Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Alcohol Alcohol ; 48(6): 657-66, 2013.
Article in English | MEDLINE | ID: mdl-23797280

ABSTRACT

AIMS: We investigated the effects of chronic ethanol consumption on the cavernosal smooth muscle (CSM) reactivity to endothelin-1 (ET-1) and the expression of ET system components in this tissue. METHODS: Male Wistar rats were treated with heavy dose of ethanol (20% v/v) for 6 weeks. Reactivity experiments were performed in the isolated rat CSM. Plasma and CSM nitrate generation and also superoxide anion generation in rat CSM were measured by chemiluminescence. Protein and mRNA levels of pre-pro-ET-1, endothelin-converting enzyme-1 (ECE-1), ETA and ETB receptors, eNOS, nNOS and iNOS were assessed by western immunoblotting and quantitative real-time polymerase chain reaction, respectively. RESULTS: Chronic ethanol consumption increased plasma ET-1 levels and the contractile response induced by this peptide in the isolated CSM. The relaxation induced by acetylcholine, but not IRL1620, a selective ETB receptor agonist, was reduced in CSM from ethanol-treated rats. BQ123, a selective ETA receptor antagonist, produced a rightward displacement of the ET-1 concentration-response curves in CSM from control, but not ethanol-treated rats. Reduced levels of nitrate were found in the plasma and CSM from ethanol-treated rats. Ethanol consumption increased superoxide anion generation in the rat CSM. The mRNA levels of pre-pro-ET-1, ECE-1, ETA and ETB receptors, eNOS, nNOS and iNOS were not altered by ethanol consumption. Protein levels of ET-1, ETA receptor and iNOS were higher in the CSM from rats chronically treated with ethanol. CONCLUSION: The major findings of the present study are that heavy ethanol consumption increases plasma ET-1 levels and the contraction induced by the peptide in the CSM. Increased CSM reactivity to ET-1 and altered protein levels of ET-1 and ETA receptors could play a role in the pathogenesis of erectile dysfunction associated with chronic ethanol consumption.


Subject(s)
Central Nervous System Depressants/pharmacology , Endothelin-1/biosynthesis , Ethanol/pharmacology , Muscle, Smooth/metabolism , Penis/metabolism , Animals , Aspartic Acid Endopeptidases/biosynthesis , Blotting, Western , Body Weight/drug effects , Central Nervous System Depressants/blood , Endothelin-1/blood , Endothelin-Converting Enzymes , Ethanol/blood , Luminescence , Male , Metalloendopeptidases/biosynthesis , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Penis/drug effects , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptor, Endothelin A/biosynthesis , Receptor, Endothelin B/biosynthesis , Superoxides/metabolism
2.
Br J Pharmacol ; 157(4): 568-80, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19371338

ABSTRACT

BACKGROUND AND PURPOSE: There are interactions between endothelin-1 (ET-1) and endothelial vascular injury in hyperhomocysteinemia (HHcy), but the underlying mechanisms are poorly understood. Here we evaluated the effects of HHcy on the endothelin system in rat carotid arteries. EXPERIMENTAL APPROACH: Vascular reactivity to ET-1 and ET(A) and ET(B) receptor antagonists was assessed in rings of carotid arteries from normal rats and those with HHcy. ET(A) and ET(B) receptor expression was assessed by mRNA (RT-PCR), immunohistochemistry and binding of [(125)I]-ET-1. KEY RESULTS: HHcy enhanced ET-1-induced contractions of carotid rings with intact endothelium. Selective antagonism of ET(A) or ET(B) receptors produced concentration-dependent rightward displacements of ET-1 concentration response curves. Antagonism of ET(A) but not of ET(B) receptors abolished enhancement in HHcy tissues. ET(A) and ET(B) receptor gene expressions were not up-regulated. ET(A) receptor expression in the arterial media was higher in HHcy arteries. Contractions to big ET-1 served as indicators of endothelin-converting enzyme activity, which was decreased by HHcy, without reduction of ET-1 levels. ET-1-induced Rho-kinase activity, calcium release and influx were increased by HHcy. Pre-treatment with indomethacin reversed enhanced responses to ET-1 in HHcy tissues, which were reduced also by a thromboxane A(2) receptor antagonist. Induced relaxation was reduced by BQ788, absent in endothelium-denuded arteries and was decreased in HHcy due to reduced bioavailability of NO. CONCLUSIONS AND IMPLICATIONS: Increased ET(A) receptor density plays a fundamental role in endothelial injury induced by HHcy. ET-1 activation of ET(A) receptors in HHcy changed the balance between endothelium-derived relaxing and contracting factors, favouring enhanced contractility.


Subject(s)
Carotid Arteries/physiopathology , Endothelin-1/physiology , Endothelium, Vascular/physiopathology , Hyperhomocysteinemia/metabolism , Hyperhomocysteinemia/physiopathology , Animals , Aspartic Acid Endopeptidases/metabolism , Calcium/pharmacology , Carotid Arteries/drug effects , Carotid Arteries/metabolism , Dose-Response Relationship, Drug , Endothelin A Receptor Antagonists , Endothelin B Receptor Antagonists , Endothelin-1/biosynthesis , Endothelin-Converting Enzymes , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , In Vitro Techniques , Male , Metalloendopeptidases/metabolism , Nitrogen Oxides/metabolism , Nitrogen Oxides/pharmacology , Rats , Rats, Wistar , Receptor, Endothelin A/biosynthesis , Receptor, Endothelin B/agonists , Receptor, Endothelin B/biosynthesis , Vasoconstriction/drug effects , Vasoconstriction/physiology , Vasodilation/drug effects , Vasodilation/physiology
3.
J Histochem Cytochem ; 55(2): 167-74, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17046837

ABSTRACT

Increased levels of endothelin-1 (ET-1) in the carotid body (CB) contribute to the enhancement of chemosensory responses to acute hypoxia in cats exposed to chronic intermittent hypoxia (CIH). However, it is not known if the ET receptor types A (ETA-R) and B (ETB-R) are upregulated. Thus, we studied the expression and localization of ETA-R and ETB-R using Western blot and immunohistochemistry (IHC) in CBs from cats exposed to cyclic hypoxic episodes, repeated during 8 hr for 4 days. In addition, we determined if ET-1 is expressed in the chemoreceptor cells using double immunofluorescence for ET-1 and tyrosine hydroxylase (TH). We found that ET-1 expression was ubiquitous in the blood vessels and CB parenchyma, although double ET-1 and TH-positive chemoreceptor cells were mostly found in the parenchyma. ETAR was expressed in most chemoreceptor cells and blood vessels of the CB vascular pole. ETB-R was expressed in chemoreceptor cells, parenchymal capillaries, and blood vessels of the vascular pole. CIH upregulated ETB-R expression by approximately 2.1 (Western blot) and 1.6-fold (IHC) but did not change ETA-R expression. Present results suggest that ET-1,ETA-R, and ETB-R are involved in the enhanced CB chemosensory responses to acute hypoxia induced by CIH.


Subject(s)
Carotid Body/metabolism , Endothelins/metabolism , Hypoxia/metabolism , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Animals , Blotting, Western , Carotid Body/blood supply , Cats , Chronic Disease , Endothelin-1/biosynthesis , Endothelin-1/metabolism , Endothelins/biosynthesis , Immunohistochemistry , Male , Receptor, Endothelin A/biosynthesis , Receptor, Endothelin B/biosynthesis , Tyrosine 3-Monooxygenase/metabolism
4.
J Pharmacol Exp Ther ; 318(2): 819-27, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16651399

ABSTRACT

We investigated the mechanisms involved in the enhancement of endothelin (ET)-1 vascular reactivity induced by ethanol consumption. Ethanol intake for 2, 6, and 10 weeks enhanced the ET-1-induced contractile response of endothelium-intact but not endothelium-denuded rat carotid rings independently of the treatment duration. Conversely, phenylephrine-induced contraction was not affected by ethanol intake. The contraction induced by IRL1620 [succinyl-(Glu(9),Ala(11,15))-ET-1-(8-21)], a selective ET(B) agonist, was increased after treatment with ethanol in endothelium-intact but not in endothelium-denuded carotid rings. Moreover, ET-1- and IRL1620-induced relaxation was reduced in endothelium-intact phenylephrine-precontracted rings from ethanol-treated rats. Acetylcholine-induced relaxation was not affected by ethanol treatment. N(G)-Nitro-l-arginine methyl ester, 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one, indomethacin, and tetraethylammonium reduced the relaxation induced by IRL1620 in carotid glands from control but not ethanol-treated rats. The mRNA levels for ET(A) and ET(B) receptors were not altered by ethanol consumption. However, ethanol treatment reduced the protein expression of ET(B) receptors. Furthermore, immunohistochemical assays showed reduced immunostaining for endothelial ET(B) receptors after treatment with ethanol. We conclude that ethanol consumption enhances ET-1-induced contraction in the rat carotid and that this response is not different among the three periods of treatment used in this study. Finally, the potentiation of ET-1-induced vascular reactivity is probably caused by reduced expression of relaxing endothelial ET(B) receptors.


Subject(s)
Carotid Arteries/drug effects , Central Nervous System Depressants/pharmacology , Endothelin-1/pharmacology , Ethanol/pharmacology , Muscle, Smooth, Vascular/drug effects , Acetylcholine/pharmacology , Animals , Blood Glucose/metabolism , Blotting, Western , Body Weight/drug effects , Central Nervous System Depressants/blood , Dose-Response Relationship, Drug , Endothelins/pharmacology , Ethanol/blood , Immunohistochemistry , In Vitro Techniques , Male , Muscle Contraction/drug effects , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Peptides, Cyclic/pharmacology , Phenylephrine/pharmacology , Piperidines/pharmacology , Rats , Rats, Wistar , Receptor, Endothelin A/biosynthesis , Receptor, Endothelin B/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL