Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.337
1.
Proc Natl Acad Sci U S A ; 121(24): e2321532121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38830102

Cannabis sativa is known for its therapeutic benefit in various diseases including pain relief by targeting cannabinoid receptors. The primary component of cannabis, Δ9-tetrahydrocannabinol (THC), and other agonists engage the orthosteric site of CB1, activating both Gi and ß-arrestin signaling pathways. The activation of diverse pathways could result in on-target side effects and cannabis addiction, which may hinder therapeutic potential. A significant challenge in pharmacology is the design of a ligand that can modulate specific signaling of CB1. By leveraging insights from the structure-function selectivity relationship (SFSR), we have identified Gi signaling-biased agonist-allosteric modulators (ago-BAMs). Further, two cryoelectron microscopy (cryo-EM) structures reveal the binding mode of ago-BAM at the extrahelical allosteric site of CB1. Combining mutagenesis and pharmacological studies, we elucidated the detailed mechanism of ago-BAM-mediated biased signaling. Notably, ago-BAM CB-05 demonstrated analgesic efficacy with fewer side effects, minimal drug toxicity and no cannabis addiction in mouse pain models. In summary, our finding not only suggests that ago-BAMs of CB1 provide a potential nonopioid strategy for pain management but also sheds light on BAM identification for GPCRs.


Cryoelectron Microscopy , Receptor, Cannabinoid, CB1 , Signal Transduction , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/chemistry , Animals , Allosteric Regulation/drug effects , Mice , Humans , Signal Transduction/drug effects , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , HEK293 Cells , Structure-Activity Relationship , Dronabinol/pharmacology , Dronabinol/chemistry , Dronabinol/analogs & derivatives , Cannabis/chemistry , Cannabis/metabolism
2.
J Cell Mol Med ; 28(10): e18376, 2024 May.
Article En | MEDLINE | ID: mdl-38780511

Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, ß-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, ß-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, ß-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the ß-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing ß-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, ß-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).


Adrenal Glands , Hypertension , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Male , Hypertension/metabolism , Hypertension/genetics , Adrenal Glands/metabolism , Adrenal Glands/pathology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Rats , Rats, Inbred SHR , Rats, Wistar , Immunohistochemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/genetics , Hypertension, Renovascular/pathology
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710516

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Arachidonic Acids , Mice, Inbred C57BL , Sepsis-Associated Encephalopathy , Animals , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Mice , Male , Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Lipopolysaccharides/adverse effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/agonists , Cognition/drug effects , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791212

Alcohol use disorder (AUD) is a significant issue affecting women, with severe consequences for society, the economy, and most importantly, health. Both personality and alcohol use disorders are phenotypically very complex, and elucidating their shared heritability is a challenge for medical genetics. Therefore, our study investigated the correlations between the microsatellite polymorphism (AAT)n of the Cannabinoid Receptor 1 (CNR1) gene and personality traits in women with AUD. The study group included 187 female subjects. Of these, 93 were diagnosed with alcohol use disorder, and 94 were controls. Repeat length polymorphism of microsatellite regions (AAT)n in the CNR1 gene was identified with PCR. All participants were assessed with the Mini-International Neuropsychiatric Interview and completed the NEO Five-Factor and State-Trait Anxiety Inventories. In the group of AUD subjects, significantly fewer (AAT)n repeats were present when compared with controls (p = 0.0380). While comparing the alcohol use disorder subjects (AUD) and the controls, we observed significantly higher scores on the STAI trait (p < 0.00001) and state scales (p = 0.0001) and on the NEO Five-Factor Inventory Neuroticism (p < 0.00001) and Openness (p = 0.0237; insignificant after Bonferroni correction) scales. Significantly lower results were obtained on the NEO-FFI Extraversion (p = 0.00003), Agreeability (p < 0.00001) and Conscientiousness (p < 0.00001) scales by the AUD subjects when compared to controls. There was no statistically significant Pearson's linear correlation between the number of (AAT)n repeats in the CNR1 gene and the STAI and NEO Five-Factor Inventory scores in the group of AUD subjects. In contrast, Pearson's linear correlation analysis in controls showed a positive correlation between the number of the (AAT)n repeats and the STAI state scale (r = 0.184; p = 0.011; insignificant after Bonferroni correction) and a negative correlation with the NEO-FFI Openness scale (r = -0.241; p = 0.001). Interestingly, our study provided data on two separate complex issues, i.e., (1) the association of (AAT)n CNR1 repeats with the AUD in females; (2) the correlation of (AAT)n CNR1 repeats with anxiety as a state and Openness in non-alcohol dependent subjects. In conclusion, our study provided a plethora of valuable data for improving our understanding of alcohol use disorder and anxiety.


