Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.044
Filter
1.
Biochem Biophys Res Commun ; 724: 150226, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865815

ABSTRACT

In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Radiation-Protective Agents , Taurochenodeoxycholic Acid , Animals , Taurochenodeoxycholic Acid/pharmacology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Radiation-Protective Agents/pharmacology , Mice , Male , Intestines/radiation effects , Intestines/drug effects , Intestines/pathology , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/metabolism , Matrix Metalloproteinase 13/metabolism , Cell Proliferation/drug effects , Cell Proliferation/radiation effects
2.
BMC Cardiovasc Disord ; 24(1): 323, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918713

ABSTRACT

BACKGROUND: Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS: 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS: The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION: In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.


Subject(s)
Apoptosis , Autophagy , Dexmedetomidine , Myocytes, Cardiac , Radiation Injuries, Experimental , Animals , Autophagy/drug effects , Autophagy/radiation effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/radiation effects , Myocytes, Cardiac/metabolism , Apoptosis/drug effects , Male , Dexmedetomidine/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/drug therapy , Radiation-Protective Agents/pharmacology , Disease Models, Animal , Signal Transduction/drug effects , Mice , Autophagy-Related Proteins/metabolism , Mice, Inbred C57BL , Apoptosis Regulatory Proteins/metabolism
3.
Microbiol Res ; 286: 127821, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941923

ABSTRACT

Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy. In this study, we investigated the potential protective effect of Lactobacillus rhamnosus GG (LGG) on radiation-induced intestinal injury and its underlying mechanisms. Mice were assigned to a control group, a 10 Gy total abdominal irradiation (TAI) group, or a group pretreated with 108 CFU LGG for three days before TAI. Small intestine and gut microbiota were analyzed 3.5 days post-exposure. LGG intervention improved intestinal structure, reduced jejunal DNA damage, and inhibited the inflammatory cGAS/STING pathway. Furthermore, LGG reduced M1 proinflammatory macrophage and CD8+ T cell infiltration, restoring the balance between Th17 and Treg cells in the inflamed jejunum. LGG also partially restored the gut microbiota. These findings suggest the possible therapeutic radioprotective effect of probiotics LGG in alleviating radiation-induced intestinal injury by maintaining immune homeostasis and reshaping gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Mice, Inbred C57BL , Probiotics , Animals , Gastrointestinal Microbiome/radiation effects , Mice , Probiotics/administration & dosage , Radiation Injuries/immunology , Macrophages/immunology , Intestines/microbiology , Intestines/radiation effects , Intestines/immunology , DNA Damage , CD8-Positive T-Lymphocytes/immunology , Membrane Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , Male , Th17 Cells/immunology , Jejunum/radiation effects , Jejunum/immunology , Jejunum/microbiology , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiation Injuries, Experimental/immunology , Radiation Injuries, Experimental/prevention & control , Nucleotidyltransferases
4.
Toxicol Appl Pharmacol ; 489: 116994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857790

ABSTRACT

Radiation-induced cognitive impairment has recently fueled scientific interest with an increasing prevalence of cancer patients requiring whole brain irradiation (WBI) in their treatment algorithm. Saxagliptin (SAXA), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, has exhibited competent neuroprotective effects against varied neurodegenerative disorders. Hence, this study aimed at examining the efficacy of SAXA in alleviating WBI-induced cognitive deficits. Male Sprague Dawley rats were distributed into control group, WBI group exposed to 20 Gy ϒ-radiation, SAXA group treated for three weeks with SAXA (10 mg/kg. orally, once daily), and WBI/SAXA group exposed to 20 Gy ϒ-radiation then treated with SAXA (10 mg/kg. orally, once daily). SAXA effectively reversed memory deterioration and motor dysfunction induced by 20 Gy WBI during behavioural tests and preserved normal histological architecture of the hippocampal tissues of irradiated rats. Mechanistically, SAXA inhibited WBI-induced hippocampal oxidative stress via decreasing lipid peroxidation while restoring catalase antioxidant activity. Moreover, SAXA abrogated radiation-induced hippocampal neuronal apoptosis through downregulating proapoptotic Bcl-2 Associated X-protein (Bax) and upregulating antiapoptotic B-cell lymphoma 2 (Bcl-2) expressions and eventually diminishing expression of cleaved caspase 3. Furthermore, SAXA boosted hippocampal neurogenesis by upregulating brain-derived neurotrophic factor (BDNF) expression. These valuable neuroprotective capabilities of SAXA were linked to activating protein kinase B (Akt), and cAMP-response element-binding protein (CREB) along with elevating the expression of sirtuin 1 (SIRT-1). SAXA successfully mitigated cognitive dysfunction triggered by WBI, attenuated oxidative injury, and neuronal apoptosis, and enhanced neurogenesis through switching on Akt/CREB/BDNF/SIRT-1 signaling axes. Such fruitful neurorestorative effects of SAXA provide an innovative therapeutic strategy for improving the cognitive capacity of cancer patients exposed to radiotherapy.


