an artificial trimer motif (tG-MTQ), membrane-anchored prefusion-stabilized G (preG). Furthermore, we also developed RABV VLP mRNA vaccine co-expressing preG and M to generate VLPs, and VLP/N mRNA vaccine co-expressing preG, M, and N. The RABV mRNA vaccines induced higher humoral and cellular responses than inactivated rabies vaccine, and completely protected mice against intracerebral challenge. Additionally, the IgG and Nab titres in RABV preG, VLP and VLP/N mRNA groups were significantly higher than those in G and tG-MTQ groups. A single administration of VLP or VLP/N mRNA vaccines elicited protective Nab responses, the Nab titres were significantly higher than that in inactivated rabies vaccine group at day 7. Moreover, RABV VLP and VLP/N mRNA vaccines showed superior capacities to elicit potent germinal centre, long-lived plasma cell and memory B cell responses, which linked to high titre and durable Nab responses. In summary, our data demonstrated that RABV VLP and VLP/N mRNA vaccines could be promising candidates against rabies.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Immunity, Cellular , Immunity, Humoral , Rabies Vaccines , Rabies virus , Rabies , Vaccines, Virus-Like Particle , Animals , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Rabies Vaccines/genetics , Rabies/prevention & control , Rabies/immunology , Rabies virus/immunology , Rabies virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Female , mRNA Vaccines/immunology , Mice, Inbred BALB C , Nucleosides/immunology , Glycoproteins/immunology , Glycoproteins/genetics , Humans , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Antigens, Viral/immunology , Antigens, Viral/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/immunology
3.
NPJ Biofilms Microbiomes ; 10(1): 68, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117662

ABSTRACT

Shrews being insectivores, serve as natural reservoirs for a wide array of zoonotic viruses, including the recently discovered Langya henipavirus (LayV) in China in 2018. It is crucial to understand the shrew-associated virome, viral diversity, and new viruses. In the current study, we conducted high-throughput sequencing on lung samples obtained from 398 shrews captured along the eastern coast of China, and characterized the high-depth virome of 6 common shrew species (Anourosorex squamipes, Crocidura lasiura, Crocidura shantungensis, Crocidura tanakae, Sorex caecutiens, and Suncus murinus). Our analysis revealed numerous shrew-associated viruses comprising 54 known viruses and 72 new viruses that significantly enhance our understanding of mammalian viruses. Notably, 34 identified viruses possess spillover-risk potential and six were human pathogenic viruses: LayV, influenza A virus (H5N6), rotavirus A, rabies virus, avian paramyxovirus 1, and rat hepatitis E virus. Moreover, ten previously unreported viruses in China were discovered, six among them have spillover-risk potential. Additionally, all 54 known viruses and 12 new viruses had the ability to cross species boundaries. Our data underscore the diversity of shrew-associated viruses and provide a foundation for further studies into tracing and predicting emerging infectious diseases originated from shrews.


Subject(s)
High-Throughput Nucleotide Sequencing , Lung , Shrews , Virome , Animals , Shrews/virology , China , Lung/virology , Virome/genetics , Phylogeny , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Viral/genetics , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Rabies virus/genetics , Rabies virus/classification , Rabies virus/isolation & purification , Disease Reservoirs/virology
4.
Antiviral Res ; 229: 105977, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089332

ABSTRACT

Rabies is a fatal neurological disorder caused by rabies virus (RABV) infection. Approximately 60,000 patients die from rabies annually, and there are no effective treatments for this disease. Nucleoside analogs are employed as antiviral drugs based on their broad antiviral spectrum, and certain nucleoside analogs have been reported to exhibit anti-RABV activity. The nucleoside analog ß-d-N4-hydroxycytidine (NHC) has antiviral effects against a range of RNA viruses. Molnupiravir (MPV), a prodrug of NHC, is clinically used as an oral antiviral drug for coronavirus infections. Despite its broad-spectrum activity, the antiviral activity of NHC against RABV remains unclear. In this study, we reveal that NHC exhibits comparable in vitro anti-RABV activity as ribavirin and favipiravir (also known as T-705) with a 90% effective concentration of 6 µM in mouse neuroblastoma cells. NHC reduced viral loads in neuronal and nonneuronal cells in a dose-dependent manner. Both laboratory and field RABVs (fixed and street strains, respectively) were susceptible to NHC. However, no increase in survival or reduction in viral titers in the brain was observed in RABV-infected mice treated prophylactically with MPV. These findings highlight the potential and challenges of NHC in the treatment of RABV infection.


Subject(s)
Amides , Antiviral Agents , Cytidine , Rabies virus , Rabies , Viral Load , Animals , Antiviral Agents/pharmacology , Cytidine/analogs & derivatives , Cytidine/pharmacology , Rabies virus/drug effects , Mice , Rabies/drug therapy , Rabies/virology , Amides/pharmacology , Viral Load/drug effects , Pyrazines/pharmacology , Ribavirin/pharmacology , Hydroxylamines/pharmacology , Cell Line, Tumor , Cell Line
5.
Virol J ; 21(1): 154, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978059

ABSTRACT

BACKGROUND: Rabies is a fatal zoonotic disease whose pathogenesis has not been fully elucidated, and vaccination is the only effective method for protecting against rabies virus infection. Most inactivated vaccines are produced using Vero cells, which are African green monkey kidney cells, to achieve large-scale production. However, there is a potential carcinogenic risk due to nonhuman DNA contamination. Thus, replacing Vero cells with human diploid cells may be a safer strategy. In this study, we developed a novel 2BS cell-adapted rabies virus strain and analysed its sequence, virulence and immunogenicity to determine its application potential as a human diploid cell inactivated vaccine. METHODS AND RESULTS: The 2BS cell-adapted rabies virus strain 2aG4-B40 was established by passage for 40 generations and selection of plaques in 2BS cells. RNA sequence analysis revealed that mutations in 2BS cell-adapted strains were not located at key sites that regulate the production of neutralizing antibodies or virulence in the aG strain (GQ412744.1). The gradual increase in virulence (remaining above 7.0 logLD50/ml from the 40th to 55th generation) and antigen further indicated that these mutations may increase the affinity of the adapted strains for human diploid cells. Identification tests revealed that the 2BS cell-adapted virus strain was neutralized by anti-rabies serum, with a neutralization index of 19,952. PrEP and PEP vaccination and the NIH test further indicated that the vaccine prepared with the 2aG4-B40 strain had high neutralizing antibody levels (2.24 to 46.67 IU/ml), immunogenicity (protection index 270) and potency (average 11.6 IU/ml). CONCLUSIONS: In this study, a 2BS cell-adapted strain of the 2aG4 rabies virus was obtained by passage for 40 generations. The results of sequencing analysis and titre determination of the adapted strain showed that the mutations in the adaptive process are not located at key sequence regions of the virus, and these mutations may enhance the affinity of the adapted strain for human diploid cells. Moreover, vaccines made from the adapted strain 2aG4-B40 had high potency and immunogenicity and could be an ideal candidate rabies virus strain for inactivated vaccine preparation.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Rabies Vaccines , Rabies virus , Rabies , Rabies virus/immunology , Rabies virus/genetics , Rabies virus/pathogenicity , Animals , Rabies Vaccines/immunology , Rabies Vaccines/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Rabies/prevention & control , Rabies/immunology , Rabies/virology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Chlorocebus aethiops , Virulence , Vaccines, Inactivated/immunology , Vero Cells , China , Mice , Cell Line , Mutation , Female , Immunogenicity, Vaccine
6.
Viruses ; 16(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39066269

