Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.388
1.
Dev Cell ; 59(10): 1231-1232, 2024 May 20.
Article En | MEDLINE | ID: mdl-38772342

Brown adipocytes are found in several fat depots, however, the origins and contributions of different lineages of adipogenic progenitor cells (APCs) to these depots are unclear. In this issue of Developmental Cell, Shi et al. show that platelet-derived growth factor receptor ß (PDGFRß)-lineage and T-box transcription factor 18 (TBX18)-lineage APCs differentially contribute to brown adipogenesis across these depots.


Adipogenesis , Receptors, Notch , Stem Cells , Adipogenesis/physiology , Animals , Receptors, Notch/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Humans , Adipocytes, Brown/metabolism , Adipocytes, Brown/cytology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Cell Differentiation , Cell Lineage , Mice , Signal Transduction
2.
J Biomed Sci ; 31(1): 51, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741091

BACKGROUND: The fusiform aneurysm is a nonsaccular dilatation affecting the entire vessel wall over a short distance. Although PDGFRB somatic variants have been identified in fusiform intracranial aneurysms, the molecular and cellular mechanisms driving fusiform intracranial aneurysms due to PDGFRB somatic variants remain poorly understood. METHODS: In this study, single-cell sequencing and immunofluorescence were employed to investigate the phenotypic changes in smooth muscle cells within fusiform intracranial aneurysms. Whole-exome sequencing revealed the presence of PDGFRB gene mutations in fusiform intracranial aneurysms. Subsequent immunoprecipitation experiments further explored the functional alterations of these mutated PDGFRB proteins. For the common c.1684 mutation site of PDGFRß, we established mutant smooth muscle cell lines and zebrafish models. These models allowed us to simulate the effects of PDGFRB mutations. We explored the major downstream cellular pathways affected by PDGFRBY562D mutations and evaluated the potential therapeutic effects of Ruxolitinib. RESULTS: Single-cell sequencing of two fusiform intracranial aneurysms sample revealed downregulated smooth muscle cell markers and overexpression of inflammation-related markers in vascular smooth muscle cells, which was validated by immunofluorescence staining, indicating smooth muscle cell phenotype modulation is involved in fusiform aneurysm. Whole-exome sequencing was performed on seven intracranial aneurysms (six fusiform and one saccular) and PDGFRB somatic mutations were detected in four fusiform aneurysms. Laser microdissection and Sanger sequencing results indicated that the PDGFRB mutations were present in smooth muscle layer. For the c.1684 (chr5: 149505131) site mutation reported many times, further cell experiments showed that PDGFRBY562D mutations promoted inflammatory-related vascular smooth muscle cell phenotype and JAK-STAT pathway played a crucial role in the process. Notably, transfection of PDGFRBY562D in zebrafish embryos resulted in cerebral vascular anomalies. Ruxolitinib, the JAK inhibitor, could reversed the smooth muscle cells phenotype modulation in vitro and inhibit the vascular anomalies in zebrafish induced by PDGFRB mutation. CONCLUSION: Our findings suggested that PDGFRB somatic variants played a role in regulating smooth muscle cells phenotype modulation in fusiform aneurysms and offered a potential therapeutic option for fusiform aneurysms.


Intracranial Aneurysm , Myocytes, Smooth Muscle , Phenotype , Receptor, Platelet-Derived Growth Factor beta , Intracranial Aneurysm/genetics , Intracranial Aneurysm/metabolism , Humans , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Myocytes, Smooth Muscle/metabolism , Zebrafish/genetics , Animals , Male , Mutation , Female , Adult , Middle Aged
3.
Sci Rep ; 14(1): 10963, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745066

