Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 584
Filter
1.
Virol J ; 21(1): 242, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358760

ABSTRACT

Rotavirus group C is an important cause of sporadic cases and outbreaks of gastroenteritis worldwide. Whole-Genome sequences of human rotavirus C (RVC) in public databases are limited. We performed genome sequencing to analyze a RVC outbreak of acute gastroenteritis in China. Samples from 22 patients were screened for pathogens using RT-PCR, and six samples were positive for rotavirus. Whole-Genome sequencing analysis showed that the outbreak strain SJZ217 belongs to the G4-P[2]-I2-R2-C2-M3-A2-N2-T2-E2-H2 genotype and shares almost identical genomic sequences with Chungnam isolated in Korea. Phylogenetic analysis revealed strain SJZ217 also fell into a cluster with rotavirus C strains from Japan and Europe. Reassortment in the VP4 fragment was observed. These results helped to understand the genetic diversity and possible spread of RVC strains.


Subject(s)
Disease Outbreaks , Gastroenteritis , Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , China/epidemiology , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Male , Child, Preschool , RNA, Viral/genetics , Whole Genome Sequencing , Female , Sequence Analysis, DNA , Infant , Genetic Variation , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Cluster Analysis
2.
Emerg Microbes Infect ; 13(1): 2398641, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39248597

ABSTRACT

The emergence of novel avian influenza reassortants in wild birds in recent years is a public health concern. However, the viruses that circulate in migratory birds are not fully understood. In this study, we summarized and categorized global H11 avian influenza viruses and reported that waterfowl and shorebirds are the major reservoirs of the identified H11 viruses. The surveillance data of the 35,749 faecal samples collected from wild bird habitats in eastern China over the past seven years revealed a low prevalence of H11 viruses in birds, with a positive rate of 0.067% (24 isolates). The phylogenetic analysis of the twenty viruses indicated that H11 viruses have undergone complex reassortment with viruses circulating in waterfowl and shorebirds. These tested viruses do not acquire mammalian adaptive mutations in their genomes and preferentially bind to avian-type receptors. Experimental infection studies demonstrated that the two tested H11N9 viruses of wild bird origin replicated and transmitted more efficiently in ducks than in chickens, whereas the pigeon H11N2 virus isolated from a live poultry market was more adapted to replicate in chickens than in ducks. In addition, some H11 isolates replicated efficiently in mice and caused body weight loss but were not lethal. Our study revealed the role of waterfowl and shorebirds in the ecology and evolution of H11 viruses and the potential risk of introducing circulating H11 viruses into ducks or chickens, further emphasizing the importance of avian influenza surveillance at the interface of migratory birds and poultry.


Subject(s)
Animal Migration , Animals, Wild , Birds , Columbidae , Influenza A virus , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Columbidae/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza A virus/physiology , Birds/virology , China/epidemiology , Animals, Wild/virology , Mice , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Ducks/virology , Evolution, Molecular , Feces/virology , Chickens/virology , Virus Replication
3.
Sci Rep ; 14(1): 19887, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39191841

ABSTRACT

Mammalian orthoreoviruses (MRVs), belonging to the genus Orthoreovirus in the family Spinareoviridae, possess a double-stranded RNA segmented genome. Due to the segmented nature of their genome, MRVs are prone to gene reassortment, which allows for evolutionary diversification. Recently, a genotyping system for each MRV gene segment was proposed based on nucleotide differences. In the present study, MRVs were isolated from the fecal samples of Japanese Black cattle kept on a farm in Japan. Complete genome sequencing and analysis of 41 MRV isolates revealed that these MRVs shared almost identical sequences in the L1, L2, L3, S3, and S4 gene segments, while two different sequences were found in the S1, M1, M2, M3, and S2 gene segments. By plaque cloning, at least six genetic constellation patterns were identified, indicating the occurrence of multiple inter- (S1 and M2) and intra- (M1, M3, and S2) reassortment events. This paper represents the first report describing multiple reassortant MRVs on a single cattle farm. These MRV gene segments exhibited sequence similarity to those of MRVs isolated from cattle in the U.S. and China, rather than to MRVs previously isolated in Japan. Genotypes consisting solely of bovine MRVs were observed in the L1, M1, and M2 segments, suggesting that they might have evolved within the cattle population.


Subject(s)
Farms , Genome, Viral , Genotype , Orthoreovirus, Mammalian , Phylogeny , Reassortant Viruses , Animals , Cattle , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Japan , Orthoreovirus, Mammalian/genetics , Orthoreovirus, Mammalian/isolation & purification , Orthoreovirus, Mammalian/classification , Cattle Diseases/virology , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Feces/virology
4.
Viruses ; 16(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39205247

ABSTRACT

In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all family members suggested recent exposure to arthropod-borne viruses. Dengue virus 1 (Genus Orthoflavivirus) was isolated (isolate no. SA397) from the serum of the 45-year-old female via intracerebral injection in neonatal mice and subsequent passage in VeroE6 cells. Phylogenetic analysis of this strain indicated close genetic identity with cosmopolitan genotype 1 DENV1 strains from Southeast Asia, assigned to major lineage K, minor lineage 1 (DENV1I_K.1), such as GZ8H (99.92%) collected in November 2018 from China, and DV1I-TM19-74 isolate (99.72%) identified in Bangkok, Thailand, in 2019. Serum samples from the 46-year-old male yielded a virus isolate that could not be confirmed as DENV1, prompting unbiased metagenomic sequencing for virus identification and characterization. Illumina sequencing identified multiple segments of a mammalian orthoreovirus (MRV), designated as Human/SA395/SA/2017. Genomic and phylogenetic analyses classified Human/SA395/SA/2017 as MRV-3 and assigned a tentative genotype, MRV-3d, based on the S1 segment. Genomic analyses suggested that Human/SA395/SA/2017 may have originated from reassortments of segments among swine, bat, and human MRVs. The closest identity of the viral attachment protein σ1 (S1) was related to a human isolate identified from Tahiti, French Polynesia, in 1960. This indicates ongoing circulation and co-circulation of Southeast Asian and Polynesian strains, but detailed knowledge is hampered by the limited availability of genomic surveillance. This case represents the rare concurrent detection of two distinct viruses with different transmission routes in the same family with similar clinical presentations. It highlights the complexity of diagnosing diseases with similar sequelae in travelers returning from tropical areas.


Subject(s)
Dengue Virus , Dengue , Phylogeny , Reassortant Viruses , Animals , Child , Female , Humans , Male , Mice , Middle Aged , Dengue/virology , Dengue/epidemiology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Genome, Viral , Genotype , Orthoreovirus, Mammalian/genetics , Orthoreovirus, Mammalian/isolation & purification , Orthoreovirus, Mammalian/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Reoviridae Infections/virology , Reoviridae Infections/veterinary , South Africa , Thailand , Travel , Vero Cells
5.
J Infect ; 89(4): 106240, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173919

ABSTRACT

Avian influenza remains a global public health concern for its well-known point mutation and genomic segment reassortment, through which plenty of serum serotypes are generated to escape existing immune protection in animal and human populations. Some occasional cases of human infection of avian influenza viruses (AIVs) since 2020 posed a potential pandemic risk through human-to-human transmission. Both east-west and north-south migratory birds fly through and linger in the Hebei Province of China as a stopover habitat, providing an opportunity for imported AIVs to infect the local poultry and for viral gene reassortment to generate novel stains. In this study, we collected more than 6000 environmental samples (mostly feces) in Hebei Province from 2021 to 2023. Samples were screened using real-time RT-PCR, and virus isolation was performed using the chick embryo culture method. We identified 10 AIV isolates, including a novel reassortant H3N3 isolate. Sequencing analysis revealed these AIVs are highly homologous to those isolated in the Yellow River Basin. Our findings supported that AIVs keep evolving to generate new isolates, necessitating a continuous risk assessment of local avian influenza in wild waterfowl in Hebei, China.


Subject(s)
Birds , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , China/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Birds/virology , Humans , Feces/virology , Epidemiological Monitoring
6.
Emerg Microbes Infect ; 13(1): 2380421, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39008278

ABSTRACT

In March 2024, the emergence of highly pathogenic avian influenza (HPAI) A (H5N1) infections in dairy cattle was detected in the United Sates for the first time. We genetically characterize HPAI viruses from dairy cattle showing an abrupt drop in milk production, as well as from two cats, six wild birds, and one skunk. They share nearly identical genome sequences, forming a new genotype B3.13 within the 2.3.4.4b clade. B3.13 viruses underwent two reassortment events since 2023 and exhibit critical mutations in HA, M1, and NS genes but lack critical mutations in PB2 and PB1 genes, which enhance virulence or adaptation to mammals. The PB2 E627 K mutation in a human case associated with cattle underscores the potential for rapid evolution post infection, highlighting the need for continued surveillance to monitor public health threats.


Subject(s)
Genome, Viral , Influenza A Virus, H5N1 Subtype , Phylogeny , Animals , Cattle , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Cattle Diseases/virology , Influenza in Birds/virology , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Humans , Birds/virology , Genotype , Viral Proteins/genetics , Mutation
7.
Virology ; 598: 110167, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39003988

ABSTRACT

Swine influenza viruses (SIVs), including H1N1, H1N2, and H3N2, have spread throughout the global pig population. Potential pandemics are a concern with the recent sporadic cross-species transmission of SIVs to humans. We collected 1421 samples from Guangdong, Fujian, Henan, Yunnan and Jiangxi provinces during 2017-2018 and isolated 29 viruses. These included 21H1N1, 5H1N2, and 3H3N2 strains. Genome analysis showed that the domestic epidemic genotypes of H1N1 were mainly G4 and G5 reassortant EA swine H1N1. These genotypes have a clear epidemic advantage. Two strains were Clade 6B.1 pdm/09H1N1, suggesting a possible pig-to-human transmission route. Notably, three new H1N2 genotypes were identified using the genomic backbones of G4 or G5 viruses for recombination. The identification of various subtypes and genotypes highlight the complexity and diversity of SIVs in China and need for continuous monitoring of SIV evolution to assess the risks and prepare for potential influenza pandemics.


Subject(s)
Evolution, Molecular , Genotype , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Orthomyxoviridae Infections , Phylogeny , Swine Diseases , Animals , China/epidemiology , Swine , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Swine Diseases/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification , Humans , Genome, Viral , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Genetic Variation , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/classification , Influenza, Human/virology , Influenza, Human/epidemiology , Public Health , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification
8.
Genes (Basel) ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062628

ABSTRACT

Swine influenza viruses (SIVs) have been circulating in swine globally and are potential threats to human health. During the surveillance of SIVs in Shandong Province, China, from 2019 to 2022, 21 reassortant G4 genotype Eurasian avian-like (EA) H1N1 subtypes containing genes from the EA H1N1 (HA and NA), 2009 pandemic (pdm/09) H1N1 virus (PB2, PB1, PA, NP, and M), and classical swine (CS) H1N1 (NS) lineages were isolated. The analysis of the key functional amino acid sites in the isolated viruses showed that two mutation sites (190D and 225E) that preferentially bind to the human α2-6 sialic acid receptor were found in HA. In PB2, three mutation sites (271A, 590S, and 591R) that may increase mammalian fitness and a mutation site (431M) that increases pathogenicity in mice were found. A typical human signature marker that may promote infection in humans, 357K, was found in NP. The viruses could replicate efficiently in mouse lungs and turbinates, and one of the H1N1 isolates could replicate in mouse kidneys and brains without prior adaption, which indicates that the viruses potentially pose a threat to human health. Histopathological results showed that the isolated viruses caused typical bronchopneumonia and encephalitis in mice. The results indicate that G4 genotype H1N1 has potential transmissibility to humans, and surveillance should be enhanced, which could provide important information for assessing the pandemic potential of the viruses.


Subject(s)
Genotype , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Swine , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H1N1 Subtype/isolation & purification , China/epidemiology , Mice , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/pathology , Humans , Swine Diseases/virology , Swine Diseases/epidemiology , Swine Diseases/pathology , Phylogeny , Influenza, Human/virology , Influenza, Human/epidemiology , Reassortant Viruses/genetics , Reassortant Viruses/pathogenicity , Reassortant Viruses/isolation & purification , Madin Darby Canine Kidney Cells , Mutation , Virus Replication/genetics , Viral Proteins/genetics
9.
Emerg Microbes Infect ; 13(1): 2368202, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38970562

ABSTRACT

Influenza A viruses (IAV) impose significant respiratory disease burdens in both swine and humans worldwide, with frequent human-to-swine transmission driving viral evolution in pigs and highlighting the risk at the animal-human interface. Therefore, a comprehensive One Health approach (interconnection among human, animal, and environmental health) is needed for IAV prevention, control, and response. Animal influenza genomic surveillance remains limited in many Latin American countries, including Colombia. To address this gap, we genetically characterized 170 swine specimens from Colombia (2011-2017). Whole genome sequencing revealed a predominance of pandemic-like H1N1 lineage, with a minority belonging to H3N2 and H1N2 human seasonal-like lineage and H1N1 early classical swine lineages. Significantly, we have identified reassortant and recombinant viruses (H3N2, H1N1) not previously reported in Colombia. This suggests a broad genotypic viral diversity, likely resulting from reassortment between classical endemic viruses and new introductions established in Colombia's swine population (e.g. the 2009 H1N1 pandemic). Our study highlights the importance of a One Health approach in disease control, particularly in an ecosystem where humans are a main source of IAV to swine populations, and emphasizes the need for continued surveillance and enhanced biosecurity measures. The co-circulation of multiple subtypes in regions with high swine density facilitates viral exchange, underscoring the importance of monitoring viral evolution to inform vaccine selection and public health policies locally and globally.


Subject(s)
Evolution, Molecular , Genetic Variation , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Orthomyxoviridae Infections , Phylogeny , Swine Diseases , Animals , Swine , Colombia/epidemiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/isolation & purification , One Health , Humans , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Whole Genome Sequencing , Genome, Viral , Epidemiological Monitoring , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/classification , Influenza, Human/virology , Influenza, Human/epidemiology
10.
Viruses ; 16(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932274

ABSTRACT

We identified a child coinfected with influenza B viruses of B/Yamagata and B/Victoria lineages, in whom we analyzed the occurrence of genetic reassortment. Plaque purification was performed using a throat swab specimen from a 9-year-old child, resulting in 34 well-isolated plaques. The genomic composition of eight gene segments (HA, NA, PB1, PB2, PA, NP, M, and NS genes) for each plaque was determined at the lineage level. Of the 34 plaques, 21 (61.8%) had B/Phuket/3073/2013 (B/Yamagata)-like sequences in all gene segments, while the other 13 (38.2%) were reassortants with B/Texas/02/2013 (B/Victoria)-like sequences in 1-5 of the 8 segments. The PB1 segment had the most B/Victoria lineage genes (23.5%; 8 of 34 plaques), while PB2 and PA had the least (2.9%; 1 of 34 plaques). Reassortants with B/Victoria lineage genes in 2-5 segments showed the same level of growth as viruses with B/Yamagata lineage genes in all segments. However, reassortants with B/Victoria lineage genes only in the NA, PB1, NP, or NS segments exhibited reduced or undetectable growth. We demonstrated that various gene reassortments occurred in a child. These results suggest that simultaneous outbreaks of two influenza B virus lineages increase genetic diversity and could promote the emergence of new epidemic strains.


Subject(s)
Coinfection , Influenza B virus , Influenza, Human , Phylogeny , Reassortant Viruses , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , Humans , Child , Influenza, Human/virology , Coinfection/virology , Genome, Viral , Male , Viral Proteins/genetics
11.
Viruses ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38932226

ABSTRACT

Rotaviruses (RVs) are known to infect various avian and mammalian hosts, including swine. The most common RVs associated with infection in pigs are A, B, C and H (RVA-C; RVH). In this study we analysed rotavirus strains circulating on a porcine farm in the Western Cape province of South Africa over a two-year period. Whole genomes were determined by sequencing using Illumina MiSeq without prior genome amplification. Fifteen RVA genomes, one RVB genome and a partial RVC genome were identified. Phylogenetic analyses of the RVA data suggested circulation of one dominant strain (G5-P[6]/P[13]/P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1), typical of South African porcine strains, although not closely related to previously detected South African porcine strains. Reassortment with three VP4-encoding P genotypes was detected. The study also reports the first complete RVB genome (G14-P[5]-I13-R4-C4-M4-A10-T4-E4-H7) from Africa. The partial RVC (G6-P[5]-IX-R1-C1-MX-A9-N6-T6-EX-H7) strain also grouped with porcine strains. The study shows the continued circulation of an RVA strain, with a high reassortment rate of the VP4-encoding segment, on the porcine farm. Furthermore, incidents of RVB and RVC on this farm emphasize the complex epidemiology of rotavirus in pigs.