ABSTRACT

In addition to the rabies virus (RABV), 16 more lyssavirus species have been identified worldwide, causing a disease similar to RABV. Non-rabies-related human deaths have been described, but the number of cases is unknown, and the potential of such lyssaviruses causing human disease is unpredictable. The current rabies vaccine does not protect against divergent lyssaviruses such as Mokola virus (MOKV) or Lagos bat virus (LBV). Thus, a more broad pan-lyssavirus vaccine is needed. Here, we evaluate a novel lyssavirus vaccine with an attenuated RABV vector harboring a chimeric RABV glycoprotein (G) in which the antigenic site I of MOKV replaces the authentic site of rabies virus (RABVG-cAS1). The recombinant vaccine was utilized to immunize mice and analyze the immune response compared to homologous vaccines. Our findings indicate that the vaccine RABVG-cAS1 was immunogenic and induced high antibody titers against both RABVG and MOKVG. Challenge studies with different lyssaviruses showed that replacing a single antigenic site of RABV G with the corresponding site of MOKV G provides a significant improvement over the homologous RABV vaccine and protects against RABV, Irkut virus (IRKV), and MOKV. This strategy of epitope chimerization paves the way towards a pan-lyssavirus vaccine to safely combat the diseases caused by these viruses.


Subject(s)
Antibodies, Viral , Lyssavirus , Rabies Vaccines , Rabies virus , Rabies , Animals , Lyssavirus/immunology , Lyssavirus/genetics , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Rabies virus/immunology , Rabies virus/genetics , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Rabies/prevention & control , Rabies/immunology , Rabies/virology , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Female , Viral Vaccines/immunology , Glycoproteins/immunology , Glycoproteins/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccine Development , Humans , Antigens, Viral/immunology , Mice, Inbred BALB C
7.
Travel Med Infect Dis ; 60: 102735, 2024.
Article in English | MEDLINE | ID: mdl-38992484

ABSTRACT

BACKGROUND: The 4-dose Essen intramuscular (IM) regimen for rabies post-exposure prophylaxis (PEP) has been recommended by Advisory Committee on Immunization Practices (ACIP) and World Health Organization (WHO), but the large-sample clinical evidence is still limited. METHOD: Rabies virus neutralizing antibodies of 11,752 patients were detected from 409 rabies prevention clinics in 27 provinces in China. Patients with serum collected before or no later than 1 h after injection on the day of the fifth dose (day 28) of 5-dose Essen regimen were included in Group A to observe the immune efficacy of 4-dose Essen IM regimen, and patients with serum collected 14-28 days after injection of the fifth dose were included in Group B to observe the immune efficacy of 5-dose Essen IM regimen. RESULTS: Finally, 2351 cases met the inclusion and exclusion criteria, including 2244 cases in Group A and 107 cases in Group B. The antibody titer of Group A was higher than that of Group B [12.21 (4.15, 32.10) IU/ml vs. 9.41 (3.87, 27.38) IU/ml] (P = 0.002). In Group A, the median antibody titers were 4.01IU/ml, 11.63IU/ml and 29.46IU/ml in patients vaccinated with purified hamster kidney cell vaccine (PHKCV), purified Vero cell vaccine (PVRV), and human diploid cell rabies vaccine (HDCV), respectively, with statistical significance (P < 0.001). CONCLUSIONS: The 4-dose Essen IM regimen could provide satisfactory immune effect, and HDCV induced higher antibody titer than PHKCV or PVRV.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Post-Exposure Prophylaxis , Rabies Vaccines , Rabies , Humans , Rabies/prevention & control , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Post-Exposure Prophylaxis/methods , China , Male , Injections, Intramuscular , Adult , Female , Antibodies, Viral/blood , Cross-Sectional Studies , Middle Aged , Antibodies, Neutralizing/blood , Rabies virus/immunology , Adolescent , Young Adult , Animals , Child , Immunogenicity, Vaccine , Immunization Schedule
8.
Rev Soc Bras Med Trop ; 57: e00806, 2024.
Article in English | MEDLINE | ID: mdl-39082524

ABSTRACT

This report describes the occurrence of the rabies virus in two species of wild animals in the urban area of Montes Claros (MOC), Minas Gerais State, Brazil, in May 2023. The virus has been detected in frugivorous chiropterans (Artibeus sp) and marmosets (Callithrix penicillata). This is the first notified case of the rabies virus in the species C. penicillata in the urban area of MOC. Our findings show that the rabies virus is circulating in the urban area of MOC; therefore, permanent preventive measures must be adopted to avoid infection of other animals and humans.


Subject(s)
Callithrix , Rabies virus , Rabies , Animals , Rabies virus/isolation & purification , Brazil/epidemiology , Callithrix/virology , Rabies/veterinary , Rabies/epidemiology , Chiroptera/virology , Animals, Wild/virology
9.
Emerg Infect Dis ; 30(8): 1642-1650, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043404

ABSTRACT

Rabies, a viral disease that causes lethal encephalitis, kills ≈59,000 persons worldwide annually, despite availability of effective countermeasures. Rabies is endemic in Kenya and is mainly transmitted to humans through bites from rabid domestic dogs. We analyzed 164 brain stems collected from rabid animals in western and eastern Kenya and evaluated the phylogenetic relationships of rabies virus (RABV) from the 2 regions. We also analyzed RABV genomes for potential amino acid changes in the vaccine antigenic sites of nucleoprotein and glycoprotein compared with RABV vaccine strains commonly used in Kenya. We found that RABV genomes from eastern Kenya overwhelmingly clustered with the Africa-1b subclade and RABV from western Kenya clustered with Africa-1a. We noted minimal amino acid variances between the wild and vaccine virus strains. These data confirm minimal viral migration between the 2 regions and that rabies endemicity is the result of limited vaccine coverage rather than limited efficacy.


Subject(s)
Genome, Viral , Phylogeny , Rabies Vaccines , Rabies virus , Rabies , Rabies virus/genetics , Rabies virus/immunology , Rabies virus/classification , Animals , Kenya/epidemiology , Rabies/epidemiology , Rabies/veterinary , Rabies/virology , Rabies/prevention & control , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Dogs , Sequence Alignment , Humans , Phylogeography
10.
Hum Vaccin Immunother ; 20(1): 2382499, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39069645

ABSTRACT

Rabies, primarily transmitted to humans by dogs (accounting for 99% of cases). Once rabies occurs, its mortality rate is approximately 100%. Post-exposure prophylaxis (PEP) is critical for preventing the onset of rabies after exposure to rabid animals, and vaccination is a pivotal element of PEP. However, high costs and complex immunization protocols have led to poor adherence to rabies vaccinations. Consequently, there is an urgent need to develop new rabies vaccines that are safe, highly immunogenic, and cost-effective to improve compliance and effectively prevent rabies. In recent years, mRNA vaccines have made significant progress in the structural modification and optimization of delivery systems. Various mRNA vaccines are currently undergoing clinical trials, positioning them as viable alternatives to the traditional rabies vaccines. In this article, we discuss a novel mRNA rabies vaccine currently undergoing clinical and preclinical testing, and evaluate its potential to replace existing vaccines.


Subject(s)
Post-Exposure Prophylaxis , Rabies Vaccines , Rabies , mRNA Vaccines , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Rabies Vaccines/genetics , Rabies/prevention & control , Animals , Humans , Post-Exposure Prophylaxis/methods , Rabies virus/immunology , Rabies virus/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccine Development , Dogs , Clinical Trials as Topic , RNA, Messenger/genetics , RNA, Messenger/immunology
11.
Acta Trop ; 257: 107309, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955321

ABSTRACT

Bats are the second most diverse order of mammals and play a central role in ecosystem dynamics. They are also important reservoirs of potentially zoonotic microorganisms, of which rabies virus is the most lethal among the bat-transmitted zoonotic pathogens. Importantly, recent outbreaks of human rabies have been reported from the Brazilian Amazon. Here we present a survey of bat species and rabies virus (RABV) circulation in a bat assemblage in the Marajó region, northern Brazil. Using data from mist-net captures and bioacoustic sampling, 56 bat species were recorded along the Jacundá River basin over a 10-day expedition in November 2022. For the investigation of RABV, we used the direct fluorescent antibody test (DFAT) and the rapid fluorescent focus inhibition test (RFFIT). In total, 159 bat individuals from 22 species were investigated for RABV. Five adults of the common vampire bat, Desmodus rotundus, showed RABV-specific antibodies in serum samples. Additionally, we report on local residents with injuries caused by D. rotundus bites and the occurrence of colonies of non-hematophagous bats from different species roosting inside human residences. This scenario raises concerns about the risks of new cases of human rabies and other zoonotic diseases associated with bats in the region and highlights the need for epidemiological surveillance and mitigation measures to prevent outbreaks of emerging infectious diseases.


Subject(s)
Antibodies, Viral , Chiroptera , Disease Outbreaks , Rabies virus , Rabies , Zoonoses , Chiroptera/virology , Animals , Brazil/epidemiology , Rabies virus/immunology , Rabies virus/isolation & purification , Rabies virus/classification , Rabies/epidemiology , Rabies/veterinary , Rabies/virology , Humans , Zoonoses/epidemiology , Zoonoses/virology , Antibodies, Viral/blood , Female , Male , Adult , Middle Aged , Adolescent
12.
Nature ; 632(8023): 147-156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020173

ABSTRACT

Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.


Subject(s)
Adaptation, Physiological , Axons , Circadian Rhythm , Neurotransmitter Agents , Photoperiod , Animals , Female , Mice , Adaptation, Physiological/physiology , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Axons/metabolism , Axons/physiology , Circadian Rhythm/physiology , CLOCK Proteins/genetics , Darkness , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/metabolism , Neural Pathways/physiology , Neurotransmitter Agents/metabolism , Preoptic Area/cytology , Preoptic Area/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Rabies virus , Serotonin/metabolism , Sleep/physiology , Wakefulness/physiology
13.
Methods Mol Biol ; 2813: 1-17, 2024.
Article in English | MEDLINE | ID: mdl-38888767

ABSTRACT

Intracellular pathogens comprise a diverse group of pathogens that all share a required location in a host cell to infect, survive, and replicate. Intracellular location allows pathogens to hide from host immune responses, avoid competition with other pathogens, mediate host cellular functions, replicate safely, and cause infection that is difficult to target with therapeutics. All intracellular pathogens have varying routes of infiltration into host cells and different host cell preferences. For example, bacteria Mycobacterium tuberculosis chooses to invade antigen-presenting cells, which allows them to moderate host antigen presentation to memory cells, whereas rabies virus prefers to invade neurons because they have pre-existing innate immunity protection systems. Regardless of the pathway that each intracellular pathogen follows, all share the capacity to cause disease if they succeed in entering host cells. Here, we give an overview of selected intracellular pathogens and infections they cause, immune responses they induce, and intervention strategies used to treat and control them.


Subject(s)
Host-Pathogen Interactions , Humans , Animals , Host-Pathogen Interactions/immunology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Immunity, Innate , Rabies virus/immunology , Rabies virus/pathogenicity
14.
Viruses ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38932168

ABSTRACT

Seroprevalence of lyssaviruses in certain bat species has been proven in the Republic of Croatia, but there have been no confirmed positive bat brain isolates or human fatalities associated with bat injuries/bites. The study included a retrospective analysis of bat injuries/bites, post-exposure prophylaxis (PEP) and geographic distribution of bat injuries in persons examined at the Zagreb Antirabies Clinic, the Croatian Reference Centre for Rabies. In the period 1995-2020, we examined a total of 21,910 patients due to animal injuries, of which 71 cases were bat-related (0.32%). Of the above number of patients, 4574 received rabies PEP (20.87%). However, for bat injuries, the proportion of patients receiving PEP was significantly higher: 66 out of 71 patients (92.95%). Of these, 33 received only the rabies vaccine, while the other 33 patients received the vaccine with human rabies immunoglobulin (HRIG). In five cases, PEP was not administered, as there was no indication for treatment. Thirty-five of the injured patients were biologists or biology students (49.29%). The bat species was confirmed in only one of the exposure cases. This was a serotine bat (Eptesicus serotinus), a known carrier of Lyssavirus hamburg. The results showed that the bat bites were rather sporadic compared to other human injuries caused by animal bites. All bat injuries should be treated as if they were caused by a rabid animal, and according to WHO recommendations. People who come into contact with bats should be strongly advised to be vaccinated against rabies. Entering bat habitats should be done with caution and in accordance with current recommendations, and nationwide surveillance should be carried out by competent institutions and in close collaboration between bat experts, epidemiologists and rabies experts.


Subject(s)
Bites and Stings , Chiroptera , Post-Exposure Prophylaxis , Rabies Vaccines , Rabies , Rabies/epidemiology , Rabies/prevention & control , Chiroptera/virology , Humans , Animals , Croatia/epidemiology , Female , Bites and Stings/epidemiology , Adult , Male , Retrospective Studies , Middle Aged , Young Adult , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Adolescent , Child , Rabies virus/immunology , Rabies virus/genetics , Aged , Child, Preschool , Seroepidemiologic Studies , Lyssavirus/immunology , Lyssavirus/genetics
15.
Viruses ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38932209

ABSTRACT

A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.


Subject(s)
Intrinsically Disordered Proteins , Rabies virus , Virion , Rabies virus/physiology , Animals , Mice , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Virion/metabolism , Proteomics , Host-Pathogen Interactions , Rabies/virology , Computational Biology/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry
16.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891803

ABSTRACT

Rabies virus (RABV) is a neurotropic virus that causes fatal neurological disease, raising serious public health issues and attracting extensive attention in society. To elucidate the molecular mechanism of RABV-induced neuronal damage, we used hematoxylin-eosin staining, transmission electron microscopy, transcriptomics analysis, and immune response factor testing to investigate RABV-infected neurons. We successfully isolated the neurons from murine brains. The specificity of the isolated neurons was identified by a monoclonal antibody, and the viability of the neurons was 83.53-95.0%. We confirmed that RABV infection induced serious damage to the neurons according to histochemistry and transmission electron microscope (TEM) scanning. In addition, the transcriptomics analysis suggested that multiple genes related to the pyroptosis pathway were significantly upregulated, including gasdermin D (Gsdmd), Nlrp3, caspase-1, and IL-1ß, as well as the chemokine genes Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, and Cxcl10. We next verified this finding in the brains of mice infected with the rRC-HL, GX074, and challenge virus standard strain-24 (CVS-24) strains of RABV. Importantly, we found that the expression level of the Gsdmd protein was significantly upregulated in the neurons infected with different RABV strains and ranged from 691.1 to 5764.96 pg/mL, while the basal level of mock-infected neurons was less than 100 pg/mL. Taken together, our findings suggest that Gsdmd-induced pyroptosis is involved in the neuron damage caused by RABV infection.


Subject(s)
Neurons , Phosphate-Binding Proteins , Pyroptosis , Rabies virus , Rabies , Animals , Neurons/virology , Neurons/metabolism , Neurons/pathology , Rabies virus/pathogenicity , Rabies virus/physiology , Rabies/virology , Rabies/pathology , Rabies/metabolism , Mice , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Brain/virology , Brain/pathology , Brain/metabolism , Gasdermins
17.
Vet Microbiol ; 295: 110159, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941768

ABSTRACT

Rabies, caused by lyssavirus rabies (Rabies lyssavirus, RABV), is a fatal disease among humans and almost all warm-blooded animals. In this study, we found that RABV infection induces the up-regulation of receptor transporter protein 4 (RTP4) in mouse brains and different cells of nervous tissue. Over-expression of RTP4 reduces the viral titer of RABV in different neuronal cells. Furthermore, a recombinant RABV expressing RTP4, named rRABV-RTP4, was constructed and displayed a lower viral titer in different neuronal cells due to the expression of RTP4. Moreover, the survival rates of mice infected with rRABV-RTP4 were significantly higher than those of mice infected with parent virus rRABV or control virus rRABV-RTP4(-). In terms of mechanism, RTP4 could bind viral genomic RNA (vRNA) of RABV, and suppress the whole viral genome amplification. In addition, we found that the zinc finger domain (ZFD) of RTP4 exerts the antiviral function by truncation analysis, and an important amino acids site (C95) in the RTP4 3CxxC motif which is essential for its antiviral function was identified by mutation analysis. This study contributes to our understanding of how RTP4 or other RTP proteins play a role in defense against the invasion of RABV or other viruses.


Subject(s)
RNA, Viral , Rabies virus , Rabies , Animals , Humans , Mice , Brain/virology , Cell Line , Genome, Viral , Lyssavirus/genetics , Neurons/virology , Rabies/virology , Rabies virus/genetics , Rabies virus/physiology , Rabies virus/pathogenicity , RNA, Viral/genetics , Virus Replication
18.
Front Immunol ; 15: 1392804, 2024.
Article in English | MEDLINE | ID: mdl-38868762

ABSTRACT

Rabies virus (RABV) causes a fatal neurological disease, consisting of unsegmented negative-strand RNA, which encodes five structural proteins (3'-N-P-M-G-L-5'). Apolipoprotein D (ApoD), a lipocalin, is upregulated in the nervous system after injury or pathological changes. Few studies have focused on the role of ApoD during virus infection so far. This study demonstrated that ApoD is upregulated in the mouse brain (in vivo) and C8-D1A cells (in vitro) after RABV infection. By upregulating ApoD expression in C8-D1A cells, we found that ApoD facilitated RABV replication. Additionally, Co-immunoprecipitation demonstrated that ApoD interacted with RABV glycoprotein (G protein). The interaction could promote RABV replication by upregulating the cholesterol level. These findings revealed a novel role of ApoD in promoting RABV replication and provided a potential therapeutic target for rabies.


Subject(s)
Apolipoproteins D , Cholesterol , Rabies virus , Rabies , Virus Replication , Animals , Female , Humans , Male , Mice , Apolipoproteins D/metabolism , Apolipoproteins D/genetics , Brain/virology , Brain/metabolism , Cell Line , Cholesterol/metabolism , HEK293 Cells , Rabies/metabolism , Rabies/virology , Rabies virus/physiology , Up-Regulation
19.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Article in English | MEDLINE | ID: mdl-38836054

ABSTRACT

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Subject(s)
Glycoproteins , Rabies virus , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Rabies virus/physiology , Rabies virus/metabolism , Humans , Glycoproteins/metabolism , Glycoproteins/genetics , Oocytes/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Host-Pathogen Interactions , Protein Binding , Rabies/metabolism , Rabies/virology , Acetylcholine/metabolism , Acetylcholine/pharmacology , Neurotoxins/metabolism , Neurotoxins/pharmacology
20.
EMBO Mol Med ; 16(6): 1451-1483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750307

ABSTRACT

Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.


Subject(s)
Viral Vaccines , Animals , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Micelles , Adjuvants, Vaccine/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Antibodies, Viral/immunology , Rabies virus/immunology , Dendritic Cells/immunology , Polymers/chemistry , Female , Mice, Inbred C57BL , Influenza A virus/immunology , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL