Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.440
Filter
1.
J Transl Med ; 22(1): 719, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103832

ABSTRACT

With the increasing age of the population worldwide, the incidence rate of Parkinson's disease (PD) is increasing annually. Currently, the treatment strategy for PD only improves clinical symptoms. No effective treatment strategy can slow down the progression of the disease. In the present study, whole transcriptome sequencing was used to obtain the mRNA and miRNA expression profiles in a PD mouse model, which revealed the pathogenesis of PD. The transcription factor RUNX3 upregulated the miR-186-3p expression in the PD model. Furthermore, the high miR-186-3p expression in PD can be targeted to inhibit the DAT expression, resulting in a decrease in the dopamine content of dopaminergic neurons. Moreover, miR-186-3p can be targeted to inhibit the IGF1R expression and prevent the activation of the IGF1R-P-PI3K-P-AKT pathway, thus increasing the apoptosis of dopaminergic neurons by regulating the cytochrome c-Bax-cleaved caspase-3 pathway. Our research showed that the RUNX3-miR-186-3p-DAT-IGF1R axis plays a key role in the pathogenesis of PD, and miR-186-3p is a potential target for the treatment of PD.


Subject(s)
Core Binding Factor Alpha 3 Subunit , Disease Models, Animal , MicroRNAs , Parkinson Disease , Receptor, IGF Type 1 , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Mice, Inbred C57BL , Male , Apoptosis/genetics , Signal Transduction , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Mice , Base Sequence
2.
Clin Sci (Lond) ; 138(15): 941-962, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39018488

ABSTRACT

Atrial fibrillation (AF) remains challenging to prevent and treat. A key feature of AF is atrial enlargement. However, not all atrial enlargement progresses to AF. Atrial enlargement in response to physiological stimuli such as exercise is typically benign and reversible. Understanding the differences in atrial function and molecular profile underpinning pathological and physiological atrial remodelling will be critical for identifying new strategies for AF. The discovery of molecular mechanisms responsible for pathological and physiological ventricular hypertrophy has uncovered new drug targets for heart failure. Studies in the atria have been limited in comparison. Here, we characterised mouse atria from (1) a pathological model (cardiomyocyte-specific transgenic (Tg) that develops dilated cardiomyopathy [DCM] and AF due to reduced protective signalling [PI3K]; DCM-dnPI3K), and (2) a physiological model (cardiomyocyte-specific Tg with an enlarged heart due to increased insulin-like growth factor 1 receptor; IGF1R). Both models presented with an increase in atrial mass, but displayed distinct functional, cellular, histological and molecular phenotypes. Atrial enlargement in the DCM-dnPI3K Tg, but not IGF1R Tg, was associated with atrial dysfunction, fibrosis and a heart failure gene expression pattern. Atrial proteomics identified protein networks related to cardiac contractility, sarcomere assembly, metabolism, mitochondria, and extracellular matrix which were differentially regulated in the models; many co-identified in atrial proteomics data sets from human AF. In summary, physiological and pathological atrial enlargement are associated with distinct features, and the proteomic dataset provides a resource to study potential new regulators of atrial biology and function, drug targets and biomarkers for AF.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Heart Atria , Mice, Transgenic , Myocytes, Cardiac , Atrial Fibrillation/physiopathology , Atrial Fibrillation/metabolism , Atrial Fibrillation/genetics , Animals , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Atria/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Disease Models, Animal , Fibrosis , Mice , Humans , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Heart Failure/physiopathology , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology
3.
Growth Horm IGF Res ; 77: 101607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39033666

ABSTRACT

Type 2 diabetes is characterised by the disruption of insulin and insulin-like growth factor (IGF) signalling. The key hubs of these signalling cascades - the Insulin receptor (IR) and Insulin-like growth factor 1 receptor (IGF1R) - are known to form functional IR-IGF1R hybrid receptors which are insulin resistant. However, the mechanisms underpinning IR-IGF1R hybrid formation are not fully understood, hindering the ability to modulate this for future therapies targeting this receptor. To pinpoint suitable sites for intervention, computational hotspot prediction was utilised to identify promising epitopes for targeting with point mutagenesis. Specific IGF1R point mutations F450A, R391A and D555A show reduced affinity of the hybrid receptor in a BRET based donor-saturation assay, confirming hybrid formation could be modulated at this interface. These data provide the basis for rational design of more effective hybrid receptor modulators, supporting the prospect of identifying a small molecule that specifically interacts with this target.