Subject(s)
Adamantane , Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Cyclic AMP Response Element-Binding Protein , Dipeptides , Neuroprotective Agents , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Brain-Derived Neurotrophic Factor/metabolism , Male , Sirtuin 1/metabolism , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dipeptides/pharmacology , Rats , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Adamantane/analogs & derivatives , Adamantane/pharmacology , Hippocampus/drug effects , Hippocampus/radiation effects , Hippocampus/metabolism , Hippocampus/pathology , Apoptosis/drug effects , Apoptosis/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Cranial Irradiation/adverse effects , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Behavior, Animal/drug effects , Behavior, Animal/radiation effects
5.
J Am Heart Assoc ; 13(13): e033558, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904226

ABSTRACT

BACKGROUND: The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. We examined whether irradiation causes chronic vascular injury and whether short-term administration of statins during and after irradiation is sufficient to prevent chronic injury compared with long-term administration. METHODS AND RESULTS: C57Bl/6 mice were pretreated with pravastatin for 72 hours and then exposed to 12 Gy X-ray head-and-neck irradiation. Pravastatin was then administered either for an additional 24 hours or for 1 year. Carotid arteries were tested for vascular reactivity, altered gene expression, and collagen deposition 1 year after irradiation. Treatment with pravastatin for 24 hours after irradiation reduced the loss of endothelium-dependent vasorelaxation and protected against enhanced vasoconstriction. Expression of markers associated with inflammation (NFκB p65 [phospho-nuclear factor kappa B p65] and TNF-α [tumor necrosis factor alpha]) and with oxidative stress (NADPH oxidases 2 and 4) were lowered and subunits of the voltage and Ca2+ activated K+ BK channel (potassium calcium-activated channel subfamily M alpha 1 and potassium calcium-activated channel subfamily M regulatory beta subunit 1) in the carotid artery were modulated. Treatment with pravastatin for 1 year after irradiation completely reversed irradiation-induced changes. CONCLUSIONS: Short-term administration of pravastatin is sufficient to reduce chronic vascular injury at 1 year after irradiation. Long-term administration eliminates the effects of irradiation. These findings suggest that a prospective treatment strategy involving statins could be effective in patients undergoing radiation therapy. The optimal duration of treatment in humans has yet to be determined.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice, Inbred C57BL , Oxidative Stress , Pravastatin , Animals , Pravastatin/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Time Factors , Vasoconstriction/drug effects , Vasoconstriction/radiation effects , Vasodilation/drug effects , Vasodilation/radiation effects , Male , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Tumor Necrosis Factor-alpha/metabolism , Transcription Factor RelA/metabolism , NADPH Oxidases/metabolism , Mice , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/drug therapy , Drug Administration Schedule , Carotid Arteries/radiation effects , Carotid Arteries/drug effects , Chronic Disease , Disease Models, Animal , NADPH Oxidase 4
6.
Sci Rep ; 14(1): 13315, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858439

ABSTRACT

Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.


Subject(s)
Dietary Supplements , Radiation-Protective Agents , Animals , Radiation-Protective Agents/pharmacology , Vitamin E/pharmacology , Vitamin E/analogs & derivatives , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Chromans/pharmacology , Male , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Macaca mulatta , Liver/drug effects , Liver/radiation effects , Liver/pathology
7.
Biomed Pharmacother ; 177: 116978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906028

ABSTRACT

Radiation-induced brain injury (RIBI) is a significant challenge in radiotherapy for head and neck tumors, impacting patients' quality of life. In exploring potential treatments, this study focuses on memantine hydrochloride and hydrogen-rich water, hypothesized to mitigate RIBI through inhibiting the NLRP3/NLRC4/Caspase-1 pathway. In a controlled study involving 40 Sprague-Dawley rats, divided into five groups including a control and various treatment groups, we assessed the effects of these treatments on RIBI. Post-irradiation, all irradiated groups displayed symptoms like weight loss and salivation, with notable variations among different treatment approaches. Particularly, hydrogen-rich water showed a promising reduction in these symptoms. Histopathological analysis indicated substantial hippocampal damage in the radiation-only group, while the groups receiving memantine and/or hydrogen-rich water exhibited significant mitigation of such damage. Molecular studies, revealed a decrease in oxidative stress markers and an attenuated inflammatory response in the treatment groups. Immunohistochemistry further confirmed these molecular changes, suggesting the effectiveness of these agents. Echoing recent scientific inquiries into the protective roles of specific compounds against radiation-induced damages, our study adds to the growing body of evidence on the potential of memantine and hydrogen-rich water as novel therapeutic strategies for RIBI.


Subject(s)
Caspase 1 , Hydrogen , Memantine , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Rats, Sprague-Dawley , Water , Animals , Memantine/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hydrogen/pharmacology , Pyroptosis/drug effects , Rats , Caspase 1/metabolism , Male , Signal Transduction/drug effects , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/drug therapy , Brain Injuries/prevention & control , Brain Injuries/pathology , Radiation Injuries/drug therapy , Radiation Injuries/metabolism , Radiation Injuries/pathology , Oxidative Stress/drug effects , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/prevention & control
8.
J Obstet Gynaecol Res ; 50(7): 1242-1249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757238

ABSTRACT

AIM: This study focused on the anti-oxidant and anti-apoptotic effects of CoQ10 in ovaries exposed to pelvic radiation. METHODS: Thirty-two female rats were randomly assigned into four groups. Group I (control group), Group II: Only 2 Gy pelvic x-ray irradiation (IR) was administered as a single fractioned dose. Group III: 30 mg/kg CoQ10 was administered by oral gavage +2 Gy pelvic IR. Group IV: 150 mg/kg CoQ10 was administered by oral gavage +2 Gy pelvic IR. CoQ10 treatment was started 7 days before pelvic IR and completed 7 days later. The rats in Group III and IV were treated with CoQ10 for a total of 14 days. RESULTS: Histopathological analysis showed severe damage to the ovarian tissue in the radiation group, while both doses of CoQ10 showed normal histological structure. Likewise, while there was a high level of staining in the IR group for necrosis and apoptosis, the CoQ10 treated ones were like the control group. Tissue Malondialdehyde (MDA) levels were like the control group in the low-dose CoQ10 group, while the MDA levels of the high dose CoQ10 group were similar to the radiation group. CONCLUSION: Usage of low-dose CoQ10 has a radioprotective effect on radiation-induced ovarian damage. Although the use of high doses is morphologically radioprotective, no antioxidative effect was observed in the biochemical evaluation.


Subject(s)
Ovary , Radiation-Protective Agents , Ubiquinone , Female , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/administration & dosage , Animals , Rats , Ovary/drug effects , Ovary/radiation effects , Ovary/pathology , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , X-Rays/adverse effects , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/drug therapy , Antioxidants/pharmacology , Rats, Wistar , Apoptosis/drug effects , Apoptosis/radiation effects , Radiation Injuries/prevention & control , Radiation Injuries/drug therapy
9.
Immunology ; 172(4): 614-626, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38685744