Alcoholism , Personality , Receptor, Cannabinoid, CB1 , Humans , Female , Receptor, Cannabinoid, CB1/genetics , Adult , Alcoholism/genetics , Alcoholism/psychology , Personality/genetics , Middle Aged , Microsatellite Repeats/genetics , Polymorphism, Genetic , Case-Control Studies , Genetic Predisposition to Disease
5.
J Pregnancy ; 2024: 6620156, 2024.
Article En | MEDLINE | ID: mdl-38745869

Background: The cannabinoid receptor (CBR) plays a significant role in oogenesis, pregnancy, and childbirth. It might also play a significant role in preterm birth (PTB). The aim of the study was to investigate the association between the expression of the CBR in the placenta and the incidence of PTB. Methods: This prospective, observational, multicentre preliminary study was conducted on placental samples obtained from 109 women. The study included 95 patients hospitalized due to the high risk of PTB. They were divided into two groups: Group 1, where the expression of the CBR1 and CBR1a was analyzed, and Group 2, in which we examined CBR2 expression. The control group, that is, Group 3, consisted of 14 women who delivered at term, and their placentas were tested for the presence of all three receptor types (CBR1, CBR1a, and CBR2). Results: The study used reverse transcription and real-time PCR methods to assess the expression of CBRs in the placental tissues. The expression of the CBR2, CBR1, and CBR1a receptors was significantly lower in the placentas of women after PTB compared to those after term births, p = 0.038, 0.033, and 0.034, respectively. Conclusions: The presence of CBR mRNA in the human placental tissue was confirmed. The decreased expression of CBRs could serve as an indicator in predicting PTB.


Placenta , Premature Birth , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Female , Pregnancy , Placenta/metabolism , Premature Birth/metabolism , Prospective Studies , Adult , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Case-Control Studies , RNA, Messenger/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics
6.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38575140

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Drug Inverse Agonism , Piperidines , Female , Mice , Male , Animals , Rimonabant/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Mice, Knockout , Brain , Receptors, Cannabinoid , Receptor, Cannabinoid, CB1/genetics , Dronabinol/pharmacology
7.
Molecules ; 29(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38675558

The cannabinoid-type I (CB1) receptor functions as a double-edged sword to decide cell fate: apoptosis/survival. Elevated CB1 receptor expression is shown to cause acute ceramide accumulation to meet the energy requirements of fast-growing cancers. However, the flip side of continual CB1 activation is the initiation of a second ceramide peak that leads to cell death. In this study, we used ovarian cancer cells, PA1, which expressed CB1, which increased threefold when treated with a natural compound, bis(palmitoleic acid) ester of a glycerol (C2). This novel compound is isolated from a marine snail, Conus inscriptus, using hexane and the structural details are available in the public domain PubChem database (ID: 14275348). The compound induced two acute ceramide pools to cause G0/G1 arrest and killed cells by apoptosis. The compound increased intracellular ceramides (C:16 to 7 times and C:18 to 10 times), both of which are apoptotic inducers in response to CB1 signaling and thus the compound is a potent CB1 agonist. The compound is not genotoxic because it did not induce micronuclei formation in non-cancerous Chinese hamster ovarian (CHO) cells. Since the compound induced the cannabinoid pathway, we tested if there was a psychotropic effect in zebrafish models, however, it was evident that there were no observable neurobehavioral changes in the treatment groups. With the available data, we propose that this marine compound is safe to be used in non-cancerous cells as well as zebrafish. Thus, this anticancer compound is non-toxic and triggers the CB1 pathway without causing psychotropic effects.


Apoptosis , Ceramides , Conus Snail , Fatty Acids , Receptor, Cannabinoid, CB1 , Animals , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , Ceramides/metabolism , Ceramides/chemistry , Fatty Acids/pharmacology , Fatty Acids/chemistry , Fatty Acids/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Signal Transduction/drug effects , Conus Snail/chemistry
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167179, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653357

Muscle degeneration is a common feature in cancer cachexia that cannot be reversed. Recent advances show that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1), regulates muscle processes, including metabolism, anabolism and regenerative capacity. However, it is unclear whether muscle endocannabinoids, their receptors and enzymes are responsive to cachexia and exercise. Therefore, this study investigated whether cachexia and exercise affected muscle endocannabinoid signaling, and whether CB1 expression correlated with markers of muscle anabolism, catabolism and metabolism. Male BALB/c mice were injected with PBS (CON) or C26 colon carcinoma cells (C26) and had access to wheel running (VWR) or remained sedentary (n = 5-6/group). Mice were sacrificed 18 days upon PBS/tumor cell injection. Cachexic mice exhibited a lower muscle CB1 expression (-43 %; p < 0.001) and lower levels of the endocannabinoid anandamide (AEA; -22 %; p = 0.044), as well as a lower expression of the AEA-synthesizing enzyme NAPE-PLD (-37 %; p < 0.001), whereas the expression of the AEA degrading enzyme FAAH was higher (+160 %; p < 0.001). The 2-AG-degrading enzyme MAGL, was lower in cachexic muscle (-34 %; p = 0.007), but 2-AG and its synthetizing enzyme DAGLß were not different between CON and C26. VWR increased muscle CB1 (+25 %; p = 0.005) and increased MAGL expression (+30 %; p = 0.035). CB1 expression correlated with muscle mass, markers of metabolism (e.g. p-AMPK, PGC1α) and of catabolism (e.g. p-FOXO, LC3b, Atg5). Our findings depict an emerging role of the endocannabinoid system in muscle physiology. Future studies should elaborate how this translates into potential therapies to combat cancer cachexia, and other degenerative conditions.


Cachexia , Endocannabinoids , Mice, Inbred BALB C , Muscle, Skeletal , Receptor, Cannabinoid, CB1 , Animals , Endocannabinoids/metabolism , Male , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Cachexia/metabolism , Cachexia/pathology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Cell Line, Tumor , Polyunsaturated Alkamides/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Physical Conditioning, Animal , Arachidonic Acids/metabolism
9.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Article En | MEDLINE | ID: mdl-38514794

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Adaptor Proteins, Signal Transducing , Memory Disorders , Ubiquitin-Protein Ligases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Mutation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Memory Disorders/genetics , Memory Disorders/metabolism
10.
Glia ; 72(6): 1096-1116, 2024 Jun.
Article En | MEDLINE | ID: mdl-38482984

The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.


Astrocytes , Cannabinoids , Mice , Animals , Receptors, Cannabinoid , Receptor, Adenosine A2A , Neuronal Plasticity , Receptor, Cannabinoid, CB1/genetics
11.
Neurochem Res ; 49(5): 1278-1290, 2024 May.
Article En | MEDLINE | ID: mdl-38368587

Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.


Amidohydrolases , Endocannabinoids , Lysine , Receptor, Cannabinoid, CB1 , Social Isolation , Animals , Rats , Amidohydrolases/genetics , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptors, Cannabinoid/metabolism
12.
Science ; 383(6686): 967-970, 2024 Mar.
Article En | MEDLINE | ID: mdl-38422134

Endocannabinoid (eCB)-mediated suppression of inhibitory synapses has been hypothesized, but this has not yet been demonstrated to occur in vivo because of the difficulty in tracking eCB dynamics and synaptic plasticity during behavior. In mice navigating a linear track, we observed location-specific eCB signaling in hippocampal CA1 place cells, and this was detected both in the postsynaptic membrane and the presynaptic inhibitory axons. All-optical in vivo investigation of synaptic responses revealed that postsynaptic depolarization was followed by a suppression of inhibitory synaptic potentials. Furthermore, interneuron-specific cannabinoid receptor deletion altered place cell tuning. Therefore, rapid, postsynaptic, activity-dependent eCB signaling modulates inhibitory synapses on a timescale of seconds during behavior.


CA1 Region, Hippocampal , Endocannabinoids , Inhibitory Postsynaptic Potentials , Synapses , Synaptic Transmission , Animals , Mice , Endocannabinoids/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Calcium Signaling , CA1 Region, Hippocampal/physiology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/physiology , Male , Female , Mice, Knockout
13.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338960

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Cannabinoids , Myocardial Infarction , Receptor, Cannabinoid, CB1 , Humans , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabinoids/metabolism , Endocannabinoids/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptors, Cannabinoid/metabolism , Dronabinol/pharmacology
15.
Neuron ; 112(3): 441-457.e6, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-37992714

Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.


Cannabinoids , Gyrus Cinguli , Animals , Male , Mice , Cannabinoids/metabolism , Cannabinoids/pharmacology , Gyrus Cinguli/metabolism , Interneurons/physiology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Social Isolation , Synapses/physiology
16.
Brain Behav ; 13(12): e3323, 2023 12.
Article En | MEDLINE | ID: mdl-37984468

BACKGROUND: The reasons for developing depression are not fully understood. However, it is known that the serotonergic system plays a role in the etiology, but the endocannabinoid system receives attention. METHOD: In this study, 161 patients with a depressive disorder and 161 healthy participants were examined for the distribution of the CNR1 rs4940353, 5-HT2A rs6311, and 5-HT1A rs6295 by high-resolution melting genotyping. The concentration of arachidonoyl ethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) in the blood was measured by liquid chromatography-tandem mass spectrometry. Additionally, depression and anxiety symptoms were evaluated based on self-questionnaires. Fifty-nine patients participated in a second appointment to measure the concentration of AEA, 2-AG, and symptoms of depression and anxiety. RESULTS: We observed higher AEA and decreased 2-AG concentrations in patients with depression compared to healthy participants. During the treatment, the concentrations of AEA and 2-AG did not change significantly. In patients higher symptoms of anxiety correlated with lower concentrations of 2-AG. Gender differences were found concerning increased 2-AG concentration in male patients and increased anxiety symptoms in female patients. Genotypic variations of 5-HT1A rs6295 and 5-HT2A rs6311 are associated with altered serotonergic activity and serotonin content in patients. CONCLUSION: In conclusion, it seems that the endocannabinoid system, especially the endocannabinoids 2-AG and AEA, and genetic variations of the 5-HT1A and 5-HT2A could play a role in patients with depression and may be involved in a depressive disorder.


Endocannabinoids , Polyunsaturated Alkamides , Female , Humans , Male , Chromatography, Liquid , Endocannabinoids/analysis , Genetic Variation , Receptor, Cannabinoid, CB1/genetics
17.
Cannabis Cannabinoid Res ; 8(6): 1045-1059, 2023 12.
Article En | MEDLINE | ID: mdl-37862126

Background: Increasing evidence suggests that the endocannabinoid system (ECS) in the brain controls anxiety and may be a therapeutic target for the treatment of anxiety disorders. For example, both pharmacological and genetic disruption of cannabinoid receptor subtype-1 (CB1R) signaling in the central nervous system is associated with increased anxiety-like behaviors in rodents, while activating the system is anxiolytic. Sex is also a critical factor that controls the behavioral expression of anxiety; however, roles for the ECS in the gut in these processes and possible differences between sexes are largely unknown. Objective: In this study, we aimed to determine if CB1Rs in the intestinal epithelium exert control over anxiety-like behaviors in a sex-dependent manner. Methods: We subjected male and female mice with conditional deletion of CB1Rs in the intestinal epithelium (intCB1-/-) and controls (intCB1+/+) to the elevated plus maze (EPM), light/dark box, and open field test. Corticosterone (CORT) levels in plasma were measured at baseline and immediately after EPM exposure. Results: When compared with intCB1+/+ male mice, intCB1-/- male mice exhibited reduced levels of anxiety-like behaviors in the EPM and light/dark box. In contrast to male mice, no differences were found between female intCB1+/+ and intCB1-/- mice. Circulating CORT was higher in female versus male mice for both genotype groups at baseline and after EPM exposure; however, there was no effect of genotype on CORT levels. Conclusions: Collectively, these results indicate that genetic deletion of CB1Rs in the intestinal epithelium is associated with an anxiolytic phenotype in a sex-dependent manner.


Anxiety Disorders , Anxiety , Receptor, Cannabinoid, CB1 , Animals , Female , Male , Mice , Anxiety/genetics , Anxiety/metabolism , Anxiety Disorders/genetics , Anxiety Disorders/metabolism , Corticosterone , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
18.
Brain Res ; 1821: 148579, 2023 12 15.
Article En | MEDLINE | ID: mdl-37739333

OBJECTIVE: Tardive dyskinesia (TD) is a medically induced movement disorder that occurs as a result of long-term use of antipsychotic medications, commonly seen in patients with schizophrenia (SCZ). The study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) of the CNR1 gene, TD and cognitive impairments in a Chinese population with SCZ. METHODS: A total of 216 SCZ patients were recruited. The participants were divided into TD and without TD (WTD) groups using the Schooler-Kane International Diagnostic Criteria. The severity of TD was assessed using the Abnormal Involuntary Movement Scale (AIMS). Cognitive function was assessed using the Repeatable Battery for Assessment of Neuropsychological Status (RBANS) scale. Hardy-Weinberg equilibrium tests, chained disequilibrium analyses and haplotype analyses were performed using SHE-sis software. To explore the main effects of TD diagnosis, genotype and cognitive function, as well as interaction effects, analysis of covariance (ANCOVA) was employed. RESULTS: The prevalence of TD was approximately 27.3%. Significant differences were observed in the rs806368 CT genotype and rs806370 TC genotype within the hypercongenic pattern between the male TD and WTD groups (OR = 2.508, 95% CI: 1.055-5.961, p = 0.037; OR = 2.552, 95% CI: 1.073-6.069, p = 0.034). Among TD patients, those carrying the rs806368 CC genotype exhibited higher limb trunk scores (p < 0.05). Moreover, there was a statistically significant difference in visuospatial/construction between the TD and WTD groups (p = 0.04), and a borderline significant difference in visuospatial/construction when considering the interaction between TD diagnosis and genotype at the rs806368 locus (p = 0.05). CONCLUSION: CNR1 rs806368 and rs806370 polymorphisms may play a role in TD susceptibility. Additionally, CNR1 gene polymorphisms were associated with the severity of involuntary movements and cognitive impairments in TD patients.


Antipsychotic Agents , Cognitive Dysfunction , Receptor, Cannabinoid, CB1 , Schizophrenia , Tardive Dyskinesia , Humans , Male , Cognitive Dysfunction/drug therapy , East Asian People , Polymorphism, Single Nucleotide , Schizophrenia/drug therapy , Schizophrenia/genetics , Tardive Dyskinesia/genetics , Tardive Dyskinesia/complications , Tardive Dyskinesia/drug therapy , Receptor, Cannabinoid, CB1/genetics
19.
ACS Chem Neurosci ; 14(19): 3674-3685, 2023 10 04.
Article En | MEDLINE | ID: mdl-37718490

Patients with post-traumatic stress disorder (PTSD) usually manifest persistence of the traumatic memory for a long time after the event, also known as resistance to extinction learning. Numerous studies have shown that the endocannabinoid system, specifically the cannabinoid type-1 receptor (CB1R), plays an important role in traumatic memory. However, the effect of basolateral amygdala (BLA) CB1R in social fear memory formation and elimination is still unclear. Here, we built a mouse model of social avoidance induced by acute social defeat stress to investigate the role of BLA CB1R in social fear memory formation and anxiety- and depression-like behavior. Anterograde knockout of CB1R in BLA neurons facilitates social fear memory formation and manifests an anxiolytic effect but does not influence sociability and social novelty. Retrograde knockout of CB1R in BLA promotes social fear memory formation and shows an anxiogenic effect but does not affect sociability and social novelty. Moreover, intracerebral injection of the CB1R antagonist AM251 in BLA during the memory reconsolidation time window eliminates social fear memory. Our findings suggest the CB1R of BLA can be used as a novel molecular target in social fear memory formation and elimination and potential PTSD therapy with memory retrieval and AM251.


Basolateral Nuclear Complex , Cannabinoids , Animals , Mice , Humans , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/genetics , Fear , Anxiety , Extinction, Psychological
20.
Cell Rep ; 42(9): 113027, 2023 09 26.
Article En | MEDLINE | ID: mdl-37703881

The endocannabinoid (eCB) system is a key modulator of glutamate release within limbic neurocircuitry and thus heavily modulates stress responsivity and adaptation. The ventral hippocampus (vHPC)-basolateral amygdala (BLA) circuit has been implicated in the expression of negative affective states following stress exposure and is modulated by retrograde eCB signaling. However, the mechanisms governing eCB release and the causal relationship between vHPC-BLA eCB signaling and stress-induced behavioral adaptations are not known. Here, we utilized in vivo optogenetic- and biosensor-based approaches to determine the temporal dynamics of activity-dependent and stress-induced eCB release at vHPC-BLA synapses. Furthermore, we demonstrate that genetic deletion of cannabinoid type-1 receptors selectively at vHPC-BLA synapses decreases active stress coping and exacerbates stress-induced avoidance and anhedonia phenotypes. These data establish the in vivo determinants of eCB release at limbic synapses and demonstrate that eCB signaling within vHPC-BLA circuitry serves to counteract adverse behavioral consequences of stress.


Basolateral Nuclear Complex , Endocannabinoids , Endocannabinoids/metabolism , Amygdala/physiology , Synapses/metabolism , Basolateral Nuclear Complex/metabolism , Hippocampus/metabolism , Receptors, Cannabinoid , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
...