Subject(s)
Mutagenesis, Site-Directed , Receptor, IGF Type 1 , Receptor, Insulin , Receptor, Insulin/genetics , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Humans , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/metabolism , Protein Multimerization , Insulin-Like Peptides , Antigens, CD
4.
Nutrients ; 16(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064775

ABSTRACT

The most widely used synthetic glucocorticoid, dexamethasone (DEX), causes stunted growth in children when used excessively or for long periods of time; however, there are still plenty of pediatric patients require long-term treatment with DEX. As an alternative, growth hormone is used in combination, but it has side effects, a high cost, and psychological factors, and it is not satisfactory in terms of effectiveness. It is necessary to develop a safe and affordable treatment that can replace it. The Korean Food and Drug Administration approved HT042, a standardized functional food ingredient, with the claim that it can help height growth of children. In this study, it was found that HT042 activated the Indian hedgehog/parathyroid hormone-related protein signaling pathway and enhanced the number of growth hormone receptors and insulin-like growth factor-1 receptors on the growth plate surface, which were reduced by DEX treatment, and restored growth retardation. In metatarsal bone and primary chondrocyte models, it was found that HT042 can promote the length of growth plate and recover DEX-induced growth retardation. It was also found that HT042 promotes cell proliferation using bromodeoxyuridine and terminal deoxynucleotidyl transferase dUTP nick end labeling assays; moreover, we verified increased expression of GHR/IGF-1R and Ihh/PTHrP pathway activity using qRT-PCR, western blotting, and siRNA analyses to verify its direct action on the growth plate. The anti-apoptotic effect of HT042 was identified by regulating the expression of apoptotic factors such as caspase-3, Bcl2, Bclx, and Bax. These results were identified using both ex vivo and in vitro models. Our study verified that co-administration of HT042 could recover the DEX induced growth retardation.


Subject(s)
Cell Proliferation , Dexamethasone , Growth Plate , Metatarsal Bones , Plant Extracts , Signal Transduction , Animals , Dexamethasone/pharmacology , Metatarsal Bones/drug effects , Growth Plate/drug effects , Rats , Cell Proliferation/drug effects , Signal Transduction/drug effects , Plant Extracts/pharmacology , Male , Hedgehog Proteins/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Parathyroid Hormone-Related Protein/metabolism , Rats, Sprague-Dawley , Apoptosis/drug effects , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Bone Development/drug effects , Growth Disorders/chemically induced
5.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963344

ABSTRACT

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Subject(s)
Cell Differentiation , Endoplasmic Reticulum Chaperone BiP , Muscle, Skeletal , Myoblasts , Receptor, IGF Type 1 , Signal Transduction , Tunicamycin , Animals , Mice , Glycosylation , Myoblasts/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Tunicamycin/pharmacology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Muscle, Skeletal/metabolism , Muscle Development/physiology , Cell Line , Mice, Transgenic , Endoplasmic Reticulum Stress , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics
6.
Exp Gerontol ; 194: 112512, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971545

ABSTRACT

OBJECTIVE: This study investigated sex-specific pathogenesis mechanisms in Alzheimer's disease (AD) using single-nucleus RNA sequencing (snRNA-seq) data. METHODS: Data from the Gene Expression Omnibus (GEO) were searched using terms "Alzheimer's Disease", "single cell", and "Homo sapiens". Studies excluding APOE E4 and including comprehensive gender information with 10× sequencing methods were selected, resulting in GSE157827 and GSE174367 datasets from human prefrontal cortex samples. Sex-stratified analyses were conducted on these datasets, and the outcomes of the analysis for GSE157827 were compared with those of GSE174367. The findings were validated using expression profiling from the mouse dataset GSE85162. Furthermore, real-time PCR experiments in mice further confirmed these findings. The Seurat R package was used to identify cell types, and batch effects were mitigated using the Harmony R package. Cell proportions by sex were compared using the Mann-Whitney-Wilcoxon test, and gene expression variability was displayed with an empirical cumulative distribution plot. Differentially expressed genes were identified using the FindMarkers function with the MAST test. Transcription factors were analyzed using the RcisTarget R package. RESULTS: Seven cell types were identified: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, and oligodendrocyte progenitor cells. Additionally, five distinct subpopulations of both endothelial and microglial cells were also identified, respectively. Key findings included: (1) In endothelial cells, genes involved in synapse organization, such as Insulin Like Growth Factor 1 Receptor (IGF1R) and Fms Related Receptor Tyrosine Kinase 1(FLT1), showed higher expression in females with AD. (2) In microglial cells, genes in the ribosome pathway exhibited higher expression in males without AD compared to females (with or without AD) and males with AD. (3) Chromodomain Helicase DNA Binding Protein 2 (CHD2) negatively regulated gene expression in the ribosome pathway in male microglia, suppressing AD, this finding was further validated in mice. (4) Differences between Asians and Caucasians were observed based on sex and disease status stratification. CONCLUSIONS: IGF1R and FLT1 in endothelial cells contribute to AD in females, while CHD2 negatively regulates ribosome pathway gene expression in male microglia, suppressing AD in humans and mice.


Subject(s)
Alzheimer Disease , Endothelial Cells , Microglia , Receptor, IGF Type 1 , Vascular Endothelial Growth Factor Receptor-1 , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Female , Animals , Male , Microglia/metabolism , Humans , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Mice , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Sex Factors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Prefrontal Cortex/metabolism , Mice, Inbred C57BL
7.
J Cell Mol Med ; 28(13): e18471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984951

ABSTRACT

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.


Subject(s)
Extracellular Vesicles , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Vascular Endothelial Growth Factor A , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Humans , Stem Cells/metabolism , Male , Gene Expression Regulation , Wound Healing/genetics , Cell Hypoxia/genetics , Signal Transduction , Up-Regulation/genetics , Neovascularization, Physiologic/genetics
8.
Sci Rep ; 14(1): 15324, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961143

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.


Subject(s)
Computational Biology , Diabetic Cardiomyopathies , Gene Regulatory Networks , Protein Interaction Maps , Diabetic Cardiomyopathies/genetics , Computational Biology/methods , Animals , Mice , Protein Interaction Maps/genetics , Humans , Plasminogen Activator Inhibitor 1/genetics , Gene Expression Profiling , Receptor, IGF Type 1/genetics , Gene Ontology , Gene Expression Regulation
9.
J Exp Clin Cancer Res ; 43(1): 211, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075581

ABSTRACT

BACKGROUND: Early cutaneous squamous cell carcinomas (cSCCs) generally show epithelial differentiation features and good prognosis, whereas advanced cSCCs present mesenchymal traits associated with tumor relapse, metastasis, and poor survival. Currently, the mechanisms involved in cSCC progression are unclear, and the established markers are suboptimal for accurately predicting the clinical course of the disease. METHODS: Using a mouse model of cSCC progression, expression microarray analysis, immunofluorescence and flow cytometry assays, we have identified a prognostic biomarker of tumor relapse, which has been evaluated in a cohort of cSCC patient samples. Phosphoproteomic analysis have revealed signaling pathways induced in epithelial plastic cancer cells that promote epithelial-mesenchymal plasticity (EMP) and tumor progression. These pathways have been validated by genetic and pharmacological inhibition assays. RESULTS: We show that the emergence of epithelial cancer cells expressing integrin αV (ITGAV) promotes cSCC progression to a mesenchymal state. Consistently, ITGAV expression allows the identification of patients at risk of cSCC relapse above the currently employed clinical histopathological parameters. We also demonstrate that activation of insulin-like growth factor-1 receptor (IGF1R) pathway in epithelial cancer cells is necessary to induce EMP and mesenchymal state acquisition in response to tumor microenvironment-derived factors, while promoting ITGAV expression. Likewise, ITGAV knockdown in epithelial plastic cancer cells also blocks EMP acquisition, generating epithelial tumors. CONCLUSIONS: Our results demonstrate that ITGAV is a prognostic biomarker of relapse in cSCCs that would allow improved patient stratification. ITGAV also collaborates with IGF1R to induce EMP in epithelial cancer cells and promotes cSCC progression, revealing a potential therapeutic strategy to block the generation of advanced mesenchymal cSCCs.


Subject(s)
Epithelial-Mesenchymal Transition , Receptor, IGF Type 1 , Signal Transduction , Skin Neoplasms , Animals , Humans , Mice , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Cell Line, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Prognosis , Tumor Microenvironment , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
10.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891851

ABSTRACT

Type 1 Diabetes Mellitus (T1DM) can generate severe complications, such as Diabetic Kidney Disease (DKD) or Diabetic Nephropathy (DN), with it emerging as the leading cause of terminal (end-stage) renal disease all over the world. For T1DM, the clinical evaluation of DKD uses markers like the Glomerular Filtration Rate (GFR) and the Urinary Albumin Excretion (UAE). However, early diagnosis of DKD is still a challenge. For this reason, investigating molecular markers, such as microRNAs (miRNAs), offers a promising perspective to an early diagnosis, highlighting the stability and the ability to reflect incipient molecular manifestations. Thus, here we investigated four miRNAs (hsa-let-7i-5p, hsa-miR-143-3p, hsa-miR-501-3p, and hsa-miR-100-5p) regarding nephropathy in patients with T1DM, considering the albuminuria (micro and macro) as a standard to evaluate the groups. As a result, we found a reduced expression of miR-100-5p in patients with MIC, indicating a protective role in nephropathy. Beyond that, expression levels between the groups (Non vs. UAE) were not significant when comparing the miRNAs miR-501-3p and miR-143-3p. Finally, miR-143-3p and miR-100-5p were linked to some target genes such as AKT1, MMP13, and IGF1R, that are connected to signal pathways and cellular metabolism.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , MicroRNAs , Adult , Female , Humans , Male , Middle Aged , Albuminuria/genetics , Biomarkers/analysis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Down-Regulation/genetics , Glomerular Filtration Rate , MicroRNAs/genetics , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
11.
Mol Nutr Food Res ; 68(14): e2300685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38860356

ABSTRACT

SCOPE: Kaempferol (KMP), a bioactive flavonoid compound found in fruits and vegetables, contributes to human health in many ways but little is known about its relationship with muscle mass. The effect of KMP on C2C12 myoblast differentiation and the mechanisms that might underlie that effect are studied. METHODS AND RESULTS: This study finds that KMP (1, 10 µM) increases the migration and differentiation of C2C12 myoblasts in vitro. Studying the possible mechanism underlying its effect on migration, the study finds that KMP activates Integrin Subunit Beta 1 (ITGB1) in C2C12 myoblasts, increasing p-FAK (Tyr398) and its downstream cell division cycle 42 (CDC42), a protein previously associated with cell migration. Regarding differentiation, KMP upregulates the expression of myosin heavy chain (MHC) and activates IGF1/AKT/mTOR/P70S6K. Interestingly, pretreatment with an AKT inhibitor (LY294002) and siRNA knockdown of IGF1R leads to a decrease in cell differentiation, suggesting that IGF1/AKT activation is required for KMP to induce C2C12 myoblast differentiation. CONCLUSION: Together, the findings suggest that KMP enhances the migration and differentiation of C2C12 myoblasts through the ITG1B/FAK/paxillin and IGF1R/AKT/mTOR pathways. Thus, KMP supplementation might potentially be used to prevent or delay age-related loss of muscle mass and help maintain muscle health.


Subject(s)
Cell Differentiation , Cell Movement , Integrin beta1 , Kaempferols , Myoblasts , Paxillin , Proto-Oncogene Proteins c-akt , Receptor, IGF Type 1 , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Kaempferols/pharmacology , TOR Serine-Threonine Kinases/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , Cell Movement/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Integrin beta1/metabolism , Paxillin/metabolism , Cell Line , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics
12.
Oncogene ; 43(29): 2266-2278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811846

ABSTRACT

Type 1 insulin-like growth factor receptor (IGF1R) plays an important role in cancer, however, posttranscriptional regulation such as N6-methyladenosine (m6A) of IGF1R remains unclear. Here, we reveal a role for a lncRNA Downregulated RNA in Cancer (DRAIC) suppress tumor growth and metastasis in clear cell Renal Carcinoma (ccRCC). Mechanistically, DRAIC physically interacts with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) and enhances its protein stability by blocking E3 ligase F-box protein 11 (FBXO11)-mediated ubiquitination and proteasome-dependent degradation. Subsequently, hnRNPA2B1 destabilizes m6A modified-IGF1R, leading to inhibition of ccRCC progression. Moreover, four m6A modification sites are identified to be responsible for the mRNA degradation of IGF1R. Collectively, our findings reveal that DRAIC/hnRNPA2B1 axis regulates IGF1R mRNA stability in an m6A-dependent manner and highlights an important mechanism of IGF1R fate. These findings shed light on DRAIC/hnRNPA2B1/FBXO11/IGF1R axis as potential therapeutic targets in ccRCC and build a link of molecular fate between m6A-modified RNA and ubiquitin-modified protein.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Kidney Neoplasms , Receptor, IGF Type 1 , Humans , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Mice , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Animals , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Disease Progression , RNA Stability/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Protein Stability , Adenosine/analogs & derivatives , Adenosine/metabolism , Ubiquitination , Cell Proliferation/genetics , Mice, Nude
13.
Endocr J ; 71(7): 687-694, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38710621

ABSTRACT

Short stature with IGF-1 receptor (IGF1R) gene alteration is known as small-for-gestational-age (SGA) short stature with elevated serum IGF1 levels. Its prevalence and clinical characteristics remain unclear. No adapted treatment is available for short stature related to IGF1R gene alteration in Japan, and genetic testing is not yet widely accessible. We investigated short stature with IGF1R gene alterations and analyzed the clinical data of 13 patients using the results of questionnaires issued to the Japanese Society for Pediatric Endocrinology. Four cases were caused by a deletion of chromosome 15q26.3, and eight were caused by heterozygous pathogenic variants in the IGF1R gene. Cases with deletions showed a more severe degree of growth impairment (-4.5 ± 0.43 SD) than those caused by pathological variants (-2.71 ± 0.15 SD) and were accompanied by neurodevelopmental delay. However, cases caused by pathological variants lacked distinctive features. Only three of the 12 cases demonstrated serum IGF1 values exceeding +2 SD, and the other three had values below 0 SD. Four patients did not meet the criteria for SGA at birth. Six patients received GH therapy for SGA short stature and showed improvement in growth rate without any side effects or elevated serum IGF1 levels during treatment. Elevated IGF1 levels (over +2 SD) after GH treatment should be considered a suspicious finding. Owing to the lack of distinctive features, there was a possibility of undiagnosed cases of this condition. Promoting genetic testing and clinical trials on GH administration for this condition is recommended.


Subject(s)
Growth Disorders , Human Growth Hormone , Infant, Small for Gestational Age , Receptor, IGF Type 1 , Humans , Receptor, IGF Type 1/genetics , Female , Male , Child , Human Growth Hormone/therapeutic use , Growth Disorders/drug therapy , Growth Disorders/genetics , Child, Preschool , Infant, Small for Gestational Age/growth & development , Insulin-Like Growth Factor I/metabolism , Adolescent , Dwarfism/drug therapy , Dwarfism/genetics , Japan , Body Height/drug effects , Treatment Outcome
14.
Mol Cell Endocrinol ; 591: 112269, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763428

ABSTRACT

Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic ß cells and regulates ß cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in ß cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating ß cells biology, providing a missing link of ß cells O-glycosylation to diabetes development.


Subject(s)
Cell Proliferation , Insulin-Secreting Cells , N-Acetylgalactosaminyltransferases , Polypeptide N-acetylgalactosaminyltransferase , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Animals , Insulin-Secreting Cells/metabolism , Mice , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Mice, Inbred C57BL , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Male , Cell Line , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , Rats , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Signal Transduction , Insulin/metabolism , Insulin Secretion/drug effects
15.
Vascul Pharmacol ; 155: 107379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762131

ABSTRACT

Pulmonary hypertension (PH) is a progressive, severe and to date not curable disease of the pulmonary vasculature. Alterations of the insulin-like growth factor 1 (IGF-1) system are known to play a role in vascular pathologies and IGF-binding proteins (IGFBPs) are important regulators of the bioavailability and function of IGFs. In this study, we show that circulating plasma levels of IGFBP-1, IGFBP-2 and IGFBP-3 are increased in idiopathic pulmonary arterial hypertension (IPAH) patients compared to healthy individuals. These binding proteins inhibit the IGF-1 induced IGF-1 receptor (IGF1R) phosphorylation and exhibit diverging effects on the IGF-1 induced signaling pathways in human pulmonary arterial cells (i.e. healthy as well as IPAH-hPASMCs, and healthy hPAECs). Furthermore, IGFBPs are differentially expressed in an experimental mouse model of PH. In hypoxic mouse lungs, IGFBP-1 mRNA expression is decreased whereas the mRNA for IGFBP-2 is increased. In contrast to IGFBP-1, IGFBP-2 shows vaso-constrictive properties in the murine pulmonary vasculature. Our analyses show that IGFBP-1 and IGFBP-2 exhibit diverging effects on IGF-1 signaling and display a unique IGF1R-independent kinase activation pattern in human pulmonary arterial smooth muscle cells (hPASMCs), which represent a major contributor of PAH pathobiology. Furthermore, we could show that IGFBP-2, in contrast to IGFBP-1, induces epidermal growth factor receptor (EGFR) signaling, Stat-3 activation and expression of Stat-3 target genes. Based on our results, we conclude that the IGFBP family, especially IGFBP-1, IGFBP-2 and IGFBP-3, are deregulated in PAH, that they affect IGF signaling and thereby regulate the cellular phenotype in PH.


Subject(s)
Disease Models, Animal , Insulin-Like Growth Factor Binding Protein 1 , Insulin-Like Growth Factor Binding Protein 2 , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor I , Myocytes, Smooth Muscle , Pulmonary Artery , Receptor, IGF Type 1 , Signal Transduction , Humans , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor I/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cells, Cultured , Male , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Phosphorylation , STAT3 Transcription Factor/metabolism , Case-Control Studies , Mice, Inbred C57BL , Familial Primary Pulmonary Hypertension/metabolism , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/genetics , Female , ErbB Receptors/metabolism , Middle Aged , Vascular Remodeling , Adult , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
16.
Genes (Basel) ; 15(5)2024 05 12.
Article in English | MEDLINE | ID: mdl-38790245

ABSTRACT

Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants.


Subject(s)
Ovary , Receptor, IGF Type 1 , Receptor, Insulin , Animals , Female , Mice , Pregnancy , Granulosa Cells/metabolism , Granulosa Cells/pathology , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Mice, Knockout , Ovary/metabolism , Ovary/pathology , Ovulation/genetics , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction/genetics
17.
Cancer Cell ; 42(6): 1067-1085.e11, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38759655

ABSTRACT

In acral melanoma (AM), progression from in situ (AMis) to invasive AM (iAM) leads to significantly reduced survival. However, evolutionary dynamics during this process remain elusive. Here, we report integrative molecular and spatial characterization of 147 AMs using genomics, bulk and single-cell transcriptomics, and spatial transcriptomics and proteomics. Vertical invasion from AMis to iAM displays an early and monoclonal seeding pattern. The subsequent regional expansion of iAM exhibits two distinct patterns, clonal expansion and subclonal diversification. Notably, molecular subtyping reveals an aggressive iAM subset featured with subclonal diversification, increased epithelial-mesenchymal transition (EMT), and spatial enrichment of APOE+/CD163+ macrophages. In vitro and ex vivo experiments further demonstrate that APOE+CD163+ macrophages promote tumor EMT via IGF1-IGF1R interaction. Adnexal involvement can predict AMis with higher invasive potential whereas APOE and CD163 serve as prognostic biomarkers for iAM. Altogether, our results provide implications for the early detection and treatment of AM.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Epithelial-Mesenchymal Transition , Melanoma , Neoplasm Invasiveness , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Epithelial-Mesenchymal Transition/genetics , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Apolipoproteins E/genetics , Macrophages/immunology , Macrophages/metabolism , Male , Female , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Spatial Analysis , Middle Aged , Prognosis , Disease Progression , Aged , Receptors, Cell Surface
18.
Cell Death Dis ; 15(5): 374, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811543

ABSTRACT

High workload-induced cellular stress can cause pancreatic islet ß cell death and dysfunction, or ß cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents ß cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced ß cell mass during pancreas development in mice. Here, we show that GRP94 was involved in ß cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for ß cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in ß cell failure related to diabetes.


Subject(s)
Insulin-Secreting Cells , Receptor, IGF Type 1 , Animals , Mice , Cell Death , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/genetics
19.
Oncogene ; 43(27): 2115-2131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773262

ABSTRACT

Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.


Subject(s)
Mitophagy , Neoplastic Stem Cells , Receptor, IGF Type 1 , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Mitophagy/genetics , Animals , Mice , Disease Progression , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Cell Survival/genetics
20.
Mol Cancer ; 23(1): 91, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715012

ABSTRACT

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Signal Transduction , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Drug Resistance, Neoplasm/genetics , Acrylamides/pharmacology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Aniline Compounds/pharmacology , Cell Line, Tumor , Animals , Mice , Apoptosis , Cell Movement/genetics , Xenograft Model Antitumor Assays , Male , Female , Indoles , Pyrimidines
SELECTION OF CITATIONS
SEARCH DETAIL