MicroRNAs (miRNAs) are sequence-specific inhibitors of post-transcriptional gene expression. However, the physiological functions of these non-coding RNAs in renal interstitial mesenchymal cells remain unclear. To conclusively evaluate the role of miRNAs, we generated conditional knockout (cKO) mice with platelet-derived growth factor receptor-ß (PDGFR-ß)-specific inactivation of the key miRNA pathway gene Dicer. The cKO mice were subjected to unilateral ureteral ligation, and renal interstitial fibrosis was quantitatively evaluated using real-time polymerase chain reaction and immunofluorescence staining. Compared with control mice, cKO mice had exacerbated interstitial fibrosis exhibited by immunofluorescence staining and mRNA expression of PDGFR-ß. A microarray analysis showed decreased expressions of miR-9-5p, miR-344g-3p, and miR-7074-3p in cKO mice compared with those in control mice, suggesting an association with the increased expression of PDGFR-ß. An analysis of the signaling pathways showed that the major transcriptional changes in cKO mice were related to smooth muscle cell differentiation, regulation of DNA metabolic processes and the actin cytoskeleton, positive regulation of fibroblast proliferation and Ras protein signal transduction, and focal adhesion-PI3K/Akt/mTOR signaling pathways. Depletion of Dicer in mesenchymal cells may downregulate the signaling pathway related to miR-9-5p, miR-344g-3p, and miR-7074-3p, which can lead to the progression of chronic kidney disease. These findings highlight the possibility for future diagnostic or therapeutic developments for renal fibrosis using miR-9-5p, miR-344g-3p, and miR-7074-3p.


Fibrosis , Kidney , Mesenchymal Stem Cells , Mice, Knockout , MicroRNAs , Receptor, Platelet-Derived Growth Factor beta , Ribonuclease III , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Kidney/pathology , Kidney/metabolism , Mesenchymal Stem Cells/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Signal Transduction , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Male
4.
Dev Cell ; 59(10): 1233-1251.e5, 2024 May 20.
Article En | MEDLINE | ID: mdl-38569546

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRß)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis by downregulating PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.


Adipocytes, Brown , Adipogenesis , Cell Differentiation , Receptor, Platelet-Derived Growth Factor beta , Receptors, Notch , Stem Cells , Animals , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, Notch/metabolism , Mice , Adipocytes, Brown/metabolism , Adipocytes, Brown/cytology , Stem Cells/metabolism , Stem Cells/cytology , Signal Transduction , Pericytes/metabolism , Pericytes/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Mice, Inbred C57BL , Male
5.
Sci Rep ; 14(1): 9668, 2024 04 26.
Article En | MEDLINE | ID: mdl-38671006

Massive rotator cuff (RC) tendon tears are associated with progressive fibro-adipogenesis and muscle atrophy that altogether cause shoulder muscle wasting. Platelet derived growth factor ß (PDGFRß) lineage cells, that co-express PDGFRα have previously been shown to directly contribute to scar formation and fat accumulation in a mouse model of irreversible tendon and nerve transection (TTDN). Conversely, PDGFRß+ lineage cells have also been  shown to be myogenic in cultures and in other models of skeletal muscle injury. We therefore hypothesized that PDGFRß demarcates two distinct RC residing subpopulations, fibro-adipogenic and myogenic, and aimed to elucidate the identity of the PDGFRß myogenic precursors and evaluate their contribution, if any, to RC myo-regeneration. Lineage tracing revealed increasing contribution of PDGFRß+ myo-progenitors to the formation of GFP+ myofibers, which were the most abundant myofiber type in regenerated muscle at 2 weeks post-TTDN. Muscle regeneration preceded muscle atrophy and both advanced from the lateral site of tendon transection to the farthest medial region. GFP+/PDGFRß+Sca-1-lin-CXCR4+Integrin-ß1+ marked a novel subset of satellite cells with confirmed myogenic properties. Further studies are warranted to identify the existence of PDGFRß+ satellite cells in human and other mouse muscles and to define their myo-regenerative potential following acute and chronic muscle injury.


Cell Lineage , Receptor, Platelet-Derived Growth Factor beta , Regeneration , Rotator Cuff Injuries , Satellite Cells, Skeletal Muscle , Animals , Receptor, Platelet-Derived Growth Factor beta/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Mice , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/metabolism , Muscle Development , Disease Models, Animal , Rotator Cuff/pathology , Rotator Cuff/metabolism , Male
6.
J Biochem Mol Toxicol ; 38(2): e23646, 2024 Feb.
Article En | MEDLINE | ID: mdl-38345168

Circular RNAs (circRNAs) exhibit essential regulation in the malignant development of hepatocellular carcinoma (HCC). This study aims to investigate the physiological mechanisms of circ_0029343 encoded by scavenger receptor class B member 1 (SCARB1) involved in the growth and metastasis of HCC. Differentially expressed mRNAs in HCC were obtained, followed by the prediction of target genes of differentially expressed miRNAs and gene ontology and kyoto encyclopedia of genes and genomes analysis on the differentially expressed mRNAs. Moreover, the regulatory relationship between circRNAs encoded by SCARB1 and differentially expressed miRNAs was predicted. In vitro cell experiments were performed to verify the effects of circ_0029343, miR-486-5p, and SRSF3 on the malignant features of HCC cells using the gain- or loss-of-function experiments. Finally, the effects of circ_0029343 on the growth and metastasis of HCC cells in xenograft mouse models were also explored. It was found that miR-486-5p might interact with seven circRNAs encoded by SCARB1, and its possible downstream target gene was SRSF3. Moreover, SRSF3 was associated with the splicing of various RNA. circ_0029343 could sponge miR-486-5p to up-regulate SRSF3 and activate PDGF-PDGFRB (platelet-derived growth factor and its receptor, receptor beta) signaling pathway by inducing p73 splicing, thus promoting the proliferation, migration, and invasion and inhibiting apoptosis of HCC cells. In vivo, animal experiments further confirmed that overexpression of circ_0029343 could promote the growth and metastasis of HCC cells in nude mice. circ_0029343 encoded by SCARB1 may induce p73 splicing and activate the PDGF-PDGFRB signaling pathway through the miR-486-5p/SRSF3 axis, thus promoting the growth and metastasis of HCC cells.


Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice, Nude , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
7.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338969

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Blood-Brain Barrier , Epilepsy, Temporal Lobe , Epilepsy , Receptor, Platelet-Derived Growth Factor beta , Status Epilepticus , Animals , Humans , Rats , Blood-Brain Barrier/metabolism , Collagen/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Epilepsy/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Neuroglia/metabolism , Pericytes/metabolism , Pilocarpine/adverse effects , Rats, Sprague-Dawley , Status Epilepticus/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism
8.
Blood ; 143(21): 2178-2189, 2024 May 23.
Article En | MEDLINE | ID: mdl-38394665

ABSTRACT: Acute lymphoblastic leukemia (ALL) with fusions of ABL-class tyrosine kinase genes other than BCR::ABL1 occurs in ∼3% of children with ALL. The tyrosine kinase genes involved in this BCR::ABL1-like (Ph-like) subtype include ABL1, PDGFRB, ABL2, and CSF1R, each of which has up to 10 described partner genes. ABL-class ALL resembles BCR::ABL1-positive ALL with a similar gene expression profile, poor response to chemotherapy, and sensitivity to tyrosine kinase inhibitors (TKIs). There is a lack of comprehensive data regarding TKI sensitivity in the heterogeneous group of ABL-class ALL. We observed variability in TKI sensitivity within and among each ABL-class tyrosine kinase gene subgroup. We showed that ALL samples with fusions for any of the 4 tyrosine kinase genes were relatively sensitive to imatinib. In contrast, the PDGFRB-fused ALL samples were less sensitive to dasatinib and bosutinib. Variation in ex vivo TKI response within the subset of samples with the same ABL-class tyrosine kinase gene was not associated with the ALL immunophenotype, 5' fusion partner, presence or absence of Src-homology-2/3 domains, or deletions of IKZF1, PAX5, or CDKN2A/B. In conclusion, the tyrosine kinase gene involved in ABL-class ALL is the main determinant of TKI sensitivity and relevant for specific TKI selection.


Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-abl , src Homology Domains , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Child , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Adolescent , Child, Preschool , Female , Male , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/pharmacology , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Dasatinib/therapeutic use , Dasatinib/pharmacology , Oncogene Proteins, Fusion/genetics
9.
Mol Med ; 30(1): 21, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38317079

BACKGROUND: Pericytes are a vital component of the blood-brain barrier, and their involvement in acute inflammation was recently suggested. However, it remains unclear whether pericytes contribute to hypothalamic chronic inflammation and energy metabolism in obesity. The present study investigated the impact of pericytes on the pathophysiology of obesity by focusing on platelet-derived growth factor (PDGF) signaling, which regulates pericyte functions. METHODS: Tamoxifen-inducible systemic conditional PDGF receptor ß knockout mice (Pdgfrb∆SYS-KO) and Calcium/calmodulin-dependent protein kinase type IIa (CaMKIIa)-positive neuron-specific PDGF receptor ß knockout mice (Pdgfrb∆CaMKII-KO) were fed a high-fat diet, and metabolic phenotypes before and 3 to 4 weeks after dietary loading were examined. Intracellular energy metabolism and relevant signal transduction in lipopolysaccharide- and/or platelet-derived growth factor-BB (PDGF-BB)-stimulated human brain pericytes (HBPCs) were assessed by the Seahorse XFe24 Analyzer and Western blotting. The pericyte secretome in conditioned medium from HBPCs was studied using cytokine array kit, and its impact on polarization was examined in bone marrow-derived macrophages (BMDMs), which are microglia-like cells. RESULTS: Energy consumption increased and body weight gain decreased after high-fat diet loading in Pdgfrb∆SYS-KO mice. Cellular oncogene fos (cFos) expression increased in proopiomelanocortin (POMC) neurons, whereas microglial numbers and inflammatory gene expression decreased in the hypothalamus of Pdgfrb∆SYS-KO mice. No significant changes were observed in Pdgfrb∆CaMKII-KO mice. In HBPCs, a co-stimulation with lipopolysaccharide and PDGF-BB shifted intracellular metabolism towards glycolysis, activated mitogen-activated protein kinase (MAPK), and modulated the secretome to the inflammatory phenotype. Consequently, the secretome showed an increase in various proinflammatory chemokines and growth factors including Epithelial-derived neutrophil-activating peptide 78 (C-X-C motif chemokine ligand (CXCL)5), Thymus and activation-regulated chemokine (C-C motif chemokine (CCL)17), Monocyte chemoattractant protein 1 (CCL2), and Growth-regulated oncogene α (CXCL1). Furthermore, conditioned medium from HBPCs stimulated the inflammatory priming of BMDMs, and this change was abolished by the C-X-C motif chemokine receptor (CXCR) inhibitor. Consistently, mRNA expression of CXCL5 was elevated by lipopolysaccharide and PDGF-BB treatment in HBPCs, and the expression was significantly lower in the hypothalamus of Pdgfrb∆SYS-KO mice than in control Pdgfrbflox/flox mice (FL) following 4 weeks of HFD feeding. CONCLUSIONS: PDGF receptor ß signaling in hypothalamic pericytes promotes polarization of macrophages by changing their secretome and contributes to the progression of obesity.


Pericytes , Platelet-Derived Growth Factor , Mice , Humans , Animals , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Pericytes/metabolism , Becaplermin/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Culture Media, Conditioned/metabolism , Lipopolysaccharides , Signal Transduction , Inflammation/metabolism , Mice, Knockout , Obesity/metabolism , Hypothalamus , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism
10.
Cell Metab ; 36(4): 778-792.e10, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38378000

Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-ß) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-ß+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-ß+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Pericytes/metabolism , Carcinoma, Renal Cell/pathology , Methionine/metabolism , Racemethionine/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Kidney Neoplasms/pathology , Neoplastic Stem Cells/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/metabolism
11.
Eur J Nucl Med Mol Imaging ; 51(6): 1530-1543, 2024 May.
Article En | MEDLINE | ID: mdl-38189910

PURPOSE: Noninvasive quantifying activated hepatic stellate cells (aHSCs) by molecular imaging is helpful for assessing disease progression and therapeutic responses of liver fibrosis. Our purpose is to develop platelet-derived growth factor receptor ß (PDGFRß)-targeted radioactive tracer for assessing liver fibrosis by positron emission tomography (PET) imaging of aHSCs. METHODS: Comparative transcriptomics, immunofluorescence staining and flow cytometry were used to evaluate PDGFRß as biomarker for human aHSCs and determine the correlation of PDGFRß with the severity of liver fibrosis. The high affinity affibody for PDGFRß (ZPDGFRß) was labeled with gallium-68 (68Ga) for PET imaging of mice with carbon tetrachloride (CCl4)-induced liver fibrosis. Binding of the [68Ga]Ga-labeled ZPDGFRß ([68Ga]Ga-DOTA-ZPDGFRß) for aHSCs in human liver tissues was measured by autoradiography. RESULTS: PDGFRß overexpressed in aHSCs was highly correlated with the severity of liver fibrosis in patients and CCl4-treated mice. The 68Ga-labeled ZPDGFRß affibody ([68Ga]Ga-DOTA-ZPDGFRß) showed PDGFRß-dependent binding to aHSCs. According to the PET imaging, hepatic uptake of [68Ga]Ga-DOTA-ZPDGFRß increased with the accumulation of aHSCs and collagens in the fibrotic livers of mice. In contrast, hepatic uptake of [68Ga]Ga-DOTA-ZPDGFRß decreased with spontaneous recovery or treatment of liver fibrosis, indicating that the progression and therapeutic responses of liver fibrosis in mice could be visualized by PDGFRß-targeted PET imaging. [68Ga]Ga-DOTA-ZPDGFRß also bound human aHSCs and visualized fibrosis in patient-derived liver tissues. CONCLUSIONS: PDGFRß is a reliable biomarker for both human and mouse aHSCs. PDGFRß-targeted PET imaging could be used for noninvasive monitoring of liver fibrosis in mice and has great potential for clinical translation.


Gallium Radioisotopes , Liver Cirrhosis , Positron-Emission Tomography , Receptor, Platelet-Derived Growth Factor beta , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/metabolism , Animals , Positron-Emission Tomography/methods , Humans , Receptor, Platelet-Derived Growth Factor beta/metabolism , Mice , Male , Hepatic Stellate Cells/metabolism , Heterocyclic Compounds, 1-Ring/chemistry
12.
Chem Biol Drug Des ; 103(1): e14421, 2024 01.
Article En | MEDLINE | ID: mdl-38230771

Dihydromyricetin (DHM) is a bioactive flavonoid extracted from Hovenia dulcis, which has various activities. In the present study, the molecular mechanism of dihydromyricetin (DHM) in relieving liver cirrhosis was investigated through network pharmacology and experimental verification. The cell model was induced by TGF-ß1 activating the human hepatic stellate cell line (HSC; LX-2). The protein levels of α-SMA, collagen I, and collagen III and pathway-related proteins within LX-2 cells were detected using Western blot. EdU staining was conducted to detect cell proliferation. Immunofluorescence staining was performed to detect the expression levels of α-SMA and collagen I. Next, the drug targets of DHM were screened from the PubChem database. The differentially expressed genes in the liver cirrhosis dataset GSE14323 were identified. The expression of the identified drug targets in LX-2 cells was verified using qRT-PCR. The results showed that TGF-ß1 treatment notably increased LX-2 cell viability, promoted cell proliferation, and elevated α-SMA, collagen I, and collagen III protein contents. DHM treatment could partially eliminate TGF-ß1 effects, as evidenced by the inhibited cell viability and proliferation and reduced α-SMA, collagen I, and collagen III contents. After network pharmacology analysis, nine differentially expressed target genes (MMP2, PDGFRB, PARP1, BCL2L2, ABCB1, TYR, CYP2E1, SQSTM1, and IL6) in liver cirrhosis were identified. According to qRT-PCR verification, DHM could inhibit the expression of MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, and IL6, and enhance ABCB1 expression levels within LX-2 cells. Moreover, DHM inhibited mTOR and MAPK signaling pathways in TGF-ß1-induced HSCs. In conclusion, DHM could inhibit HSC activation, which may be achieved via acting on MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, IL6, and ABCB1 genes and their downstream signaling pathways, including mTOR and MAPK signaling pathway.


Flavonols , Matrix Metalloproteinase 2 , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Cytochrome P-450 CYP2E1/metabolism , Interleukin-6/metabolism , Network Pharmacology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/therapeutic use , Sequestosome-1 Protein/metabolism , Liver Cirrhosis/drug therapy , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I/therapeutic use , TOR Serine-Threonine Kinases/metabolism
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 237-252, 2024 01.
Article En | MEDLINE | ID: mdl-37401970

Truncated transforming growth factor ß receptor type II (tTßRII), serving as a trap for binding excessive transforming growth factor ß1 (TGF-ß1) by means of competing with wild-type TßRII, is a promising strategy for the treatment of kidney fibrosis. Platelet-derived growth factor ß receptor (PDGFßR) is highly expressed in interstitial myofibroblasts in kidney fibrosis. This study identified the interaction between a novel tTßRII variant Z-tTßRII (PDGFßR-specific affibody ZPDGFßR fused to the N-terminus of tTßRII) and TGF-ß1. Moreover, Z-tTßRII highly targeted to TGF-ß1-activated NIH3T3 cells and UUO-induced fibrotic kidney, but less to normal cells, tissues, and organs. Furthermore, Z-tTßRII significantly inhibited cell proliferation and migration, and reduced fibrosis markers expression and phosphorylation level of Smad2/3 in activated NIH3T3 cells. Meanwhile, Z-tTßRII markedly alleviated the kidney histopathology and fibrotic responses, and inhibited the TGF-ß1/Smad signaling pathway in UUO mice. Besides, Z-tTßRII showed good safety performance in the treatment of UUO mice. In conclusion, these results demonstrated that Z-tTßRII may be a potential candidate for a targeting therapy on renal fibrosis due to the high potential of fibrotic kidney-targeting and strong anti-renal fibrosis activity.


Kidney Diseases , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , NIH 3T3 Cells , Signal Transduction , Kidney Diseases/pathology , Fibrosis
14.
Dev Dyn ; 253(5): 519-541, 2024 May.
Article En | MEDLINE | ID: mdl-38112237

BACKGROUND: Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells. However, the overlapping and distinct expression patterns of these markers in tandem have not been fully described. RESULTS: Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular cell populations on the cranial, axial, and intersegmental vessels between 1 and 5 days postfertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord-a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. CONCLUSION: Together, our findings highlight the variability and versatility of tracking both pdgfrb and tagln expression in mural cells of the developing zebrafish embryo and reveal unexpected embryonic cell populations that express pdgfrb and tagln.


Animals, Genetically Modified , Pericytes , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Pericytes/cytology , Pericytes/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Blood Vessels/embryology , Blood Vessels/cytology , Blood Vessels/metabolism , Embryonic Development/physiology
15.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38069370

Embryonic genome activation (EGA) is a critical step during embryonic development. Several transcription factors have been identified that play major roles in initiating EGA; however, this gradual and complex mechanism still needs to be explored. In this study, we investigated the role of nuclear transcription factor Y subunit A (NFYA) in bovine EGA and bovine embryonic development and its relationship with the platelet-derived growth factor receptor-ß (PDGFRß) by using a potent selective activator (PDGF-BB) and inhibitor (CP-673451) of PDGF receptors. Activation and inhibition of PDGFRß using PDGF-BB and CP-673451 revealed that NFYA expression is significantly (p < 0.05) affected by the PDGFRß. In addition, PDGFRß mRNA expression was significantly increased (p < 0.05) in the activator group and significantly decreased (p < 0.05) in the inhibitor group when compared with PDGFRα. Downregulation of NFYA following PDGFRß inhibition was associated with the expression of critical EGA-related genes, bovine embryo development rate, and implantation potential. Moreover, ROS and mitochondrial apoptosis levels and expression of pluripotency-related markers necessary for inner cell mass development were also significantly (p < 0.05) affected by the downregulation of NFYA while interrupting trophoblast cell (CDX2) differentiation. In conclusion, the PDGFRß-NFYA axis is critical for bovine embryonic genome activation and embryonic development.


Receptor, Platelet-Derived Growth Factor beta , Signal Transduction , Animals , Cattle , Becaplermin/metabolism , Signal Transduction/physiology , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Cell Differentiation
16.
Brain Inj ; 37(12-14): 1345-1354, 2023 12 06.
Article En | MEDLINE | ID: mdl-37975626

OBJECTIVE: Although platelet-derived growth factor receptor (PDGFR)-ß mediates the self-renewal and multipotency of neural stem/progenitor cells (NSPCs) in vitro and in vivo, its mechanisms of activating endogenous NSPCs following ischemic stroke still remain unproven. METHODS: The exogenous NSPCs were transplanted into the ischemic striatum of PDGFR-ß conditionally neuroepithelial knockout (KO) mice at 24 h after transient middle cerebral artery occlusion (tMCAO). 5-Bromo-2'-deoxyuridine (BrdU) was intraperitoneally injected to label the newly formed endogenous NSPCs. Infarction volume was measured, and behavioral tests were performed. In the subventricular zone (SVZ), proliferation of endogenous NSPCs was tested, and synapse formation and expression of nutritional factors were measured. RESULTS: Compared with control mice, KO mice showed larger infarction volume, delayed neurological recovery, reduced numbers of BrdU positive cells, decreased expression of neurogenic factors (including neurofilament, synaptophysin, and brain-derived neurotrophic factor), and decreased synaptic regeneration in SVZ after tMCAO. Moreover, exogenous NSPC transplantation significantly alleviated neurologic dysfunction, promoted neurogenesis, increased expression of neurologic factors, and diminished synaptic deformation in SVZ of FL mice after tMCAO but had no beneficial effect in KO mice. CONCLUSION: PDGFR-ß signaling may promote activation of endogenous NSPCs after postischemic NSPC transplantation, and thus represents a novel potential regeneration-based therapeutic target.


Neural Stem Cells , Mice , Animals , Bromodeoxyuridine/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neurogenesis/physiology , Infarction, Middle Cerebral Artery/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Cell Transplantation , Cell Proliferation
17.
Cell Death Dis ; 14(11): 756, 2023 11 18.
Article En | MEDLINE | ID: mdl-37980402

Kawasaki disease (KD), described as "mucocutaneous lymph node syndrome", affects infants and toddlers. Patients with KD suffer from an inflammatory cascade leading to vasculitis with a predilection for coronary arteries. While the symptoms and pathogenesis of KD have received more and more attention, the precise mechanisms are still debated. Researches show that endothelial dysfunction process in KD leads to arterial damage and affect clinical outcome. In this study, we constructed a Candida albicans water soluble fraction (CAWS)-induced KD murine model and penetrated investigating the mechanisms behind endothelial dysfunction. CAWS-induced mice presented remarkably elevated vascular endothelial cell growth factor (VEGF) levels. Abundant expression of VEGF was documented in all vessels that showed edema from acute KD. It has been reported that Platelet-derived growth factor (PDGF) co-expression normalizes VEGF-induced aberrant angiogenesis. Hyperexpression of PDGFRß was induced in the thickened medial layer and vascular endothelium of KD mice. Masitinib (Mas) is an oral tyrosine kinase inhibitor of numerous targets, which can selectively target PDGFR signaling. We set out to explore whether Mas could regulate coronary pathology in KD. Mas administration significantly reduced the VEGF-induced endothelial cells migration. NOX4 was activated in vascular endothelial cells to produce more ROS. Mitochondrial dysregulated fission and mitophagy caused by DRP-1 overexpression precipitated the arterial endothelial cells injury. Here, mitophagy seemed to work as the driving force of DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. In summary, how mitophagy is regulated by DRP-1 under pathologic status is critical and complex, which may contribute to the development of specific therapeutic interventions in cardiovascular diseases patients, for example Masatinib, the inhibitor of PDGFRß. FACTS AND QUESTIONS: Kawasaki disease causing systemic vasculitis, affects infants and toddlers. Coronary artery injury remains the major causes of morbidity and mortality. DRP-1 overexpression induces DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. PDGFRß was high-expressed in the thickened medial layer of CAWS-induced KD mice. Inhibition of PDGFRß signaling alleviates arterial endothelial cells injury.


Mucocutaneous Lymph Node Syndrome , Infant , Humans , Animals , Mice , Mucocutaneous Lymph Node Syndrome/metabolism , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Mitophagy , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Apoptosis , Mitochondria/metabolism
18.
J Clin Invest ; 133(23)2023 Dec 01.
Article En | MEDLINE | ID: mdl-37815871

Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRß (p-PDGFRß) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRß/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.


Becaplermin , Core Binding Factor Alpha 1 Subunit , Vascular Calcification , Animals , Male , Mice , Becaplermin/metabolism , Becaplermin/pharmacology , Brain/metabolism , Brain/pathology , Core Binding Factor Alpha 1 Subunit/metabolism , Osteogenesis , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Vascular Calcification/metabolism
19.
Neuropathol Appl Neurobiol ; 49(6): e12942, 2023 Dec.
Article En | MEDLINE | ID: mdl-37812061

AIMS: We sought to identify and optimise a universally available histological marker for pericytes in the human brain. Such a marker could be a useful tool for researchers. Further, identifying a gene expressed relatively specifically in human pericytes could provide new insights into the biological functions of this fascinating cell type. METHODS: We analysed single-cell RNA expression profiles derived from different human and mouse brain regions using a high-throughput and low-cost single-cell transcriptome sequencing method called EasySci. Through this analysis, we were able to identify specific gene markers for pericytes, some of which had not been previously characterised. We then used commercially (and therefore universally) available antibodies to immunolabel the pericyte-specific gene products in formalin-fixed paraffin-embedded (FFPE) human brains and also performed immunoblots to determine whether appropriately sized proteins were recognised. RESULTS: In the EasySci data sets, highly pericyte-enriched expression was notable for SLC6A12 and SLC19A1. Antibodies against these proteins recognised bands of approximately the correct size in immunoblots of human brain extracts. Following optimisation of the immunohistochemical technique, staining for both antibodies was strongly positive in small blood vessels and was far more effective than a PDGFRB antibody at staining pericyte-like cells in FFPE human brain sections. In an exploratory sample of other human organs (kidney, lung, liver, muscle), immunohistochemistry did not show the same pericyte-like pattern of staining. CONCLUSIONS: The SLC6A12 antibody was well suited for labelling pericytes in human FFPE brain sections, based on the combined results of single-cell RNA-seq analyses, immunoblots and immunohistochemical studies.


Pericytes , RNA , Humans , Mice , Animals , Pericytes/metabolism , RNA/metabolism , Brain/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Immunohistochemistry
20.
BMC Ophthalmol ; 23(1): 344, 2023 Aug 03.
Article En | MEDLINE | ID: mdl-37537538

BACKGROUND: Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)ß suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRß in RPE cells remained elusive. METHODS: The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRß short of a PDGF-binding domain in the RPEM cells lacking PDGFRß. Western blot was employed to analyze expression of PDGFRß and α-smooth muscle actin, and signaling events (p-PDGFRß and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study. RESULTS: Expression of a truncated PDGFRß lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRß and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRß can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics. CONCLUSION: The data shown here will improve our understanding of the mechanism by which PDGFRß can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRß transactivation (ligand-independent activation).


Receptor, Platelet-Derived Growth Factor beta , Vitreoretinopathy, Proliferative , Humans , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retinal Pigment Epithelium/pathology , Proto-Oncogene Proteins c-akt , Ligands , Reactive Oxygen Species/metabolism , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/metabolism , Platelet-Derived Growth Factor/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Cell Movement
...