ABSTRACT

Ionising radiation exposure can lead to acute haematopoietic radiation syndrome. Despite significant advancements in the field of radioprotection, no drugs with high efficacy and low toxicity have yet been approved by the Food and Drug Administration. FG-4592, as a proline hydroxylase inhibitor, may play an important role in radioprotection of the haematopoietic system. Mice were peritoneal injected with FG-4592 or normal saline. After irradiation, the survival time, body weight, peripheral blood cell and bone marrow cell (BMC) count, cell apoptosis, pathology were analysed and RNA-sequence technique (RNA-Seq) was conducted to explore the mechanism of FG-4592 in the haematopoietic system. Our results indicated that FG-4592 improved the survival rate and weight of irradiated mice and protected the spleen, thymus and bone marrow from IR-induced injury. The number of BMCs was increased and protected against IR-induced apoptosis. FG-4592 also promoted the recovery of the blood system and erythroid differentiation. The results of RNA-Seq and Western blot showed that the NF-κB signalling pathway and hypoxia-inducible factor-1 (HIF-1) signalling pathway were upregulated by FG-4592. Meanwhile, RT-PCR results showed that FG-4592 could promote inflammatory response significantly. FG-4592 exhibited radioprotective effects in the haematopoietic system by promoting inflammatory response and targeting the NF-κB, HIF signalling pathway.


Subject(s)
Apoptosis , Radiation, Ionizing , Radiation-Protective Agents , Animals , Mice , Radiation-Protective Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Male , Mice, Inbred C57BL , Hematopoietic System/drug effects , Hematopoietic System/radiation effects , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/drug therapy , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/metabolism , Whole-Body Irradiation , Glycine/analogs & derivatives , Isoquinolines
10.
Curr Radiopharm ; 17(3): 238-246, 2024.
Article in English | MEDLINE | ID: mdl-38314599

ABSTRACT

BACKGROUND: Radiation exposure poses a significant threat to reproductive health, particularly the male reproductive system. The testes, being highly sensitive to radiation, are susceptible to damage that can impair fertility and overall reproductive function. The study aims to investigate the radioprotective effects of apigenin on the testis through histopathological evaluation. MATERIALS AND METHODS: This research involved utilizing a total of 40 mice, which were randomly divided into eight groups of five mice each. The groups were categorized as follows: A) negative control group, B, C, and D) administration of apigenin at three different doses (0.3 mg/kg, 0.6 mg/kg, and 1.2 mg/kg) respectively, E) irradiation group, and F, H, and I) administration of apigenin at three different doses (0.3 mg/kg, 0.6 mg/kg, and 1.2 mg/kg) in combination with irradiation. The irradiation procedure involved exposing the mice to a 2Gy X-ray throughout their entire bodies. Subsequently, histopathological assessments were conducted seven days after the irradiation process. RESULTS: The findings indicated that radiation exposure significantly impacted the spermatogenesis system. This research provides evidence that administering apigenin to mice before ionizing radiation effectively mitigated the harmful effects on the testes. Apigenin demonstrated radioprotective properties, positively influencing various parameters, including the spermatogenesis process and the presence of inflammatory cells within the tubular spaces. CONCLUSION: Apigenin can provide effective protection for spermatogenesis, minimize the adverse effects of ionizing radiation, and safeguard normal tissues.


Subject(s)
Apigenin , Radiation-Protective Agents , Testis , Animals , Apigenin/pharmacology , Male , Mice , Testis/drug effects , Testis/pathology , Testis/radiation effects , Radiation-Protective Agents/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Spermatogenesis/drug effects , Spermatogenesis/radiation effects
11.
Int J Radiat Oncol Biol Phys ; 119(4): 1234-1247, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38364948

ABSTRACT

PURPOSE: Studies during the past 9 years suggest that delivering radiation at dose rates exceeding 40 Gy/s, known as "FLASH" radiation therapy, enhances the therapeutic index of radiation therapy (RT) by decreasing normal tissue damage while maintaining tumor response compared with conventional (or standard) RT. This study demonstrates the cardioprotective benefits of FLASH proton RT (F-PRT) compared with standard (conventional) proton RT (S-PRT), as evidenced by reduced acute and chronic cardiac toxicities. METHODS AND MATERIALS: Mice were imaged using cone beam computed tomography to precisely determine the heart's apex as the beam isocenter. Irradiation was conducted using a shoot-through technique with a 5-mm diameter circular collimator. Bulk RNA-sequencing was performed on nonirradiated samples, as well as apexes treated with F-PRT or S-PRT, at 2 weeks after a single 40 Gy dose. Inflammatory responses were assessed through multiplex cytokine/chemokine microbead assay and immunofluorescence analyses. Levels of perivascular fibrosis were quantified using Masson's Trichrome and Picrosirius red staining. Additionally, cardiac tissue functionality was evaluated by 2-dimensional echocardiograms at 8- and 30-weeks post-PRT. RESULTS: Radiation damage was specifically localized to the heart's apex. RNA profiling of cardiac tissues treated with PRT revealed that S-PRT uniquely upregulated pathways associated with DNA damage response, induction of tumor necrosis factor superfamily, and inflammatory response, and F-PRT primarily affected cytoplasmic translation, mitochondrion organization, and adenosine triphosphate synthesis. Notably, F-PRT led to a milder inflammatory response, accompanied by significantly attenuated changes in transforming growth factor ß1 and α smooth muscle actin levels. Critically, F-PRT decreased collagen deposition and better preserved cardiac functionality compared with S-PRT. CONCLUSIONS: This study demonstrated that F-PRT reduces the induction of an inflammatory environment with lower expression of inflammatory cytokines and profibrotic factors. Importantly, the results indicate that F-PRT better preserves cardiac functionality, as confirmed by echocardiography analysis, while also mitigating the development of long-term fibrosis.


Subject(s)
Fibrosis , Heart Diseases , Inflammation , Proton Therapy , Animals , Proton Therapy/adverse effects , Mice , Inflammation/etiology , Inflammation/radiotherapy , Heart Diseases/etiology , Heart Diseases/prevention & control , Heart Diseases/diagnostic imaging , Heart Diseases/radiotherapy , Heart/radiation effects , Disease Models, Animal , Mice, Inbred C57BL , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Male , Radiation Injuries/prevention & control
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5193-5205, 2024 07.
Article in English | MEDLINE | ID: mdl-38252300

ABSTRACT

Perturbations produced by ionizing radiation on intestinal tissue are considered one of highly drastic challenges in radiotherapy. Animals were randomized into five groups. The first group was allocated as control, and the second was subjected to whole body γ-irradiation (10 Gy). The third was administered HA NP (17.6 mg/kg/day; i.p.) and then irradiated. The fourth one received MitoQ (2 mg/kg/day; i.p.) and then irradiated. The last group received MitoQ/HA NP (2 mg/kg/day; i.p.) for 5 days prior to irradiation. Mice were sacrificed a week post-γ-irradiation for evaluation. MitoQ/HA NP ameliorated mitochondrial oxidative stress as indicated by rising (TAC) and glutathione peroxidase and decreasing malondialdehyde, showing its distinguished antioxidant yield. That impacted the attenuation of apoptosis, which was revealed by the restoration of the anti-apoptotic marker and lessening proapoptotic caspase-3. Inflammatory parameters dwindled via treatment with MitoQ/HA NP. Moreover, this new NP exerts its therapeutic action through a distinguished radioprotective pathway (Hmgb1/TLR-4.) Subsequently, these antioxidants and their nanoparticles conferred protection to intestinal tissue as manifested by histopathological examination. These findings would be associated with its eminent antioxidant potential through high mitochondria targeting, enhanced cellular uptake, and ROS scavenging. This research underlines MitoQ/HA NP as a new treatment for the modulation of intestinal damage caused by radiotherapy modalities.


Subject(s)
Antioxidants , Apoptosis , Gamma Rays , Hyaluronic Acid , Organophosphorus Compounds , Oxidative Stress , Radiation-Protective Agents , Ubiquinone , Animals , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Gamma Rays/adverse effects , Mice , Organophosphorus Compounds/pharmacology , Male , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Antioxidants/pharmacology , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Hyaluronic Acid/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/metabolism , Nanoparticles , Intestines/drug effects , Intestines/radiation effects , Intestines/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/radiation effects
13.
Curr Radiopharm ; 17(3): 257-265, 2024.
Article in English | MEDLINE | ID: mdl-38204264

ABSTRACT

BACKGROUND: Radiation exposure has been linked to the development of brain damage and cognitive impairment, but the protective effect and mechanism of Lycium barbarum pills (LBP) on radiation-induced neurological damage remains to be clarified. METHODS: Behavioral tests and immunohistochemical studies were conducted to evaluate the protective effects of LBP extract (10 g/kg orally daily for 4 weeks) against radiation-induced damage on neurogenesis and cognitive function in Balb/c mice exposed to 5.5 Gy X-ray acute radiation. RESULTS: The results showed that the LBP extract significantly improved body weight loss, locomotor activity and spatial learning and memory. Immunohistochemical tests revealed that the LBP extract prevented the loss of proliferating cells, newly generated neurons and interneurons, especially in the subgranular area of the dentate gyrus. CONCLUSION: The findings suggest that LBP is a potential neuroprotective drug for mitigating radiation-induced neuropsychological disorders.


Subject(s)
Cognition , Mice, Inbred BALB C , Neurogenesis , Radiation-Protective Agents , Animals , Neurogenesis/drug effects , Neurogenesis/radiation effects , Mice , Cognition/drug effects , Cognition/radiation effects , Radiation-Protective Agents/pharmacology , Male , Radiation Injuries, Experimental/prevention & control , Radiation Exposure , Drugs, Chinese Herbal/pharmacology , Neuroprotective Agents/pharmacology , Lycium
14.
Curr Radiopharm ; 17(2): 200-208, 2024.
Article in English | MEDLINE | ID: mdl-38231059

ABSTRACT

BACKGROUND: The modern world faces a growing concern about the possibility of accidental radiation events. The Hematopoietic system is particularly vulnerable to radiationinduced apoptosis, which can lead to death. Metformin, a drug used to treat diabetes, has been shown to protect normal cells and tissues from the toxic effects of radiation. This study aimed to evaluate the effectiveness of metformin in mitigating radiation injury to the gastrointestinal and hematological systems of rats. MATERIALS AND METHODS: The study involved 73 male rats. After total body irradiation with 7.5 Gy of X-rays, rats were treated with metformin. Seven days later, the rats were sacrificed and blood samples were taken for evaluation. RESULTS: The study found that metformin was not effective in mitigating radiation injury. The histopathological assessment showed no significant changes in goblet cell injury, villi shortening, inflammation, or mucous layer thickness. In terms of biochemical evaluation, metformin did not significantly affect oxidative stress markers, but irradiation increased the mean MDA level in the radiation group. The complete blood count revealed a significant decrease in WBC and platelet, counts in the radiation group compared to the control group, but no significant difference was found between the radiation and radiation + metformin groups. CONCLUSION: In conclusion, metformin may not be a good option for reducing radiation toxicity after accidental exposure. Despite treatment, there was no improvement in platelet, white blood cell, and lymphocyte counts, nor was there any decrease in oxidative stress. Further research is needed to explore other potential treatments for radiation injury.


Subject(s)
Metformin , Oxidative Stress , Radiation Injuries, Experimental , Whole-Body Irradiation , Animals , Metformin/pharmacology , Rats , Male , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/prevention & control , Hematopoietic System/drug effects , Hematopoietic System/radiation effects , Gastrointestinal Tract/radiation effects , Gastrointestinal Tract/drug effects , Radiation-Protective Agents/pharmacology , X-Rays
15.
Biomed Pharmacother ; 163: 114808, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37146417

ABSTRACT

Radiotherapy is a prevalent treatment modality for thoracic tumors; however, it can lead to radiation-induced lung injury (RILI), which currently lacks effective interventions. ACT001, a prodrug of micheliolide, has demonstrated promising clinical application potential, yet its impact on RILI requires further validation. This study aims to investigate the radioprotective effects of ACT001 on RILI and elucidate its underlying mechanism. Sprague-Dawley rats were utilized to induce RILI following 20 Gy X-ray chest irradiation, and lung tissue inflammation and fibrosis were assessed using hematoxylin and eosin (H&E) and Masson staining. Lung injury, inflammation, and oxidative stress markers were evaluated employing commercial kits. Pyroptosis-related differentially expressed genes (DEGs) were analyzed using a microarray dataset from the Gene Expression Omnibus (GEO) database, and their functions and hub genes were identified through protein-protein interaction networks. Pyroptosis-related genes were detected via RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. The results demonstrated that ACT001 ameliorated RILI, diminished pro-inflammatory cytokine release and fibrosis, and mitigated the activation of the NLRP3 inflammasome while inhibiting pyroptosis in lung tissue. In conclusion, our study reveals that ACT001 can suppress NLRP3 inflammasome-mediated pyroptosis and improve RILI, suggesting its potential as a novel protective agent for RILI.


Subject(s)
Lung Injury , Radiation Injuries, Experimental , Rats , Animals , Lung Injury/drug therapy , Lung Injury/prevention & control , Lung Injury/pathology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/prevention & control , X-Rays , Inflammation
16.
J Ethnopharmacol ; 311: 116428, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36997130

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. AIM OF THE STUDY: To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. MATERIALS AND METHODS: The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. RESULTS: TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. CONCLUSION: Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.


Subject(s)
Colonic Neoplasms , Radiation Injuries, Experimental , Humans , Animals , Mice , Antioxidants/pharmacology , NF-E2-Related Factor 2 , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/prevention & control , Apoptosis , Diarrhea , Abdominal Pain
17.
Int J Radiat Biol ; 99(7): 1119-1129, 2023.
Article in English | MEDLINE | ID: mdl-36794325

ABSTRACT

PURPOSE: To test IPW-5371 for the mitigation of the delayed effects of acute radiation exposure (DEARE). Survivors of acute radiation exposure are at risk for developing delayed multi-organ toxicities; however, there are no FDA-approved medical countermeasures (MCM) to mitigate DEARE. METHODS: WAG/RijCmcr female rat model of partial-body irradiation (PBI), by shielding part of one hind leg, was used to test IPW-5371 (7 and 20 mg kg-1 d-1) for mitigation of lung and kidney DEARE when started 15 d after PBI. Rats were fed known amounts of IPW-5371 using a syringe, instead of delivery by daily oral gavage, sparing exacerbation of esophageal injury by radiation. The primary endpoint, all-cause morbidity was assessed over 215 d. Secondary endpoints: body weight, breathing rate and blood urea nitrogen were also assessed. RESULTS: IPW-5371 enhanced survival (primary endpoint) as well as attenuated secondary endpoints of lung and kidney injuries by radiation. CONCLUSION: To provide a window for dosimetry and triage, as well as avoid oral delivery during the acute radiation syndrome (ARS), the drug regimen was started at 15 d after 13.5 Gy PBI. The experimental design to test mitigation of DEARE was customized for translation in humans, using an animal model of radiation that was designed to simulate a radiologic attack or accident. The results support advanced development of IPW-5371 to mitigate lethal lung and kidney injuries after irradiation of multiple organs.


Subject(s)
Acute Radiation Syndrome , Radiation Injuries, Experimental , Humans , Rats , Female , Animals , Radiation Injuries, Experimental/prevention & control , Bone Marrow/radiation effects , Radiation Dosage , Lung/radiation effects
18.
Int J Radiat Biol ; 99(2): 259-269, 2023.
Article in English | MEDLINE | ID: mdl-35583501