Subject(s)
Farms , Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Swine , South Africa/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/veterinary , Rotavirus Infections/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Whole Genome Sequencing , Feces/virology
12.
Virology ; 597: 110129, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908046

ABSTRACT

Group A rotaviruses (RVAs) are major causes of severe gastroenteritis in infants and young animals. To enhance our understanding of the relationship between human and animals RVAs, complete genome data are necessary. We screened 92 intestinal and stool samples from diarrheic piglets by RT‒PCR targeting the VP6 gene, revealing a prevalence of 10.9%. RVA was confirmed in two out of 5 calf samples. We successfully isolated two porcine samples using MA104 cell line. The full-length genetic constellation of the two isolates were determined to be G9-P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1, with close similarity to human Wa-like and porcine strains. Sequence analysis revealed the majority of genes were closely related to porcine and human RVAs. Phylogenetic analysis revealed that these isolates might have their ancestral origin from pigs, although some of their gene segments were related to human strains. This study reveals evidence of reassortment and possible interspecies transmission between pigs and humans in China.


Subject(s)
Genome, Viral , Phylogeny , Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Swine , Rotavirus Infections/virology , Rotavirus Infections/veterinary , Rotavirus Infections/transmission , Rotavirus Infections/epidemiology , Humans , China/epidemiology , Swine Diseases/virology , Swine Diseases/transmission , Swine Diseases/epidemiology , Cattle , Feces/virology , Whole Genome Sequencing , Genotype , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/epidemiology , Cell Line , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification
13.
PLoS One ; 19(5): e0300862, 2024.
Article in English | MEDLINE | ID: mdl-38739614

ABSTRACT

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Subject(s)
Charadriiformes , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , Brazil , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Charadriiformes/virology , Genome, Viral , Birds/virology
14.
Virus Genes ; 60(3): 320-324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722491

ABSTRACT

H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.


Subject(s)
Animals, Wild , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , China , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Influenza in Birds/virology , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology , Evolution, Molecular , Genome, Viral/genetics , Neuraminidase/genetics , Viral Proteins/genetics
15.
Emerg Microbes Infect ; 13(1): 2341142, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38581279

ABSTRACT

H6N6 avian influenza viruses (AIVs) have been widely detected in wild birds, poultry, and even mammals. Recently, H6N6 viruses were reported to be involved in the generation of H5 and H7 subtype viruses. To investigate the emergence, evolutionary pattern, and potential for an epidemic of H6N6 viruses, the complete genomes of 198 H6N6 viruses were analyzed, including 168 H6N6 viruses deposited in the NCBI and GISAID databases from inception to January 2019 and 30 isolates collected from China between November 2014 and January 2019. Using phylogenetic analysis, the 198 strains of H6N6 viruses were identified as 98 genotypes. Molecular clock analysis indicated that the evolution of H6N6 viruses in China was constant and not interrupted by selective pressure. Notably, the laboratory isolates reassorted with six subtype viruses: H6N2, H5N6, H7N9, H5N2, H4N2, and H6N8, resulting in nine novel H6N6 reassortment events. These results suggested that H6N6 viruses can act as an intermediary in the evolution of H5N6, H6N6, and H7N9 viruses. Animal experiments demonstrated that the 10 representative H6N6 viruses showed low pathogenicity in chickens and were capable of infecting mice without prior adaptation. Our findings suggest that H6N6 viruses play an important role in the evolution of AIVs, and it is necessary to continuously monitor and evaluate the potential epidemic of the H6N6 subtype viruses.


Subject(s)
Chickens , Evolution, Molecular , Genome, Viral , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , China/epidemiology , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Influenza in Birds/virology , Influenza in Birds/epidemiology , Mice , Chickens/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Genotype , Humans
16.
Viruses ; 16(4)2024 04 07.
Article in English | MEDLINE | ID: mdl-38675910

ABSTRACT

Influenza A viruses (IAVs) pose a serious threat to global health. On the one hand, these viruses cause seasonal flu outbreaks in humans. On the other hand, they are a zoonotic infection that has the potential to cause a pandemic. The most important natural reservoir of IAVs are waterfowl. In this study, we investigated the occurrence of IAV in birds in the Republic of Buryatia (region in Russia). In 2020, a total of 3018 fecal samples were collected from wild migratory birds near Lake Baikal. Of these samples, 11 were found to be positive for the H13N8 subtype and whole-genome sequencing was performed on them. All samples contained the same virus with the designation A/Unknown/Buryatia/Arangatui-1/2020. To our knowledge, virus A/Unknown/Buryatia/Arangatui-1/2020 is the first representative of the H13N8 subtype collected on the territory of Russia, the sequence of which is available in the GenBank database. An analysis of reassortments based on the genome sequences of other known viruses has shown that A/Unknown/Buryatia/Arangatui-1/2020 arose as a result of reassortment. In addition, a reassortment most likely occurred several decades ago between the ancestors of the viruses recently collected in China, the Netherlands, the United States and Chile. The presence of such reassortment emphasizes the ongoing evolution of the H13N8 viruses distributed in Europe, North and East Asia, North and South America and Australia. This study underscores the importance of the continued surveillance and research of less-studied influenza subtypes.


Subject(s)
Birds , Genome, Viral , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Whole Genome Sequencing , Animals , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Influenza in Birds/virology , Influenza in Birds/epidemiology , Russia/epidemiology , Birds/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Feces/virology , Animals, Wild/virology
17.
Arch Virol ; 169(5): 111, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664271

ABSTRACT

India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Phylogeny , Phylogeography , India/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Humans , Influenza, Human/virology , Influenza, Human/epidemiology , Genotype , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Neuraminidase/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology , Disease Outbreaks
18.
Emerg Microbes Infect ; 13(1): 2332667, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38494746

ABSTRACT

Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortant with four gene segments (PB1, PB2, NP, MP) from North American lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , Ferrets/virology , Humans , Chile , Influenza, Human/virology , Influenza, Human/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/physiology , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Reassortant Viruses/classification , Phylogeny , Influenza in Birds/virology , Influenza in Birds/transmission
19.
Clin Microbiol Infect ; 30(6): 795-802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402954

ABSTRACT

OBJECTIVES: High incidences of haemorrhagic fever with renal syndrome (HFRS) have been reported in the southern Republic of Korea (ROK). A distinct southern genotype of Orthohantavirus hantanense (HTNV) was identified in Apodemus agrarius chejuensis on Jeju Island. However, its association with HFRS cases in southern ROK remains elusive. We investigated the potential of the southern HTNV genotype as an etiological agent of HFRS. METHODS: Samples from 22 patients with HFRS and 193 small mammals were collected in the southern ROK. The clinical characteristics of patients infected with the southern HTNV genotype were analysed. Amplicon-based MinION sequencing was employed for southern HTNV from patients and rodents, facilitating subsequent analyses involving phylogenetics and genetic reassortment. RESULTS: High-throughput sequencing of HTNV exhibited higher coverage with a cycle of threshold value below 32, acquiring nearly whole-genome sequences from six patients with HFRS and seven A. agrarius samples. The phylogenetic pattern of patient-derived HTNV demonstrated genetic clustering with HTNV from Apodemus species on Jeju Island and the southern Korean peninsula, revealing genetic reassortment in a single clinical sample between the M and S segments. DISCUSSION: These findings imply that the southern HTNV genotype has the potential to induce HFRS in humans. The phylogenetic inference demonstrates the diverse and dynamic characteristics of the southern HTNV tripartite genomes. Therefore, this study highlights the significance of active surveillance and amplicon sequencing for detecting orthohantavirus infections. It also raises awareness and caution for physicians regarding the emergence of a southern HTNV genotype as a cause of HFRS in the ROK.


Subject(s)
Genotype , Hemorrhagic Fever with Renal Syndrome , Phylogeny , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , Republic of Korea/epidemiology , Animals , Male , Female , Genome, Viral , Middle Aged , Murinae/virology , Adult , Aged , Orthohantavirus/genetics , Orthohantavirus/classification , Orthohantavirus/isolation & purification , High-Throughput Nucleotide Sequencing , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL