Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 787
1.
Cell Mol Biol Lett ; 29(1): 71, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745155

BACKGROUND: Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS: The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS: We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS: This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.


Autophagy , Breast Neoplasms , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Autophagy/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cell Line, Tumor , MCF-7 Cells , Signal Transduction/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
2.
Eur J Med Chem ; 272: 116473, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38718625

Fibroblast growth factor receptor 2 (FGFR2) represents an appealing therapeutic target for multiple cancers, yet no selective FGFR2 inhibitors have been approved for clinical use to date. Here, we report the discovery of a series of new selective, irreversible FGFR2 inhibitors. The representative compound LHQ490 potently inhibited FGFR2 kinase activity with an IC50 of 5.2 nM, and was >61-, >34-, and >293-fold selective against FGFR1, FGFR3, and FGFR4, respectively. LHQ490 also exhibited high selectivity in a panel of 416 kinases. Cell-based studies revealed that LHQ490 efficiently suppressed the proliferation of BaF3-FGFR2 cells with an IC50 value of 1.4 nM, and displayed >70- and >714-fold selectivity against BaF3-FGFR1 and the parental BaF3 cells, respectively. More importantly, LHQ490 potently suppressed the FGFR2 signaling pathways, selectively inhibited FGFR2-driven cancer cell proliferation, and induced apoptosis of FGFR2-driven cancer cells. Taken together, this study provides a potent and highly selective FGFR2 inhibitor for further development of FGFR2-targeted therapeutic agents.


Cell Proliferation , Dose-Response Relationship, Drug , Drug Discovery , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Humans , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Drug Screening Assays, Antitumor , Cell Line, Tumor
3.
Anticancer Res ; 44(6): 2393-2406, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821585

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is an aggressive tumor with limited treatment options especially in 2nd line or later treatments. Targeting fibroblast growth factor receptor (FGFR) 2 has recently emerged as a promising treatment option for patients with CCA harboring FGFR2-fusion. This study investigated the antitumor activities of tasurgratinib as an orally available FGFR1-3 inhibitor, in preclinical FGFR2-driven CCA models. MATERIALS AND METHODS: Antitumor activities of tasurgratinib were examined in vitro and in vivo using NIH/3T3 cells expressing FGFR2-fusion as FGFR2-driven CCA models, and in vivo using a CCA patient-derived xenograft model. The molecular mechanism of action of tasurgratinib was elucidated through co-crystal structure analysis with FGFR1, manual complex model analysis with FGFR2, and binding kinetics analysis with FGFR2. Furthermore, the cell-based inhibitory activities against acquired resistant FGFR2 mutations in patients with CCA treated with FGFR inhibitors were evaluated. RESULTS: Tasurgratinib showed antitumor activity in preclinical FGFR2-driven CCA models by inhibiting the FGFR signaling pathway in vitro and in vivo. Furthermore, cell-based target engagement assays indicated that tasurgratinib had potent inhibitory activities against FGFR2 mutations, such as N549H/K, which are the major acquired mutations in CCA. We also confirmed that tasurgratinib exhibited fast association and slow dissociation kinetics with FGFR2, binding to the ATP-binding site and the neighboring region, and adopting an Asp-Phe-Gly (DFG)-"in" conformation. CONCLUSION: These data demonstrate the therapeutic potential of tasurgratinib in FGFR2-driven CCA and provide molecular mechanistic insights into its unique inhibitory profile against secondary FGFR2 resistance mutations in patients with CCA treated with FGFR inhibitors.


Bile Duct Neoplasms , Cholangiocarcinoma , Receptor, Fibroblast Growth Factor, Type 2 , Xenograft Model Antitumor Assays , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Administration, Oral , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , NIH 3T3 Cells , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Cell Proliferation/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors
4.
Nat Commun ; 15(1): 3805, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714664

Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.


Bile Duct Neoplasms , Cholangiocarcinoma , Glucose , Glycolysis , NF-kappa B , Receptor, Fibroblast Growth Factor, Type 2 , Signal Transduction , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Humans , NF-kappa B/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Glycolysis/drug effects , Glucose/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mitochondria/metabolism , Mitochondria/drug effects , Pyrimidines/pharmacology , Autophagy/drug effects , Gene Expression Regulation, Neoplastic/drug effects
5.
Curr Opin Oncol ; 36(4): 320-325, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38726837

PURPOSE OF REVIEW: This review is timely and relevant due to the increasing recognition of the significance of the fibroblast growth factor receptor (FGFR) family in cancer biology. Understanding the role of FGFRs and their dysregulation in various cancers is crucial for developing targeted therapies and improving patient outcomes. RECENT FINDINGS: The review highlights the importance of the FGFR family in cellular processes such as growth, proliferation, and survival. It discusses how abnormalities in FGFR2, including overexpression, gene amplification, and other genetic alterations, contribute to cancer progression, particularly in gastro-intestinal cancers. The paper also emphasizes the promising results of FGFR-targeted therapies, especially tyrosine kinase inhibitors, in certain cancers such as cholangiocarcinoma and oesophagogastric cancers. SUMMARY: The findings underscore the potential of FGFR-targeted therapies in treating cancers with FGFR dysregulation. However, the review also addresses the challenges associated with these therapies, including toxicities and mechanisms of resistance. Understanding these complexities is essential for optimizing the efficacy of FGFR-targeted treatments and improving patient outcomes in clinical practice and research efforts.


Gastrointestinal Neoplasms , Receptors, Fibroblast Growth Factor , Humans , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/metabolism , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
6.
Cell Death Dis ; 15(4): 279, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637504

Cisplatin (DDP)-based chemoradiotherapy is one of the standard treatments for nasopharyngeal carcinoma (NPC). However, the sensitivity and side effects of DDP to patients remain major obstacles for NPC treatment. This research aimed to study DDP sensitivity regulated by cancer-associated fibroblasts (CAFs) through modulating ferroptosis. We demonstrated that DDP triggered ferroptosis in NPC cells, and it inhibited tumor growth via inducing ferroptosis in xenograft model. CAFs secreted high level of FGF5, thus inhibiting DDP-induced ferroptosis in NPC cells. Mechanistically, FGF5 secreted by CAFs directly bound to FGFR2 in NPC cells, leading to the activation of Keap1/Nrf2/HO-1 signaling. Rescued experiments indicated that FGFR2 overexpression inhibited DDP-induced ferroptosis, and CAFs protected against DDP-induced ferroptosis via FGF5/FGFR2 axis in NPC cells. In vivo data further showed the protective effects of FGF5 on DDP-triggered ferroptosis in NPC xenograft model. In conclusion, CAFs inhibited ferroptosis to decrease DDP sensitivity in NPC through secreting FGF5 and activating downstream FGFR2/Nrf2 signaling. The therapeutic strategy targeting FGF5/FGFR2 axis from CAFs might augment DDP sensitivity, thus decreasing the side effects of DDP in NPC treatment.


Cancer-Associated Fibroblasts , Ferroptosis , Nasopharyngeal Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Cancer-Associated Fibroblasts/metabolism , NF-E2-Related Factor 2/metabolism , Cell Line, Tumor , Nasopharyngeal Neoplasms/pathology , Drug Resistance, Neoplasm , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Fibroblast Growth Factor 5
7.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674107

The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2.


Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Humans , Mutation , Machine Learning , Mutation, Missense , Models, Molecular , Protein Conformation , Protein Domains , Structure-Activity Relationship
8.
Sci Rep ; 14(1): 6724, 2024 03 20.
Article En | MEDLINE | ID: mdl-38509118

The balance between Noggin and bone morphogenetic proteins (BMPs) is important during early development and skeletal regenerative therapies. Noggin binds BMPs in the extracellular space, thereby preventing BMP signaling. However, Noggin may affect cell response not necessarily through the modulation of BMP signaling, raising the possibility of direct Noggin signaling through yet unspecified receptors. Here we show that in osteogenic cultures of adipose-derived stem cells (ASCs), Noggin activates fibroblast growth factor receptors (FGFRs), Src/Akt and ERK kinases, and it stabilizes TAZ proteins in the presence of dexamethasone. Overall, this leads ASCs to increased expression of osteogenic markers and robust mineral deposition. Our results also indicate that Noggin can induce osteogenic genes expression in normal human bone marrow stem cells and alkaline phosphatase activity in normal human dental pulp stem cells. Besides, Noggin can specifically activate FGFR2 in osteosarcoma cells. We believe our findings open new research avenues to further explore the involvement of Noggin in cell fate modulation by FGFR2/Src/Akt/ERK signaling and potential applications of Noggin in bone regenerative therapies.


Mesenchymal Stem Cells , Osteogenesis , Humans , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Cells, Cultured , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Carrier Proteins/metabolism
9.
Sci Rep ; 14(1): 3136, 2024 02 07.
Article En | MEDLINE | ID: mdl-38326380

FGFR inhibitors have been developed to inhibit FGFR activation and signal transduction; notwithstanding, currently the selection of intrahepatic cholangiocarcinoma (iCCA) patients for these drugs only relies on the detection of FGFR2 genetic alterations (GAs) in tumor tissues or circulating tumor DNAs, without concomitant assessment of FGFR2 signalling status. Accordingly, we performed multi-omic analyses of FGFR2 genes and FGFR2 signalling molecules in the tissue samples from 36 iCCA naïve patients. Gain-of-function FGFR2 GAs were detected in 7 patients, including missense mutations (n = 3; p.F276C, p.C382R and p.Y375C), translocations (n = 1) and copy number gain (n = 4; CNV ≥ 4). In contrast, among 29 patients with wild-type FGFR2, 4 cases showed activation of FGFR2 signalling, as they expressed the FGFR2 ligand FGF10 and phosphorylated FGFR2/FRS2α proteins; the remaining 25 cases resulted negative for activated FGFR2 signalling, as they lacked FGFR2 (n = 8) or phosphorylated FRS2α (n = 17) expression. Overall, we found that activation of FGFR2 signalling occurs not only in iCCA naïve patients with FGFR2 GAs, but also in a subgroup carrying wild-type FGFR2. This last finding entails that also this setting of patients could benefit from FGFR targeted therapies, widening indication of these drugs for iCCA patients beyond current approval. Future clinical studies are therefore encouraged to confirm this hypothesis.


Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Biomarkers , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism
10.
Nat Commun ; 15(1): 1287, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38346946

Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.


Bile Duct Neoplasms , Cholangiocarcinoma , Phenylurea Compounds , Quinolines , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology
11.
Yi Chuan ; 46(1): 46-62, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38230456

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer accounting for 90% of cases. It is a highly invasive and deadly cancer with a gradual onset. Polypyrimidine tract-binding protein 1 (PTBP1) is an important RNA-binding protein involved in RNA metabolism and has been linked to oncogenic splicing events. While the oncogenic role of PTBP1 in HCC cells has been established, the exact mechanism of action remains unclear. This study aimed to investigate the functional connection between PTBP1 and dysregulated splicing events in HCC. Through immunoprecipitation-mass spectrometry analyses, we discovered that the proteins bound to PTBP1 were significantly enriched in the complex responsible for the alternative splicing of FGFR2 (fibroblast growth factor receptor 2). Further RNA immunoprecipitation and quantitative PCR assays confirmed that PTBP1 down-regulated the FGFR2-IIIb isoform levels and up-regulated the FGFR2-IIIc isoform levels in HCC cells, leading to a switch from FGFR2-IIIb to FGFR2-IIIc isoforms. Subsequent functional evaluations using CCK-8, transwell, and plate clone formation assays in HCC cell lines HepG2 and Huh7 demonstrated that FGFR2-IIIb exhibited tumor-suppressive effects, while FGFR2-IIIc displayed tumor-promoting effects. In conclusion, this study provides insights into the PTBP1-mediated alternative splicing mechanism in HCC progression, offering a new theoretical basis for the prevention and treatment of this malignancy. Mechanistically, the isoform switch from FGFR2-IIIb to FGFR2-IIIc promoted epithelial-mesenchymal transformation (EMT) of HCC cells and activated the FGFR cascades ERK and AKT pathways.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Protein Isoforms/genetics , Alternative Splicing , RNA/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism
12.
Mol Pharm ; 21(2): 895-903, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38170629

To develop radiolabeled FGFR2-targeting probes for visualizing fibroblast growth factor receptor (FGFR) expression levels in the tumor microenvironment, four novel 99mTc-labeled FGFR2-targeting peptides ([99mTc]Tc-FGFR2-1, [99mTc]Tc-FGFR2-2, [99mTc]Tc-FGFR2-3, and [99mTc]Tc-FGFR2-4) with different amino acid linkers between the targeted peptide moiety and the 99mTc chelating group were designed and synthesized. The in vitro cellular inhibition, internalization, and efflux results demonstrated that the four 99mTc complexes exhibited FGFR2-specific binding and prolonged cellular retention in DU145 human prostate cancer cells, which indicated that modification from the glycine side (N-terminal) of CH02 was feasible. Among them, [99mTc]Tc-FGFR2-1 exhibited the highest in vitro cellular uptake and in vivo tumor uptake at 30 min postinjection, and tumor uptake could be significantly inhibited by the competitor CH02 (53% inhibited, p < 0.05), suggesting the tumor-specific targeting ability of [99mTc]Tc-FGFR2-1. The DU145-xenografted tumor lesions were clearly visualized by single photon emission computed tomography (SPECT)/CT at 30 min postinjection of [99mTc]Tc-FGFR2-1, highlighting its potential as a SPECT imaging probe for tumor FGFR2 detection.


Melanoma , Peptides , Male , Humans , Peptides/chemistry , Tomography, Emission-Computed, Single-Photon/methods , Melanoma/metabolism , Chelating Agents , Protein Binding , Cell Line, Tumor , Tumor Microenvironment , Receptor, Fibroblast Growth Factor, Type 2/metabolism
13.
Virchows Arch ; 484(1): 147-150, 2024 Jan.
Article En | MEDLINE | ID: mdl-36856760

In general, endometrioid-defining features such as squamoid morular metaplasia are not thought to be associated with mesonephric adenocarcinoma (MA) and mesonephric-like adenocarcinoma (MLA). Here, we report a case of FGFR2-mutated ovarian MLA with squamoid morular metaplasia accompanied by aberrant nuclear and cytoplasmic ß-catenin expression and CTNNB1 mutation. Histologically, the tumor showed classical MLA histology, including well-formed glands with intraluminal eosinophilic secretions and cells with papillary thyroid carcinoma-like nuclei. Squamoid morular metaplasia was intimately associated with the tumor. Glandular epithelial elements, including those immediately associated with the squamoid morules, were negative for ER, but positive for both GATA3 and PAX8; aberrant ß-catenin expression was limited to the squamoid morules. This case illustrates the ability of mesonephric neoplasia to exhibit histological features previously thought to be restricted to an endometrioid phenotype.


Adenocarcinoma , Ovary , Female , Humans , Ovary/pathology , beta Catenin/genetics , beta Catenin/metabolism , Adenocarcinoma/pathology , Metaplasia , Mutation , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
14.
J Invest Dermatol ; 144(2): 341-350.e7, 2024 Feb.
Article En | MEDLINE | ID: mdl-37660781

A potential role for fibroblast growth factor receptor 2 (FGFR2) in cutaneous squamous cell carcinoma (cSCC) has been reported. To demonstrate the specific role of FGFR2 in UVB-induced skin carcinogenesis and development of cSCC, we generated a keratinocyte specific, tamoxifen inducible mouse model of FGFR2 deficiency. In this mouse model, topical application of 4-hydroxy tamoxifen led to the induction of Cre recombinase to delete FGFR2 in epidermal keratinocytes of both male and female transgenic mice. Analysis of epidermal protein lysates isolated from FGFR2 deficient mice exposed to UVB showed significant reductions of phospho-FGFR (pFGFR; Y653/654) and phospho-fibroblast growth factor receptor substrate 2α as well as downstream effectors of mTORC1 signaling. Phosphorylation of signal transducer and activators of transcription 1/3 was significantly reduced as well as levels of IRF-1, DUSP6, early growth response 1, and PD-L1 compared to the control groups. Keratinocyte-specific ablation of FGFR2 also significantly inhibited epidermal hyperproliferation, hyperplasia, and inflammation after exposure to UVB. Finally, keratinocyte-specific deletion of FGFR2 significantly inhibited UVB-induced cSCC formation. Collectively, the current data demonstrate an important role of FGFR2 in UVB-induced oncogenic signaling as well as development of cSCC. In addition, the current preclinical findings suggest that inhibition of FGFR2 signaling may provide a previously unreported strategy to prevent and/or treat UVB-induced cSCC.


Carcinoma, Squamous Cell , Skin Neoplasms , Animals , Female , Male , Mice , Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , Inflammation/metabolism , Keratinocytes/metabolism , Mice, Transgenic , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/prevention & control , Tamoxifen , Ultraviolet Rays/adverse effects
15.
J Biomol Struct Dyn ; 42(4): 1940-1951, 2024.
Article En | MEDLINE | ID: mdl-37254996

The fibroblast growth factor receptor 2 (FGFR2) is a key component in cellular signaling networks, and its dysfunctional activation has been implicated in various diseases including cancer and developmental disorders. Mutations at the activation loop (A-loop) have been suggested to trigger an increased basal kinase activity. However, the molecular mechanism underlying this highly dynamic process has not been fully understood due to the limitation of static structural information. Here, we conducted multiple, large-scale Gaussian accelerated molecular dynamics simulations of five (K659E, K659N, K659M, K659Q, and K659T) FGFR2 mutants at the A-loop, and comprehensively analyzed the dynamic molecular basis of FGFR2 activation. The results quantified the population shift of each system, revealing that all mutants had a higher proportion of active-like states. Using Markov state models, we extracted the representative structure of different conformational states and identified key residues related to the increased kinase activity. Furthermore, community network analysis showed enhanced information connections in the mutants, highlighting the long-range allosteric communication between the A-loop and the hinge region. Our findings may provide insights into the dynamic mechanism for FGFR2 dysfunctional activation and allosteric drug discovery.Communicated by Ramaswamy H. Sarma.


Molecular Dynamics Simulation , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Phosphorylation , Mutation
16.
J Hepatol ; 80(2): 322-334, 2024 Feb.
Article En | MEDLINE | ID: mdl-37972659

BACKGROUND & AIMS: There is a knowledge gap in understanding mechanisms of resistance to fibroblast growth factor receptor (FGFR) inhibitors (FGFRi) and a need for novel therapeutic strategies to overcome it. We investigated mechanisms of acquired resistance to FGFRi in patients with FGFR2-fusion-positive cholangiocarcinoma (CCA). METHODS: A retrospective analysis of patients who received FGFRi therapy and underwent tumor and/or cell-free DNA analysis, before and after treatment, was performed. Longitudinal circulating tumor DNA samples from a cohort of patients in the phase I trial of futibatinib (NCT02052778) were assessed. FGFR2-BICC1 fusion cell lines were developed and secondary acquired resistance mutations in the mitogen-activated protein kinase (MAPK) pathway were introduced to assess their effect on sensitivity to FGFRi in vitro. RESULTS: On retrospective analysis of 17 patients with repeat sequencing following FGFRi treatment, new FGFR2 mutations were detected in 11 (64.7%) and new alterations in MAPK pathway genes in nine (52.9%) patients, with seven (41.2%) patients developing new alterations in both the FGFR2 and MAPK pathways. In serially collected plasma samples, a patient treated with an irreversible FGFRi tested positive for previously undetected BRAF V600E, NRAS Q61K, NRAS G12C, NRAS G13D and KRAS G12K mutations upon progression. Introduction of a FGFR2-BICC1 fusion into biliary tract cells in vitro sensitized the cells to FGFRi, while concomitant KRAS G12D or BRAF V600E conferred resistance. MEK inhibition was synergistic with FGFRi in vitro. In an in vivo animal model, the combination had antitumor activity in FGFR2 fusions but was not able to overcome KRAS-mediated FGFRi resistance. CONCLUSIONS: These findings suggest convergent genomic evolution in the MAPK pathway may be a potential mechanism of acquired resistance to FGFRi. CLINICAL TRIAL NUMBER: NCT02052778. IMPACT AND IMPLICATIONS: We evaluated tumors and plasma from patients who previously received inhibitors of fibroblast growth factor receptor (FGFR), an important receptor that plays a role in cancer cell growth, especially in tumors with abnormalities in this gene, such as FGFR fusions, where the FGFR gene is fused to another gene, leading to activation of cancer cell growth. We found that patients treated with FGFR inhibitors may develop mutations in other genes such as KRAS, and this can confer resistance to FGFR inhibitors. These findings have several implications for patients with FGFR2 fusion-positive tumors and provide mechanistic insight into emerging MAPK pathway alterations which may serve as a therapeutic vulnerability in the setting of acquired resistance to FGFRi.


Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Humans , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/therapeutic use , Retrospective Studies , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Mutation , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Protein Kinase Inhibitors/adverse effects , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
17.
Adv Biol (Weinh) ; 8(3): e2300250, 2024 Mar.
Article En | MEDLINE | ID: mdl-38047500

Neuromodulation-related intervertebral disc degeneration (IVDD) is a novel IVDD pattern and are proposed recently. However, the mechanistic basis of neuromodulation and intervertebral disc (IVD) homeostasis remains unclear. Here, this study aimed to investigate the expression of postganglionic sympathetic nerve fiber-derived vasoactive intestinal peptide (VIP) system in human IVD tissue, and to assess the role of VIP-related neuromodulation in IVDD. Patient samples and in vitro cell experiments showed that the expression of receptors for VIP is negatively correlated with the severity of IVDD, and the administration of exogenous VIP can ameliorate interleukin 1ß-induced nucleus pulposus (NP) cell apoptosis and inflammation. Further mRNA-seq analysis revealed that fibroblast growth factor 18- (FGF18)-mediated activation of V-akt murine thymoma viral oncogene homolog signaling pathway is involved in the protective effects of VIP on inflammation-induced NP cell degeneration. Further analysis identified VIP via its receptor vasoactive intestinal peptide receptor 2 can directly result in decreased expression of miR-15a-5p, which targeted FGF18. Finally, in vivo mice lumbar IVDD model confirmed that focally exogenous administration of VIP can effectively ameliorated the progression of IVDD, as shown by the radiological and histological analysis. In conclusion, these results indicated that sympathetic neurotransmitter, VIP, delayed IVDD via FGF18/FGFR2-mediated activation of V-akt murine thymoma viral oncogene homolog signaling pathway, which will broaden the horizon concerning how the neuromodulation correlates with IVDD and shed new light on novel therapeutical alternatives to IVDD.


Fibroblast Growth Factors , Intervertebral Disc Degeneration , Thymoma , Thymus Neoplasms , Humans , Mice , Animals , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Vasoactive Intestinal Peptide/pharmacology , Vasoactive Intestinal Peptide/therapeutic use , Vasoactive Intestinal Peptide/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Signal Transduction , Carrier Proteins/metabolism , Carrier Proteins/pharmacology , Inflammation/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism
18.
Am J Respir Cell Mol Biol ; 70(1): 63-77, 2024 Jan.
Article En | MEDLINE | ID: mdl-37734036

It is well known that FGFR2 (fibroblast growth factor receptor 2) signaling is critical for proper lung development. Recent studies demonstrate that epithelial FGFR2 signaling during the saccular phase of lung development (sacculation) regulates alveolar type 1 (AT1) and AT2 cell differentiation. During sacculation, PDGFRA (platelet-derived growth factor receptor-α)-positive lung fibroblasts exist as three functional subtypes: contractile myofibroblasts, extracellular matrix-producing matrix fibroblasts, and lipofibroblasts. All three subtypes are required during alveolarization to establish a niche that supports AT2 epithelial cell self-renewal and AT1 epithelial cell differentiation. FGFR2 signaling directs myofibroblast differentiation in PDGFRA+ fibroblasts during alveolar reseptation after pneumonectomy. However, it remains unknown if FGFR2 signaling regulates PDGFRA+ myo-, matrix, or lipofibroblast differentiation during sacculation. In this study, FGFR2 signaling was inhibited by temporal expression of a secreted dominant-negative FGFR2b (dnFGFR2) by AT2 cells from embryonic day (E) 16.5 to E18.5. Fibroblast and epithelial differentiation were analyzed at E18.5 and postnatal days 7 and 21. At all time points, the number of myofibroblasts was reduced and the number of lipo-/matrix fibroblasts was increased. AT2 cells are increased and AT1 cells are reduced postnatally, but not at E18.5. Similarly, in organoids made with PDGFRA+ fibroblasts from dnFGFR2 lungs, increased AT2 cells and reduced AT1 cells were observed. In vitro treatment of primary wild-type E16.5 adherent saccular lung fibroblasts with recombinant dnFGFR2b/c resulted in reduced myofibroblast contraction. Treatment with the PI3K/AKT activator 740 Y-P rescued the lack of myofibroblast differentiation caused by dnFGFR2b/2c. Moreover, treatment with the PI3K/AKT activator 740 Y-P rescued myofibroblast differentiation in E18.5 fibroblasts isolated from dnFGFR2 lungs.


Myofibroblasts , Receptor, Fibroblast Growth Factor, Type 2 , Myofibroblasts/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Lung/metabolism , Cell Differentiation , Fibroblasts/metabolism , Cells, Cultured
19.
Sci Rep ; 13(1): 20223, 2023 11 18.
Article En | MEDLINE | ID: mdl-37980453

Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.


Breast Neoplasms , Animals , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Pyrazoles , Pyrimidines/pharmacology , Pyrroles , Receptor, Fibroblast Growth Factor, Type 1/genetics , Disease Models, Animal
20.
Eur Respir J ; 62(5)2023 11.
Article En | MEDLINE | ID: mdl-37884305

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Cigarette Smoking , Emphysema , Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Pulmonary Disease, Chronic Obstructive/drug therapy , Hypertension, Pulmonary/complications , Pancreatic Elastase/adverse effects , Pancreatic Elastase/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/therapeutic use , Cigarette Smoking/adverse effects , Pulmonary Emphysema/etiology , Lung/metabolism , Emphysema/complications , Mice, Inbred C57BL
...