ABSTRACT

PURPOSE: With the development of nuclear technology and radiotherapy, the risk of radiation injury has been increasing. Therefore, it is important to find an effective radiation-protective agent. In this study, we designed and synthesized a novel compound called compound 8, of which the radioprotective effect and mechanism were studied. MATERIALS AND METHODS: Before being exposed to ionizing radiation, mice were pretreated with compound 8. The 30-day mortality assay, hematoxylin-eosin staining, and immunohistochemistry staining assay were performed to evaluate the anti-radiation effect of the compound 8. TUNEL and immunofluorescence assays were conducted to study the anti-radiation mechanism of compound 8. RESULTS: Compared to the IR + vehicle group, the 30-day survival rate of mice treated with 25 mg/kg of compound 8 was significantly improved after 8 Gy total body irradiation. In the morphological study of the small intestine, we found that compound 8 could maintain crypt-villus structures in the irradiated mice. Further immunohistochemical staining displayed that compound 8 could improve the survival of Lgr5+ cells, ki67+ cells, and lysozyme+ cells. The results of TUNEL and immunofluorescence assays showed that compound 8 could decrease the expression of apoptosis-related caspase-8/-9, γ-H2AX, Bax, and p53. CONCLUSIONS: These results indicate that compound 8 exerts its effects by maintaining structure and function of small intestine. It also reduces DNA damage, promotes crypt proliferation and differentiation. Moreover, it may enhance the anti-apoptotic ability of small intestinal tissue by inhibiting the activation of p53 and blocking the caspase cascade reaction. Compound 8 can protect the intestinal tract from post-radiation damage, it is thus a new and effective protective agent of radiation.


Subject(s)
Radiation Injuries, Experimental , Radiation-Protective Agents , Mice , Animals , Tumor Suppressor Protein p53/metabolism , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/metabolism , Intestine, Small , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Radiation, Ionizing , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Apoptosis/radiation effects , Mice, Inbred C57BL
19.
Front Immunol ; 13: 927213, 2022.
Article in English | MEDLINE | ID: mdl-36110845

ABSTRACT

Recently, Toll-like receptors (TLRs) have been extensively studied in radiation damage, but the inherent defects of high toxicity and low efficacy of most TLR ligands limit their further clinical transformation. CRX-527, as a TLR4 ligand, has rarely been reported to protect against radiation. We demonstrated that CRX-527 was safer than LPS at the same dose in vivo and had almost no toxic effect in vitro. Administration of CRX-527 improved the survival rate of total body irradiation (TBI) to 100% in wild-type mice but not in TLR4-/- mice. After TBI, hematopoietic system damage was significantly alleviated, and the recovery period was accelerated in CRX-527-treated mice. Moreover, CRX-527 induced differentiation of HSCs and the stimulation of CRX-527 significantly increased the proportion and number of LSK cells and promoted their differentiation into macrophages, activating immune defense. Furthermore, we proposed an immune defense role for hematopoietic differentiation in the protection against intestinal radiation damage, and confirmed that macrophages invaded the intestines through peripheral blood to protect them from radiation damage. Meanwhile, CRX-527 maintained intestinal function and homeostasis, promoted the regeneration of intestinal stem cells, and protected intestinal injury from lethal dose irradiation. Furthermore, After the use of mice, we found that CRX-527 had no significant protective effect on the hematopoietic and intestinal systems of irradiated TLR4-/- mice. in conclusion, CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage.


Subject(s)
Hematopoietic Stem Cells , Organophosphorus Compounds , Radiation Injuries, Experimental , Toll-Like Receptor 4 , Animals , Apoptosis , Cell Differentiation , Glucosamine/analogs & derivatives , Glucosamine/pharmacology , Hematopoietic Stem Cells/cytology , Intestinal Mucosa , Ligands , Lipopolysaccharides/pharmacology , Mice , Organophosphorus Compounds/pharmacology , Radiation Injuries, Experimental/prevention & control , Toll-Like Receptor 4/genetics
20.
Biochem Biophys Res Commun ; 595: 7-13, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35091109

ABSTRACT

The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-ß mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.


Subject(s)
Ferroptosis/physiology , Intestines/pathology , Quinoxalines/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation, Ionizing , Spiro Compounds/pharmacology , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Ferroptosis/drug effects , Ferroptosis/radiation effects , Gene Expression/drug effects , Gene Expression/radiation effects , Glutathione/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/radiation effects , Intestines/drug effects , Intestines/radiation effects , Male , Malondialdehyde/metabolism , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/radiation effects , Mitochondria/ultrastructure , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/physiopathology , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL